2023-2024學(xué)年貴州省遵義航天高中高三下學(xué)期第五次調(diào)研考試數(shù)學(xué)試題含解析_第1頁(yè)
2023-2024學(xué)年貴州省遵義航天高中高三下學(xué)期第五次調(diào)研考試數(shù)學(xué)試題含解析_第2頁(yè)
2023-2024學(xué)年貴州省遵義航天高中高三下學(xué)期第五次調(diào)研考試數(shù)學(xué)試題含解析_第3頁(yè)
2023-2024學(xué)年貴州省遵義航天高中高三下學(xué)期第五次調(diào)研考試數(shù)學(xué)試題含解析_第4頁(yè)
2023-2024學(xué)年貴州省遵義航天高中高三下學(xué)期第五次調(diào)研考試數(shù)學(xué)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩16頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023-2024學(xué)年貴州省遵義航天高中高三下學(xué)期第五次調(diào)研考試數(shù)學(xué)試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫(xiě)在答題紙相應(yīng)的答題區(qū)內(nèi)。寫(xiě)在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.執(zhí)行如圖所示的程序框圖若輸入,則輸出的的值為()A. B. C. D.2.設(shè)函數(shù)(,為自然對(duì)數(shù)的底數(shù)),定義在上的函數(shù)滿(mǎn)足,且當(dāng)時(shí),.若存在,且為函數(shù)的一個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍為()A. B. C. D.3.在中,角,,的對(duì)邊分別為,,,若,,,則()A. B.3 C. D.44.若函數(shù)函數(shù)只有1個(gè)零點(diǎn),則的取值范圍是()A. B. C. D.5.設(shè)是虛數(shù)單位,則“復(fù)數(shù)為純虛數(shù)”是“”的()A.充要條件 B.必要不充分條件C.既不充分也不必要條件 D.充分不必要條件6.函數(shù)的大致圖像為()A. B.C. D.7.已知是圓心為坐標(biāo)原點(diǎn),半徑為1的圓上的任意一點(diǎn),將射線繞點(diǎn)逆時(shí)針旋轉(zhuǎn)到交圓于點(diǎn),則的最大值為()A.3 B.2 C. D.8.已知數(shù)列是公差為的等差數(shù)列,且成等比數(shù)列,則()A.4 B.3 C.2 D.19.函數(shù)在上的最大值和最小值分別為()A.,-2 B.,-9 C.-2,-9 D.2,-210.對(duì)于任意,函數(shù)滿(mǎn)足,且當(dāng)時(shí),函數(shù).若,則大小關(guān)系是()A. B. C. D.11.已知復(fù)數(shù)滿(mǎn)足:(為虛數(shù)單位),則()A. B. C. D.12.設(shè),則復(fù)數(shù)的模等于()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.邊長(zhǎng)為2的正方形經(jīng)裁剪后留下如圖所示的實(shí)線圍成的部分,將所留部分折成一個(gè)正四棱錐.當(dāng)該棱錐的體積取得最大值時(shí),其底面棱長(zhǎng)為_(kāi)_______.14.某同學(xué)周末通過(guò)拋硬幣的方式?jīng)Q定出去看電影還是在家學(xué)習(xí),拋一枚硬幣兩次,若兩次都是正面朝上,就在家學(xué)習(xí),否則出去看電影,則該同學(xué)在家學(xué)習(xí)的概率為_(kāi)___________.15.已知向量,且,則___________.16.已知是拋物線的焦點(diǎn),過(guò)作直線與相交于兩點(diǎn),且在第一象限,若,則直線的斜率是_________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,在四棱錐中,底面為矩形,側(cè)面底面,為棱的中點(diǎn),為棱上任意一點(diǎn),且不與點(diǎn)、點(diǎn)重合..(1)求證:平面平面;(2)是否存在點(diǎn)使得平面與平面所成的角的余弦值為?若存在,求出點(diǎn)的位置;若不存在,請(qǐng)說(shuō)明理由.18.(12分)某中學(xué)為研究學(xué)生的身體素質(zhì)與體育鍛煉時(shí)間的關(guān)系,對(duì)該校名高三學(xué)生平均每天體育鍛煉時(shí)間進(jìn)行調(diào)查,如表:(平均每天鍛煉的時(shí)間單位:分鐘)將學(xué)生日均體育鍛煉時(shí)間在的學(xué)生評(píng)價(jià)為“鍛煉達(dá)標(biāo)”.(1)請(qǐng)根據(jù)上述表格中的統(tǒng)計(jì)數(shù)據(jù)填寫(xiě)下面列聯(lián)表:并通過(guò)計(jì)算判斷,是否能在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為“鍛煉達(dá)標(biāo)”與性別有關(guān)?(2)在“鍛煉達(dá)標(biāo)”的學(xué)生中,按男女用分層抽樣方法抽出人,進(jìn)行體育鍛煉體會(huì)交流.(i)求這人中,男生、女生各有多少人?(ii)從參加體會(huì)交流的人中,隨機(jī)選出人發(fā)言,記這人中女生的人數(shù)為,求的分布列和數(shù)學(xué)期望.參考公式:,其中.臨界值表:0.100.050.0250.01002.7063.8415.0246.63519.(12分)已知點(diǎn)和橢圓.直線與橢圓交于不同的兩點(diǎn),.(1)當(dāng)時(shí),求的面積;(2)設(shè)直線與橢圓的另一個(gè)交點(diǎn)為,當(dāng)為中點(diǎn)時(shí),求的值.20.(12分)已知函數(shù),且曲線在處的切線方程為.(1)求的極值點(diǎn)與極值.(2)當(dāng),時(shí),證明:.21.(12分)已知拋物線,焦點(diǎn)為,直線交拋物線于兩點(diǎn),交拋物線的準(zhǔn)線于點(diǎn),如圖所示,當(dāng)直線經(jīng)過(guò)焦點(diǎn)時(shí),點(diǎn)恰好是的中點(diǎn),且.(1)求拋物線的方程;(2)點(diǎn)是原點(diǎn),設(shè)直線的斜率分別是,當(dāng)直線的縱截距為1時(shí),有數(shù)列滿(mǎn)足,設(shè)數(shù)列的前n項(xiàng)和為,已知存在正整數(shù)使得,求m的值.22.(10分)“綠水青山就是金山銀山”,為推廣生態(tài)環(huán)境保護(hù)意識(shí),高二一班組織了環(huán)境保護(hù)興趣小組,分為兩組,討論學(xué)習(xí).甲組一共有人,其中男生人,女生人,乙組一共有人,其中男生人,女生人,現(xiàn)要從這人的兩個(gè)興趣小組中抽出人參加學(xué)校的環(huán)保知識(shí)競(jìng)賽.(1)設(shè)事件為“選出的這個(gè)人中要求兩個(gè)男生兩個(gè)女生,而且這兩個(gè)男生必須來(lái)自不同的組”,求事件發(fā)生的概率;(2)用表示抽取的人中乙組女生的人數(shù),求隨機(jī)變量的分布列和期望

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】

由程序語(yǔ)言依次計(jì)算,直到時(shí)輸出即可【詳解】程序的運(yùn)行過(guò)程為當(dāng)n=2時(shí),時(shí),,此時(shí)輸出.故選:C【點(diǎn)睛】本題考查由程序框圖計(jì)算輸出結(jié)果,屬于基礎(chǔ)題2、D【解析】

先構(gòu)造函數(shù),由題意判斷出函數(shù)的奇偶性,再對(duì)函數(shù)求導(dǎo),判斷其單調(diào)性,進(jìn)而可求出結(jié)果.【詳解】構(gòu)造函數(shù),因?yàn)椋?,所以為奇函?shù),當(dāng)時(shí),,所以在上單調(diào)遞減,所以在R上單調(diào)遞減.因?yàn)榇嬖冢?,所以,化?jiǎn)得,所以,即令,因?yàn)闉楹瘮?shù)的一個(gè)零點(diǎn),所以在時(shí)有一個(gè)零點(diǎn)因?yàn)楫?dāng)時(shí),,所以函數(shù)在時(shí)單調(diào)遞減,由選項(xiàng)知,,又因?yàn)椋砸乖跁r(shí)有一個(gè)零點(diǎn),只需使,解得,所以a的取值范圍為,故選D.【點(diǎn)睛】本題主要考查函數(shù)與方程的綜合問(wèn)題,難度較大.3、B【解析】由正弦定理及條件可得,即.,∴,由余弦定理得。∴.選B。4、C【解析】

轉(zhuǎn)化有1個(gè)零點(diǎn)為與的圖象有1個(gè)交點(diǎn),求導(dǎo)研究臨界狀態(tài)相切時(shí)的斜率,數(shù)形結(jié)合即得解.【詳解】有1個(gè)零點(diǎn)等價(jià)于與的圖象有1個(gè)交點(diǎn).記,則過(guò)原點(diǎn)作的切線,設(shè)切點(diǎn)為,則切線方程為,又切線過(guò)原點(diǎn),即,將,代入解得.所以切線斜率為,所以或.故選:C【點(diǎn)睛】本題考查了導(dǎo)數(shù)在函數(shù)零點(diǎn)問(wèn)題中的應(yīng)用,考查了學(xué)生數(shù)形結(jié)合,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于較難題.5、D【解析】

結(jié)合純虛數(shù)的概念,可得,再結(jié)合充分條件和必要條件的定義即可判定選項(xiàng).【詳解】若復(fù)數(shù)為純虛數(shù),則,所以,若,不妨設(shè),此時(shí)復(fù)數(shù),不是純虛數(shù),所以“復(fù)數(shù)為純虛數(shù)”是“”的充分不必要條件.故選:D【點(diǎn)睛】本題考查充分條件和必要條件,考查了純虛數(shù)的概念,理解充分必要條件的邏輯關(guān)系是解題的關(guān)鍵,屬于基礎(chǔ)題.6、D【解析】

通過(guò)取特殊值逐項(xiàng)排除即可得到正確結(jié)果.【詳解】函數(shù)的定義域?yàn)椋?dāng)時(shí),,排除B和C;當(dāng)時(shí),,排除A.故選:D.【點(diǎn)睛】本題考查圖象的判斷,取特殊值排除選項(xiàng)是基本手段,屬中檔題.7、C【解析】

設(shè)射線OA與x軸正向所成的角為,由三角函數(shù)的定義得,,,利用輔助角公式計(jì)算即可.【詳解】設(shè)射線OA與x軸正向所成的角為,由已知,,,所以,當(dāng)時(shí),取得等號(hào).故選:C.【點(diǎn)睛】本題考查正弦型函數(shù)的最值問(wèn)題,涉及到三角函數(shù)的定義、輔助角公式等知識(shí),是一道容易題.8、A【解析】

根據(jù)等差數(shù)列和等比數(shù)列公式直接計(jì)算得到答案.【詳解】由成等比數(shù)列得,即,已知,解得.故選:.【點(diǎn)睛】本題考查了等差數(shù)列,等比數(shù)列的基本量的計(jì)算,意在考查學(xué)生的計(jì)算能力.9、B【解析】

由函數(shù)解析式中含絕對(duì)值,所以去絕對(duì)值并畫(huà)出函數(shù)圖象,結(jié)合圖象即可求得在上的最大值和最小值.【詳解】依題意,,作出函數(shù)的圖象如下所示;由函數(shù)圖像可知,當(dāng)時(shí),有最大值,當(dāng)時(shí),有最小值.故選:B.【點(diǎn)睛】本題考查了絕對(duì)值函數(shù)圖象的畫(huà)法,由函數(shù)圖象求函數(shù)的最值,屬于基礎(chǔ)題.10、A【解析】

由已知可得的單調(diào)性,再由可得對(duì)稱(chēng)性,可求出在單調(diào)性,即可求出結(jié)論.【詳解】對(duì)于任意,函數(shù)滿(mǎn)足,因?yàn)楹瘮?shù)關(guān)于點(diǎn)對(duì)稱(chēng),當(dāng)時(shí),是單調(diào)增函數(shù),所以在定義域上是單調(diào)增函數(shù).因?yàn)?,所以?故選:A.【點(diǎn)睛】本題考查利用函數(shù)性質(zhì)比較函數(shù)值的大小,解題的關(guān)鍵要掌握函數(shù)對(duì)稱(chēng)性的代數(shù)形式,屬于中檔題..11、A【解析】

利用復(fù)數(shù)的乘法、除法運(yùn)算求出,再根據(jù)共軛復(fù)數(shù)的概念即可求解.【詳解】由,則,所以.故選:A【點(diǎn)睛】本題考查了復(fù)數(shù)的四則運(yùn)算、共軛復(fù)數(shù)的概念,屬于基礎(chǔ)題.12、C【解析】

利用復(fù)數(shù)的除法運(yùn)算法則進(jìn)行化簡(jiǎn),再由復(fù)數(shù)模的定義求解即可.【詳解】因?yàn)?所以,由復(fù)數(shù)模的定義知,.故選:C【點(diǎn)睛】本題考查復(fù)數(shù)的除法運(yùn)算法則和復(fù)數(shù)的模;考查運(yùn)算求解能力;屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

根據(jù)題意,建立棱錐體積的函數(shù),利用導(dǎo)數(shù)求函數(shù)的最大值即可.【詳解】設(shè)底面邊長(zhǎng)為,則斜高為,即此四棱錐的高為,所以此四棱錐體積為,令,令,易知函數(shù)在時(shí)取得最大值.故此時(shí)底面棱長(zhǎng).故答案為:.【點(diǎn)睛】本題考查棱錐體積的求解,涉及利用導(dǎo)數(shù)研究體積最大值的問(wèn)題,屬綜合中檔題.14、【解析】

采用列舉法計(jì)算古典概型的概率.【詳解】拋擲一枚硬幣兩次共有4種情況,即(正,正),(正,反),(反,正),(反,反),在家學(xué)習(xí)只有1種情況,即(正,正),故該同學(xué)在家學(xué)習(xí)的概率為.故答案為:【點(diǎn)睛】本題考查古典概型的概率計(jì)算,考查學(xué)生的基本計(jì)算能力,是一道基礎(chǔ)題.15、【解析】

由向量平行的坐標(biāo)表示得出,求解即可得出答案.【詳解】因?yàn)?,所以,解?故答案為:【點(diǎn)睛】本題主要考查了由向量共線或平行求參數(shù),屬于基礎(chǔ)題.16、【解析】

作出準(zhǔn)線,過(guò)作準(zhǔn)線的垂線,利用拋物線的定義把拋物線點(diǎn)到焦點(diǎn)的距離轉(zhuǎn)化為點(diǎn)到準(zhǔn)線的距離,利用平面幾何知識(shí)計(jì)算出直線的斜率.【詳解】設(shè)是準(zhǔn)線,過(guò)作于,過(guò)作于,過(guò)作于,如圖,則,,∵,∴,∴,∴,,∴,∴直線斜率為.故答案為:.【點(diǎn)睛】本題考查拋物線的焦點(diǎn)弦問(wèn)題,解題關(guān)鍵是利用拋物線的定義,把拋物線上點(diǎn)到焦點(diǎn)距離轉(zhuǎn)化為該點(diǎn)到準(zhǔn)線的距離,用平面幾何方法求解.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)證明見(jiàn)解析(2)存在,為中點(diǎn)【解析】

(1)證明面,即證明平面平面;(2)以為坐標(biāo)原點(diǎn),為軸正方向,為軸正方向,為軸正方向,建立空間直角坐標(biāo)系.利用向量方法得,解得,所以為中點(diǎn).【詳解】(1)由于為中點(diǎn),.又,故,所以為直角三角形且,即.又因?yàn)槊?,面面,面面,故面,又面,所以面面.?)由(1)知面,又四邊形為矩形,則兩兩垂直.以為坐標(biāo)原點(diǎn),為軸正方向,為軸正方向,為軸正方向,建立空間直角坐標(biāo)系.則,設(shè),則,設(shè)平面的法向量為,則有,令,則,則平面的一個(gè)法向量為,同理可得平面的一個(gè)法向量為,設(shè)平面與平面所成角為,則由題意可得,解得,所以點(diǎn)為中點(diǎn).【點(diǎn)睛】本題主要考查空間幾何位置關(guān)系的證明,考查空間二面角的應(yīng)用,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.18、(1)能;(2)(i)男生有人,女生有人;(ii),分布列見(jiàn)解析.【解析】

(1)根據(jù)所給數(shù)據(jù)可完成列聯(lián)表.由總?cè)藬?shù)及女生人數(shù)得男生人數(shù),由表格得達(dá)標(biāo)人數(shù),從而得男生中達(dá)標(biāo)人數(shù),這樣不達(dá)標(biāo)人數(shù)隨之而得,然后計(jì)算可得結(jié)論;(2)由達(dá)標(biāo)人數(shù)中男女生人數(shù)比為可得抽取的人數(shù),總共選2人,女生有4人,的可能值為0,1,2,分別計(jì)算概率得分布列,再由期望公式可計(jì)算出期望.【詳解】(1)列出列聯(lián)表,,所以在犯錯(cuò)誤的概率不超過(guò)的前提下能判斷“課外體育達(dá)標(biāo)”與性別有關(guān).(2)(i)在“鍛煉達(dá)標(biāo)”的學(xué)生中,男女生人數(shù)比為,用分層抽樣方法抽出人,男生有人,女生有人.(ii)從參加體會(huì)交流的人中,隨機(jī)選出人發(fā)言,人中女生的人數(shù)為,則的可能值為,,,則,,,可得的分布列為:可得數(shù)學(xué)期望.【點(diǎn)睛】本題考查列聯(lián)表與獨(dú)立性檢驗(yàn),考查分層抽樣,隨機(jī)變量的概率分布列和期望.主要考查學(xué)生的數(shù)據(jù)處理能力,運(yùn)算求解能力,屬于中檔題.19、(1);(2)或【解析】

(1)聯(lián)立直線的方程和橢圓方程,求得交點(diǎn)的橫坐標(biāo),由此求得三角形的面積.(2)法一:根據(jù)的坐標(biāo)求得的坐標(biāo),將的坐標(biāo)都代入橢圓方程,化簡(jiǎn)后求得的坐標(biāo),進(jìn)而求得的值.法二:設(shè)出直線的方程,聯(lián)立直線的方程和橢圓的方程,化簡(jiǎn)后寫(xiě)出根與系數(shù)關(guān)系,結(jié)合求得點(diǎn)的坐標(biāo),進(jìn)而求得的值.【詳解】(1)設(shè),,若,則直線的方程為,由,得,解得,,設(shè)直線與軸交于點(diǎn),則且.(2)法一:設(shè)點(diǎn)因?yàn)?,,所以又點(diǎn),都在橢圓上,所以解得或所以或.法二:設(shè)顯然直線有斜率,設(shè)直線的方程為由,得所以又解得或所以或所以或.【點(diǎn)睛】本小題主要考查直線和橢圓的位置關(guān)系,考查橢圓中三角形面積的求法,考查運(yùn)算求解能力,屬于中檔題.20、(1)極小值點(diǎn)為,極小值為,無(wú)極大值;(2)證明見(jiàn)解析【解析】

先對(duì)函數(shù)求導(dǎo),結(jié)合已知及導(dǎo)數(shù)的幾何意義可求,結(jié)合單調(diào)性即可求解函數(shù)的極值點(diǎn)及極值;令,問(wèn)題可轉(zhuǎn)化為求解函數(shù)的最值,結(jié)合導(dǎo)數(shù)可求.【詳解】(1)由題得函數(shù)的定義域?yàn)?,由已知得,解得∴,令,得令,得,∴在上單調(diào)遞增.令,得∴在上單調(diào)遞減∴的極小值點(diǎn)為,極小值為,無(wú)極大值.(2)證明:由(1)知,∴,令,即∵,,∴恒成立.∴在上單調(diào)遞增又,∴在上恒成立∴在上恒成立∴,即∴【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)研究函數(shù)的極值問(wèn)題,考查利用導(dǎo)數(shù)證明不等式,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平,屬于中檔題.21、(1)(2)【解析】

(1)設(shè)出直線的方程,再與拋物線聯(lián)立方程組,進(jìn)而求得點(diǎn)的坐標(biāo),結(jié)合弦長(zhǎng)即可求得拋物線的方程;(2)設(shè)直線的方程,運(yùn)用韋達(dá)定理可得,可得之間的關(guān)系,再運(yùn)用進(jìn)行裂項(xiàng),可求

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論