版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
湖南省衡陽市市中學(xué)2022年高一數(shù)學(xué)文期末試題含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個選項中,只有是一個符合題目要求的1.下列對應(yīng)是從集合A到集合B的映射的是(
)A.A=R,B={x|x>0且x∈R},x∈A,f:x→|x|
B.A=N,B=N+,x∈A,f:x→|x-1|C.A={x|x>0且x∈R},B=R,x∈A,f:x→x2
w.w.w.k.s.5.u.c.o.m
D.A=Q,B=Q,f:x→參考答案:C2.對于函數(shù)f(x),若在其定義域內(nèi)存在兩個實數(shù)a,b(a<b),當(dāng)x∈[a,b]時,f(x)的值域也是[a,b],則稱函數(shù)f(x)為“Kobe函數(shù)”.若函數(shù)f(x)=k+是“Kobe函數(shù)”,則實數(shù)k的取值范圍是()A.[﹣1,0] B.[1,+∞) C.[﹣1,﹣)D.(,1]參考答案:D【考點】函數(shù)的值域.【分析】根據(jù)新定義,當(dāng)x∈[a,b]時,f(x)的值域也是[a,b],可知函數(shù)f(x)是增函數(shù),其圖象與y=x有兩個不同的交點.即可求解.【解答】解:由題意,當(dāng)x∈[a,b]時,f(x)的值域也是[a,b],可知函數(shù)f(x)是增函數(shù),其圖象與y=x有兩個不同的交點,可得:x=k+,必有兩個不相等的實數(shù)根.即:x﹣k=,∵,即x≥1,∴1﹣k≥0,可得k≤1.那么:(x﹣k)2=x﹣1有兩個不相等的實數(shù)根.其判別式△>0,即(2k+1)2﹣4k﹣4>0,解得:k,∴實數(shù)k的取值范圍是(,1].故選D.3.已知函數(shù),對任意的兩個實數(shù),都有成立,且,則的值是(
)A.0 B.1 C.2006 D.20062參考答案:B4.在△ABC中,,,,則c=A.1 B.2 C. D.參考答案:B根據(jù)正弦定理,,,,則,則,,選B。5.(5分)設(shè)集合A={1,3},集合B={1,2,4,5},則集合A∪B=() A. {1,3,1,2,4,5} B. {1} C. {1,2,3,4,5} D. {2,3,4,5}參考答案:C考點: 并集及其運算.專題: 計算題.分析: 集合A的所有元素和集合B的所有元素合并到一起,構(gòu)成集合A∪B,由此利用集合A={1,3},集合B={1,2,4,5},能求出集合A∪B.解答: ∵集合A={1,3},集合B={1,2,4,5},∴集合A∪B={1,2,3,4,5}.故選C.點評: 本題考查集合的并集及其運算,是基礎(chǔ)題.解題時要認(rèn)真審題,仔細(xì)解答.6.已知,則--------------(
)A. B.
C.
D.參考答案:B略7.下列函數(shù)中,最小正周期為π的是(
)A.y=sinx B.y=cosx C.y=sin2x D.參考答案:C對于,周期,錯誤.對于,周期,錯誤.對于,周期,正確.對于,,周期,錯誤,故選C.
8.如圖,一個圓柱和一個圓錐的底面直徑和它們的高都與一個球的直徑相等,這時圓柱、圓錐、球的表面積之比為(
)A. B.C. D.參考答案:A【分析】分別計算圓柱,圓錐,球的表面積,再算比例值即可【詳解】設(shè)球的半徑為,圓柱的表面積。圓錐的表面積,,,故。球表面積,所以,故選A【點睛】本題考查了圓柱,圓錐,球的表面積的公式,屬于基礎(chǔ)題。9..已知,則的值為(
)A. B. C. D.參考答案:Bsin(π+α)?3cos(2π?α)=0,即:sinα+3cosα=0,①又∵sin2α+cos2α=1,②由①②聯(lián)立解得:cos2α=.∴cos2α=2cos2α?1=.故選B.10.設(shè)全集U={x||x|<4,且x∈Z},S={﹣2,1,3},若?UP?S,則這樣的集合P共有(
)A.5個 B.6個 C.7個 D.8個參考答案:D考點:集合的包含關(guān)系判斷及應(yīng)用.專題:綜合題;轉(zhuǎn)化思想;綜合法;集合.分析:求出全集U,S的子集,利用列舉法,即可得出結(jié)論.解答:解:全集U={x||x|<4,且x∈Z}={﹣3,﹣2,﹣1,0,1,2,3}.?UP?S,因為S的子集有{﹣2,1}、{﹣2,3}、{1,3}、{﹣2}、{1}、{3}、{﹣2,1,3}、?,∴P可以為{﹣3,﹣1,0,2,3}、{﹣3,﹣1,0,1,2}、{﹣3,﹣2,﹣1,0,2}、{﹣3,﹣1,0,1,2,3}、{﹣3,﹣2,﹣1,0,2,3}、{﹣3,﹣2,﹣1,0,1,2}、{﹣3,﹣1,0,2}、{﹣3,﹣2,﹣1,0,1,2,3}共8個.故選:D.點評:本題考查集合的關(guān)系與運算,考查學(xué)生的計算能力,比較基礎(chǔ).二、填空題:本大題共7小題,每小題4分,共28分11.關(guān)于的方程的兩根分別為和,則關(guān)于的不等式的解集是.參考答案:12.已知數(shù)列{}的前項和,若,則
.參考答案:略13.已知圓M:(x+cosθ)2+(y-sinθ)2=1,直線l:y=kx,下面四個命題:①對任意實數(shù)k與θ,直線l和圓M相切;②對任意實數(shù)k與θ,直線l和圓M有公共點;③對任意實數(shù)θ,必存在實數(shù)k,使得直線l和圓M相切;④對任意實數(shù)k,必存在實數(shù)θ,使得直線l和圓M相切.其中真命題的序號是_________參考答案:②④圓心M(-cosθ,sinθ)到直線l:kx-y=0的距離=|sin(φ+θ)|(其中tanφ=k)≤1=r,即d≤r,故②④正確.14.計算:tan120°= .參考答案:15.若函數(shù)為奇函數(shù),則________.參考答案:-15根據(jù)題意,當(dāng)時,為奇函數(shù),,則故答案為.16.兩圓相交于兩點和,兩圓圓心都在直線上,且均為實數(shù),則_______。參考答案:略17.設(shè)定義在R上的奇函數(shù)f(x)在(0,+∞)上為增函數(shù),且f(2)=0,則不等式f(x)<0的解集為.參考答案:(﹣∞,﹣2)∪(0,2)考點:函數(shù)奇偶性的性質(zhì);函數(shù)單調(diào)性的性質(zhì).專題:函數(shù)的性質(zhì)及應(yīng)用.分析:利用奇函數(shù)的對稱性、單調(diào)性即可得出.解答:解:如圖所示,不等式f(x)<0的解集為(﹣∞,﹣2)∪(0,2).故答案為:(﹣∞,﹣2)∪(0,2).點評:本題考查了奇函數(shù)的對稱性、單調(diào)性,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共72分。解答應(yīng)寫出文字說明,證明過程或演算步驟18.(本小題滿分10分)全集,若集合,,則(Ⅰ)求,,參考答案:解:(Ⅰ);;19.在△ABC中,角A,B,C所對的邊分別為a,b,c,已知cosC+(cosA﹣sinA)cosB=0.(1)求角B的大?。唬?)若a+c=1,求b的取值范圍.參考答案:【考點】HR:余弦定理;GP:兩角和與差的余弦函數(shù).【分析】(1)已知等式第一項利用誘導(dǎo)公式化簡,第二項利用單項式乘多項式法則計算,整理后根據(jù)sinA不為0求出tanB的值,由B為三角形的內(nèi)角,利用特殊角的三角函數(shù)值即可求出B的度數(shù);(2)由余弦定理列出關(guān)系式,變形后將a+c及cosB的值代入表示出b2,根據(jù)a的范圍,利用二次函數(shù)的性質(zhì)求出b2的范圍,即可求出b的范圍.【解答】解:(1)由已知得:﹣cos(A+B)+cosAcosB﹣sinAcosB=0,即sinAsinB﹣sinAcosB=0,∵sinA≠0,∴sinB﹣cosB=0,即tanB=,又B為三角形的內(nèi)角,則B=;(2)∵a+c=1,即c=1﹣a,cosB=,∴由余弦定理得:b2=a2+c2﹣2ac?cosB,即b2=a2+c2﹣ac=(a+c)2﹣3ac=1﹣3a(1﹣a)=3(a﹣)2+,∵0<a<1,∴≤b2<1,則≤b<1.20.(本小題滿分13分)函數(shù)若是的一個零點。(1)求的值;
(2)若,用單調(diào)性定義證明函數(shù)在上是減函數(shù);
(3)若函數(shù),求的值.參考答案:(1)…………………….………4分(2)…………….……5分任取,函數(shù)在上是減函數(shù).…………………8分
(3)………………9分
……………………11分
……………………13分21.(本小題滿分14分)已知函數(shù).(1)用函數(shù)單調(diào)性定義證明在上是單調(diào)減函數(shù).(2)求函數(shù)在區(qū)間上的最大值與最小值.參考答案:解:(1)證明:設(shè)為區(qū)間上的任意兩個實數(shù),且,………2分則……………4分(2)由上述(1)可知,函數(shù)在上為單調(diào)遞減函數(shù)所以在時,函數(shù)取得最大值;………………12分在時,函數(shù)取得最小值………………14分略22.已知函數(shù)f(x)=lg()為奇函數(shù).(1)求m的值,并求f(x)的定義域;(2)判斷函數(shù)f(x)的單調(diào)性,并證明;(3)若對于任意θ∈[0,],是否存在實數(shù)λ,使得不等式f(cos2θ+λsinθ﹣)﹣lg3>0.若存在,求出實數(shù)λ的取值范圍;若不存在,請說明理由.參考答案:【考點】4T:對數(shù)函數(shù)圖象與性質(zhì)的綜合應(yīng)用.【分析】(1)根據(jù)函數(shù)奇偶性的條件建立方程關(guān)系,即可求m的值,(2)根據(jù)函數(shù)單調(diào)性的定義即可判斷函數(shù)f(x)的單調(diào)性;(3)利用三角函數(shù)姜不等式進(jìn)行轉(zhuǎn)化,解三角不等式即可得到結(jié)論.【解答】解:(1)∵函數(shù)f(x)=lg()為奇函數(shù),∴f(﹣x)=﹣f(x)在定義域內(nèi)恒成立,即lg()=﹣lg(),即lg()+lg()=0,則?=1,即1﹣m2x2=1﹣x2,在定義域內(nèi)恒成立,∴m=﹣1或m=1,當(dāng)m=1時,f(x)=lg()=lg1=0,∴m=﹣1,此時f(x)=lg,由>0,解得﹣1<x<1,故函數(shù)的定義域是(﹣1,1).(2)∵f(x)=lg,﹣1<x<1,任取﹣1<x1<x2<1,設(shè)u(x)=,﹣1<x<1,則u(x1)﹣u(x2)=∵﹣1<x1<x2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025版借調(diào)員工跨部門溝通協(xié)作協(xié)議3篇
- 硝酸在物流行業(yè)的應(yīng)用標(biāo)準(zhǔn)
- 港口碼頭改造基礎(chǔ)設(shè)施施工合同
- 煙草種植園生物質(zhì)發(fā)電合同
- 婚慶策劃維修保修期服務(wù)承諾書
- 消防局屋頂防水修繕協(xié)議
- 服裝紡織計量監(jiān)督規(guī)章
- 居民區(qū)給水系統(tǒng)安裝合同范本
- 2024年船舶修造吊裝勞務(wù)承包合同3篇帶眉腳
- 2024年物業(yè)公司物業(yè)服務(wù)合同3篇帶眉腳
- 減少分娩損傷技術(shù)規(guī)范
- 水溶液中的離子平衡體系 保護(hù)珊瑚礁
- 結(jié)婚函調(diào)報告表
- -衛(wèi)生資格-副高-護(hù)理學(xué)-副高-章節(jié)練習(xí)-護(hù)理學(xué)總論-護(hù)理管理(單選題)(共500題)
- 電阻率測量報告
- GB/T 33859-2017環(huán)境管理水足跡原則、要求與指南
- GB/T 18838.5-2015涂覆涂料前鋼材表面處理噴射清理用金屬磨料的技術(shù)要求第5部分:鋼絲切丸
- 《美的集團財務(wù)分析報告(2020-2022)【論文】》
- 《秦統(tǒng)一中國》教學(xué)反思
- 施耐德變頻器atv212說明書
- 國家開放大學(xué)《企業(yè)集團財務(wù)管理》形考任務(wù)1-4參考答案
評論
0/150
提交評論