版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
山東省商河縣龍桑寺鎮(zhèn)2024年中考數學考試模擬沖刺卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D,AB=c,∠A=α,則CD長為()A.c?sin2α B.c?cos2α C.c?sinα?tanα D.c?sinα?cosα2.下列各式中正確的是()A.9=±3B.(-3)2=﹣3C.393.如圖,二次函數y=ax2+bx+c(a≠0)的圖象的頂點在第一象限,且過點(0,1)和(﹣1,0).下列結論:①ab<0,②b2>4a,③0<a+b+c<2,④0<b<1,⑤當x>﹣1時,y>0,其中正確結論的個數是A.5個 B.4個 C.3個 D.2個4.如圖,二次函數y=ax2+bx+c(a≠0)的圖象經過點A,B,C.現有下面四個推斷:①拋物線開口向下;②當x=-2時,y取最大值;③當m<4時,關于x的一元二次方程ax2+bx+c=m必有兩個不相等的實數根;④直線y=kx+c(k≠0)經過點A,C,當kx+c>ax2+bx+c時,x的取值范圍是-4<x<0;其中推斷正確的是()A.①② B.①③ C.①③④ D.②③④5.如圖,在平行四邊形ABCD中,AB=4,BC=6,分別以A,C為圓心,以大于AC的長為半徑作弧,兩弧相交于M,N兩點,作直線MN交AD于點E,則△CDE的周長是()A.7 B.10 C.11 D.126.如圖,PB切⊙O于點B,PO交⊙O于點E,延長PO交⊙O于點A,連結AB,⊙O的半徑OD⊥AB于點C,BP=6,∠P=30°,則CD的長度是()A. B. C. D.27.多項式4a﹣a3分解因式的結果是()A.a(4﹣a2)B.a(2﹣a)(2+a)C.a(a﹣2)(a+2)D.a(2﹣a)28.某反比例函數的圖象經過點(-2,3),則此函數圖象也經過()A.(2,-3) B.(-3,3) C.(2,3) D.(-4,6)9.正方形ABCD和正方形BPQR的面積分別為16、25,它們重疊的情形如圖所示,其中R點在AD上,CD與QR相交于S點,則四邊形RBCS的面積為()A.8 B. C. D.10.下列運算正確的是()A.(﹣2a)3=﹣6a3 B.﹣3a2?4a3=﹣12a5C.﹣3a(2﹣a)=6a﹣3a2 D.2a3﹣a2=2a二、填空題(共7小題,每小題3分,滿分21分)11.二次函數的圖象如圖所示,給出下列說法:①;②方程的根為,;③;④當時,隨值的增大而增大;⑤當時,.其中,正確的說法有________(請寫出所有正確說法的序號).12.如圖,在平面直角坐標系xOy中,點A的坐標為A(1,0),等腰直角三角形ABC的邊AB在x軸的正半軸上,∠ABC=90°,點B在點A的右側,點C在第一象限。將△ABC繞點A逆時針旋轉75°,如果點C的對應點E恰好落在y軸的正半軸上,那么邊AB的長為____.13.如圖,在矩形ABCD中,AB=,AD=1,把該矩形繞點A順時針旋轉α度得矩形AB′C′D′,點C′落在AB的延長線上,則圖中陰影部分的面積是_____.14.如圖,⊙O的直徑AB=8,C為的中點,P為⊙O上一動點,連接AP、CP,過C作CD⊥CP交AP于點D,點P從B運動到C時,則點D運動的路徑長為_____.15.若不等式(a﹣3)x>1的解集為,則a的取值范圍是_____.16.如圖,□ABCD中,E是BA的中點,連接DE,將△DAE沿DE折疊,使點A落在□ABCD內部的點F處.若∠CBF=25°,則∠FDA的度數為_________.17.如圖,⊙O的半徑為1cm,正六邊形ABCDEF內接于⊙O,則圖中陰影部分面積為_____cm1.(結果保留π)三、解答題(共7小題,滿分69分)18.(10分)為滿足市場需求,某超市在五月初五“端午節(jié)”來臨前夕,購進一種品牌粽子,每盒進價是40元.超市規(guī)定每盒售價不得少于45元.根據以往銷售經驗發(fā)現;當售價定為每盒45元時,每天可以賣出700盒,每盒售價每提高1元,每天要少賣出20盒.試求出每天的銷售量y(盒)與每盒售價x(元)之間的函數關系式;當每盒售價定為多少元時,每天銷售的利潤P(元)最大?最大利潤是多少?為穩(wěn)定物價,有關管理部門限定:這種粽子的每盒售價不得高于58元.如果超市想要每天獲得不低于6000元的利潤,那么超市每天至少銷售粽子多少盒?19.(5分)如圖,一次函數y=kx+b的圖象與反比例函數y=的圖象交于點A(-3,m+8),B(n,-6)兩點.求一次函數與反比例函數的解析式;求△AOB的面積.20.(8分)班級的課外活動,學生們都很積極.梁老師在某班對同學們進行了一次關于“我喜愛的體育項目”的調査,下面是他通過收集數據后,繪制的兩幅不完整的統(tǒng)計圖.請根據圖中的信息,解答下列問題:調查了________名學生;補全條形統(tǒng)計圖;在扇形統(tǒng)計圖中,“乒乓球”部分所對應的圓心角度數為________;學校將舉辦運動會,該班將推選5位同學參加乒乓球比賽,有3位男同學和2位女同學,現準備從中選取兩名同學組成雙打組合,用樹狀圖或列表法求恰好選出一男一女組成混合雙打組合的概率.21.(10分)如圖,是5×5正方形網格,每個小正方形的邊長為1,請按要求畫出下列圖形,所畫圖形的各個頂點均在所給小正方形的頂點上.(1)在圖(1)中畫出一個等腰△ABE,使其面積為3.5;(2)在圖(2)中畫出一個直角△CDF,使其面積為5,并直接寫出DF的長.22.(10分)如圖,拋物線y=﹣x2+bx+c與x軸交于點A和點B(3,0),與y軸交于點C(0,3),點D是拋物線的頂點,過點D作x軸的垂線,垂足為E,連接DB.(1)求此拋物線的解析式及頂點D的坐標;(2)點M是拋物線上的動點,設點M的橫坐標為m.①當∠MBA=∠BDE時,求點M的坐標;②過點M作MN∥x軸,與拋物線交于點N,P為x軸上一點,連接PM,PN,將△PMN沿著MN翻折,得△QMN,若四邊形MPNQ恰好為正方形,直接寫出m的值.23.(12分)為了傳承祖國的優(yōu)秀傳統(tǒng)文化,某校組織了一次“詩詞大會”,小明和小麗同時參加,其中,有一道必答題是:從如圖所示的九宮格中選取七個字組成一句唐詩,其答案為“山重水復疑無路”.(1)小明回答該問題時,僅對第二個字是選“重”還是選“窮”難以抉擇,隨機選擇其中一個,則小明回答正確的概率是;(2)小麗回答該問題時,對第二個字是選“重”還是選“窮”、第四個字是選“富”還是選“復”都難以抉擇,若分別隨機選擇,請用列表或畫樹狀圖的方法求小麗回答正確的概率.九宮格24.(14分)已知關于x的一元二次方程x2﹣2(k﹣1)x+k(k+2)=0有兩個不相等的實數根.求k的取值范圍;寫出一個滿足條件的k的值,并求此時方程的根.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】
根據銳角三角函數的定義可得結論.【詳解】在Rt△ABC中,∠ACB=90°,AB=c,∠A=a,根據銳角三角函數的定義可得sinα=,∴BC=c?sinα,∵∠A+∠B=90°,∠DCB+∠B=90°,∴∠DCB=∠A=α在Rt△DCB中,∠CDB=90°,∴cos∠DCB=,∴CD=BC?cosα=c?sinα?cosα,故選D.2、D【解析】
原式利用平方根、立方根定義計算即可求出值.【詳解】解:A、原式=3,不符合題意;B、原式=|-3|=3,不符合題意;C、原式不能化簡,不符合題意;D、原式=23-3=3,符合題意,故選:D.【點睛】此題考查了立方根,以及算術平方根,熟練掌握各自的性質是解本題的關鍵.3、B【解析】
解:∵二次函數y=ax3+bx+c(a≠3)過點(3,3)和(﹣3,3),∴c=3,a﹣b+c=3.①∵拋物線的對稱軸在y軸右側,∴,x>3.∴a與b異號.∴ab<3,正確.②∵拋物線與x軸有兩個不同的交點,∴b3﹣4ac>3.∵c=3,∴b3﹣4a>3,即b3>4a.正確.④∵拋物線開口向下,∴a<3.∵ab<3,∴b>3.∵a﹣b+c=3,c=3,∴a=b﹣3.∴b﹣3<3,即b<3.∴3<b<3,正確.③∵a﹣b+c=3,∴a+c=b.∴a+b+c=3b>3.∵b<3,c=3,a<3,∴a+b+c=a+b+3<a+3+3=a+3<3+3=3.∴3<a+b+c<3,正確.⑤拋物線y=ax3+bx+c與x軸的一個交點為(﹣3,3),設另一個交點為(x3,3),則x3>3,由圖可知,當﹣3<x<x3時,y>3;當x>x3時,y<3.∴當x>﹣3時,y>3的結論錯誤.綜上所述,正確的結論有①②③④.故選B.4、B【解析】
結合函數圖象,利用二次函數的對稱性,恰當使用排除法,以及根據函數圖象與不等式的關系可以得出正確答案.【詳解】解:①由圖象可知,拋物線開口向下,所以①正確;
②若當x=-2時,y取最大值,則由于點A和點B到x=-2的距離相等,這兩點的縱坐標應該相等,但是圖中點A和點B的縱坐標顯然不相等,所以②錯誤,從而排除掉A和D;
剩下的選項中都有③,所以③是正確的;
易知直線y=kx+c(k≠0)經過點A,C,當kx+c>ax2+bx+c時,x的取值范圍是x<-4或x>0,從而④錯誤.故選:B.【點睛】本題考查二次函數的圖象,二次函數的對稱性,以及二次函數與一元二次方程,二次函數與不等式的關系,屬于較復雜的二次函數綜合選擇題.5、B【解析】∵四邊形ABCD是平行四邊形,
∴AD=BC=4,CD=AB=6,
∵由作法可知,直線MN是線段AC的垂直平分線,
∴AE=CE,
∴AE+DE=CE+DE=AD,
∴△CDE的周長=CE+DE+CD=AD+CD=4+6=1.
故選B.6、C【解析】
連接OB,根據切線的性質與三角函數得到∠POB=60°,OB=OD=2,再根據等腰三角形的性質與三角函數得到OC的長,即可得到CD的長.【詳解】解:如圖,連接OB,∵PB切⊙O于點B,∴∠OBP=90°,∵BP=6,∠P=30°,∴∠POB=60°,OD=OB=BPtan30°=6×=2,∵OA=OB,∴∠OAB=∠OBA=30°,∵OD⊥AB,∴∠OCB=90°,∴∠OBC=30°,則OC=OB=,∴CD=.故選:C.【點睛】本題主要考查切線的性質與銳角的三角函數,解此題的關鍵在于利用切線的性質得到相關線段與角度的值,再根據圓和等腰三角形的性質求解即可.7、B【解析】
首先提取公因式a,再利用平方差公式分解因式得出答案.【詳解】4a﹣a3=a(4﹣a2)=a(2﹣a)(2+a).故選:B.【點睛】此題主要考查了提取公因式法以及公式法分解因式,正確運用公式是解題關鍵.8、A【解析】
設反比例函數y=(k為常數,k≠0),由于反比例函數的圖象經過點(-2,3),則k=-6,然后根據反比例函數圖象上點的坐標特征分別進行判斷.【詳解】設反比例函數y=(k為常數,k≠0),∵反比例函數的圖象經過點(-2,3),∴k=-2×3=-6,而2×(-3)=-6,(-3)×(-3)=9,2×3=6,-4×6=-24,∴點(2,-3)在反比例函數y=-的圖象上.故選A.【點睛】本題考查了反比例函數圖象上點的坐標特征:反比例函數y=(k為常數,k≠0)的圖象是雙曲線,圖象上的點(x,y)的橫縱坐標的積是定值k,即xy=k.9、D【解析】
根據正方形的邊長,根據勾股定理求出AR,求出△ABR∽△DRS,求出DS,根據面積公式求出即可.【詳解】∵正方形ABCD的面積為16,正方形BPQR面積為25,∴正方形ABCD的邊長為4,正方形BPQR的邊長為5,在Rt△ABR中,AB=4,BR=5,由勾股定理得:AR=3,∵四邊形ABCD是正方形,∴∠A=∠D=∠BRQ=90°,∴∠ABR+∠ARB=90°,∠ARB+∠DRS=90°,∴∠ABR=∠DRS,∵∠A=∠D,∴△ABR∽△DRS,∴,∴,∴DS=,∴∴陰影部分的面積S=S正方形ABCD-S△ABR-S△RDS=4×4-×4×3-××1=,故選:D.【點睛】本題考查了正方形的性質,相似三角形的性質和判定,能求出△ABR和△RDS的面積是解此題的關鍵.10、B【解析】
先根據同底數冪的乘法法則進行運算即可?!驹斀狻緼.;故本選項錯誤;B.﹣3a2?4a3=﹣12a5;故本選項正確;C.;故本選項錯誤;D.不是同類項不能合并;故本選項錯誤;故選B.【點睛】先根據同底數冪的乘法法則,冪的乘方,積的乘方,合并同類項分別求出每個式子的值,再判斷即可.二、填空題(共7小題,每小題3分,滿分21分)11、①②④【解析】
根據拋物線的對稱軸判斷①,根據拋物線與x軸的交點坐標判斷②,根據函數圖象判斷③④⑤.【詳解】解:∵對稱軸是x=-=1,∴ab<0,①正確;∵二次函數y=ax2+bx+c的圖象與x軸的交點坐標為(-1,0)、(3,0),∴方程x2+bx+c=0的根為x1=-1,x2=3,②正確;∵當x=1時,y<0,∴a+b+c<0,③錯誤;由圖象可知,當x>1時,y隨x值的增大而增大,④正確;當y>0時,x<-1或x>3,⑤錯誤,故答案為①②④.【點睛】本題考查的是二次函數圖象與系數之間的關系,二次函數y=ax2+bx+c系數符號由拋物線開口方向、對稱軸、拋物線與y軸的交點、拋物線與x軸交點的個數確定.12、【解析】
依據旋轉的性質,即可得到,再根據,,即可得出,.最后在中,可得到.【詳解】依題可知,,,,∴,在中,,,,,.∴在中,.故答案為:.【點睛】本題考查了坐標與圖形變化,等腰直角三角形的性質以及含30°角的直角三角形的綜合運用,圖形或點旋轉之后要結合旋轉的角度和圖形的特殊性質來求出旋轉后的點的坐標.13、【解析】
∵在矩形ABCD中,AB=,∠DAC=60°,∴DC=,AD=1.由旋轉的性質可知:D′C′=,AD′=1,∴tan∠D′AC′==,∴∠D′AC′=60°.∴∠BAB′=30°,∴S△AB′C′=×1×=,S扇形BAB′==.S陰影=S△AB′C′-S扇形BAB′=-.故答案為-.【點睛】錯因分析
中檔題.失分原因有2點:(1)不能準確地將陰影部分面積轉化為易求特殊圖形的面積;(2)不能根據矩形的邊求出α的值.14、【解析】分析:以AC為斜邊作等腰直角三角形ACQ,則∠AQC=90°,依據∠ADC=135°,可得點D的運動軌跡為以Q為圓心,AQ為半徑的,依據△ACQ中,AQ=4,即可得到點D運動的路徑長為=2π.詳解:如圖所示,以AC為斜邊作等腰直角三角形ACQ,則∠AQC=90°.∵⊙O的直徑為AB,C為的中點,∴∠APC=45°.又∵CD⊥CP,∴∠DCP=90°,∴∠PDC=45°,∠ADC=135°,∴點D的運動軌跡為以Q為圓心,AQ為半徑的.又∵AB=8,C為的中點,∴AC=4,∴△ACQ中,AQ=4,∴點D運動的路徑長為=2π.故答案為2π.點睛:本題考查了軌跡,等腰直角三角形的性質,圓周角定理以及弧長的計算,正確作出輔助線是解題的關鍵.15、.【解析】∵(a?3)x>1的解集為x<,∴不等式兩邊同時除以(a?3)時不等號的方向改變,∴a?3<0,∴a<3.故答案為a<3.點睛:本題考查了不等式的性質:在不等式的兩邊同時乘以或除以同一個負數不等號的方向改變.本題解不等號時方向改變,所以a-3小于0.16、50°【解析】
延長BF交CD于G,根據折疊的性質和平行四邊形的性質,證明△BCG≌△DAE,從而∠7=∠6=25°,進而可求∠FDA得度數.【詳解】延長BF交CD于G由折疊知,BE=CF,∠1=∠2,∠7=∠8,∴∠3=∠4.∵∠1+∠2=∠3+∠4,∴∠1=∠2=∠3=∠4,∵CD∥AB,∴∠3=∠5,∴∠1=∠5,在△BCG和△DAE中∵∠1=∠5,∠C=∠A,BC=AD,∴△BCG≌△DAE,∴∠7=∠6=25°,∴∠8=∠7=25°,∴FDA=50°.故答案為50°.【點睛】本題考查了折疊的性質,平行四邊形的性質,全等三角形的判定與性質.證明△BCG≌△DAE是解答本題的關鍵.17、【解析】試題分析:根據圖形分析可得求圖中陰影部分面積實為求扇形部分面積,將原圖陰影部分面積轉化為扇形面積求解即可.試題解析:如圖所示:連接BO,CO,∵正六邊形ABCDEF內接于⊙O,∴AB=BC=CO=1,∠ABC=110°,△OBC是等邊三角形,∴CO∥AB,在△COW和△ABW中,∴△COW≌△ABW(AAS),∴圖中陰影部分面積為:S扇形OBC=.考點:正多邊形和圓.三、解答題(共7小題,滿分69分)18、(1)y=﹣20x+1600;(2)當每盒售價定為60元時,每天銷售的利潤P(元)最大,最大利潤是8000元;(3)超市每天至少銷售粽子440盒.【解析】試題分析:(1)根據“當售價定為每盒45元時,每天可以賣出700盒,每盒售價每提高1元,每天要少賣出20盒”即可得出每天的銷售量y(盒)與每盒售價x(元)之間的函數關系式;(2)根據利潤=1盒粽子所獲得的利潤×銷售量列式整理,再根據二次函數的最值問題解答;(3)先由(2)中所求得的P與x的函數關系式,根據這種粽子的每盒售價不得高于58元,且每天銷售粽子的利潤不低于6000元,求出x的取值范圍,再根據(1)中所求得的銷售量y(盒)與每盒售價x(元)之間的函數關系式即可求解.試題解析:(1)由題意得,==;(2)P===,∵x≥45,a=﹣20<0,∴當x=60時,P最大值=8000元,即當每盒售價定為60元時,每天銷售的利潤P(元)最大,最大利潤是8000元;(3)由題意,得=6000,解得,,∵拋物線P=的開口向下,∴當50≤x≤70時,每天銷售粽子的利潤不低于6000元的利潤,又∵x≤58,∴50≤x≤58,∵在中,<0,∴y隨x的增大而減小,∴當x=58時,y最小值=﹣20×58+1600=440,即超市每天至少銷售粽子440盒.考點:二次函數的應用.19、(1)y=-,y=-2x-1(2)1【解析】試題分析:(1)將點A坐標代入反比例函數求出m的值,從而得到點A的坐標以及反比例函數解析式,再將點B坐標代入反比例函數求出n的值,從而得到點B的坐標,然后利用待定系數法求一次函數解析式求解;(2)設AB與x軸相交于點C,根據一次函數解析式求出點C的坐標,從而得到點OC的長度,再根據S△AOB=S△AOC+S△BOC列式計算即可得解.試題解析:(1)將A(﹣3,m+8)代入反比例函數y=得,=m+8,解得m=﹣6,m+8=﹣6+8=2,所以,點A的坐標為(﹣3,2),反比例函數解析式為y=﹣,將點B(n,﹣6)代入y=﹣得,﹣=﹣6,解得n=1,所以,點B的坐標為(1,﹣6),將點A(﹣3,2),B(1,﹣6)代入y=kx+b得,,解得,所以,一次函數解析式為y=﹣2x﹣1;(2)設AB與x軸相交于點C,令﹣2x﹣1=0解得x=﹣2,所以,點C的坐標為(﹣2,0),所以,OC=2,S△AOB=S△AOC+S△BOC,=×2×3+×2×1,=3+1,=1.考點:反比例函數與一次函數的交點問題.20、50見解析(3)115.2°(4)【解析】試題分析:(1)用最喜歡籃球的人數除以它所占的百分比可得總共的學生數;(2)用學生的總人數乘以各部分所占的百分比,可得最喜歡足球的人數和其他的人數,即可把條形統(tǒng)計圖補充完整;(3)根據圓心角的度數=360o×它所占的百分比計算;(4)列出樹狀圖可知,共有20種等可能的結果,兩名同學恰為一男一女的有12種情況,從而可求出答案.解:(1)由題意可知該班的總人數=15÷30%=50(名)故答案為50;(2)足球項目所占的人數=50×18%=9(名),所以其它項目所占人數=50﹣15﹣9﹣16=10(名)補全條形統(tǒng)計圖如圖所示:(3)“乒乓球”部分所對應的圓心角度數=360°×=115.2°,故答案為115.2°;(4)畫樹狀圖如圖.由圖可知,共有20種等可能的結果,兩名同學恰為一男一女的有12種情況,所以P(恰好選出一男一女)==.點睛:本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用,概率的計算.讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息及掌握概率的計算方法是解決問題的關鍵.21、(1)見解析;(2)DF=【解析】
(1)直接利用等腰三角形的定義結合勾股定理得出答案;(2)利用直角三角的定義結合勾股定理得出符合題意的答案.【詳解】(1)如圖(1)所示:△ABE,即為所求;(2)如圖(2)所示:△CDF即為所求,DF=.【點睛】此題主要考查了等腰三角形的定義以及三角形面積求法,正確應用網格分析是解題關鍵.22、(1)(1,4)(2)①點M坐標(﹣,)或(﹣,﹣);②m的值為或【解析】
(1)利用待定系數法即可解決問題;(2)①根據tan∠MBA=,tan∠BDE==,由∠MBA=∠BDE,構建方程即可解決問題;②因為點M、N關于拋物線的對稱軸對稱,四邊形MPNQ是正方形,推出點P是拋物線的對稱軸與x軸的交點,即OP=1,易證GM=GP,即|-m2+2m+3|=|1-m|,解方程即可解決問題.【詳解】解:(1)把點B(3,0),C(0,3)代入y=﹣x2+bx+c,得到,解得,∴拋物線的解析式為y=﹣x2+2x+3,∵
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 銀行存取方案課程設計
- 標識繪制課程設計思路
- 指紋打卡機課程設計
- 船型論證課程設計例子
- 道路課程設計案例
- 溫控電風扇課程設計
- 玻璃材料課程設計
- 鍛壓課程設計摘要
- 植物花卉速寫課程設計
- 糖尿病腎病早期診斷策略-洞察分析
- 豬肉配送投標方案(技術方案)
- 財務盡職調查資料清單-立信
- 2024至2030年中國柔性電路板(FPC)行業(yè)市場深度分析及發(fā)展趨勢預測報告
- IGCSE考試練習冊附答案
- 小學三年級下一字多義(答案)
- Unit 6 同步練習人教版2024七年級英語上冊
- 農耕研學活動方案種小麥
- 九三學社申請入社人員簡歷表
- 非諾貝特酸膽堿緩釋膠囊-臨床用藥解讀
- 設備管理:設備管理的維護與保養(yǎng)
- 土特產行業(yè)現狀分析
評論
0/150
提交評論