蘇教版必修第二冊(cè)112正弦定理課件-4_第1頁
蘇教版必修第二冊(cè)112正弦定理課件-4_第2頁
蘇教版必修第二冊(cè)112正弦定理課件-4_第3頁
蘇教版必修第二冊(cè)112正弦定理課件-4_第4頁
蘇教版必修第二冊(cè)112正弦定理課件-4_第5頁
已閱讀5頁,還剩37頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

數(shù)學(xué)第11章解三角形正弦定理01預(yù)習(xí)案自主學(xué)習(xí)02探究案講練互動(dòng)03自測案當(dāng)堂達(dá)標(biāo)04應(yīng)用案鞏固提升正弦1.判斷正誤(正確的打“√”,錯(cuò)誤的打“×”)(1)正弦定理不適用于直角三角形.(

)(2)在△ABC中必有asinA=bsinB.(

)(3)在△ABC中,若a>b,則必有sinA>sinB.(

)(4)在△ABC中,若sinA=sinB,則必有A=B.(

)××√√√√√已知三角形的兩角和任意一邊解三角形的思路(1)若所給邊是已知角的對(duì)邊時(shí),可由正弦定理求另一角所對(duì)的邊,再由三角形內(nèi)角和定理求出第三個(gè)角.(2)若所給邊不是已知角的對(duì)邊時(shí),先由三角形內(nèi)角和定理求出第三個(gè)角,再由正弦定理求另外兩邊.

√已知兩邊及其中一邊的對(duì)角解三角形的思路(1)首先由正弦定理求出另一邊對(duì)角的正弦值.(2)如果已知的角為大邊所對(duì)的角時(shí),由三角形中大邊對(duì)大角,大角對(duì)大邊的法則能判斷另一邊所對(duì)的角為銳角,由正弦值可求銳角.(3)如果已知的角為小邊所對(duì)的角時(shí),則不能判斷另一邊所對(duì)的角為銳角,這時(shí)由正弦值可求兩個(gè)角,要分類討論.

√√√判斷三角形形狀的兩種途徑

[注意]在兩種解法的等式變形中,一般兩邊不要約去公因式,應(yīng)移項(xiàng)提取公因式,以免漏解.

√2.在△ABC中,若(a-acosB)sinB=(b-ccosC)sinA,試判斷△ABC的形狀.解:因?yàn)?a-acosB)sinB=(b-ccosC)sinA,所以asinB-acosBsinB=bsinA-ccosCsinA,而由正弦定理可知asinB=bsinA,所以acosBsinB=ccosCsinA.即sinAcosBsinB=sinCcosCsinA,所以cosBsinB=sinCcosC,即sin2B=sin2C,所以2B=2C或2B+2C=180°,即B=C或B+C=90°,故△ABC是等腰三角形或直角三角形.利用正弦定理解決綜合問題時(shí),如果是實(shí)際問題,應(yīng)首先轉(zhuǎn)化為解三角形的問題,然后再分析清楚在

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論