《含期末17套》雙鴨山市重點(diǎn)中學(xué)2021屆高一下數(shù)學(xué)期末統(tǒng)考模擬試題含解析_第1頁(yè)
《含期末17套》雙鴨山市重點(diǎn)中學(xué)2021屆高一下數(shù)學(xué)期末統(tǒng)考模擬試題含解析_第2頁(yè)
《含期末17套》雙鴨山市重點(diǎn)中學(xué)2021屆高一下數(shù)學(xué)期末統(tǒng)考模擬試題含解析_第3頁(yè)
《含期末17套》雙鴨山市重點(diǎn)中學(xué)2021屆高一下數(shù)學(xué)期末統(tǒng)考模擬試題含解析_第4頁(yè)
《含期末17套》雙鴨山市重點(diǎn)中學(xué)2021屆高一下數(shù)學(xué)期末統(tǒng)考模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩286頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

雙鴨山市重點(diǎn)中學(xué)2021屆高一下數(shù)學(xué)期末統(tǒng)考模擬試題注意事項(xiàng)1.考生要認(rèn)真填寫(xiě)考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書(shū)寫(xiě)在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.設(shè)正項(xiàng)等比數(shù)列的前項(xiàng)和為,若,,則公比()A. B. C. D.2.某幾何體三視圖如圖所示,則該幾何體中的棱與面相互平行的有()A.2對(duì) B.3對(duì) C.4對(duì) D.5對(duì)3.已知四面體中,,分別是,的中點(diǎn),若,,與所成角的度數(shù)為30°,則與所成角的度數(shù)為()A.90° B.45° C.60° D.30°4.已知向量,則()A.12 B. C. D.85.已知直線與相交于點(diǎn),線段是圓的一條動(dòng)弦,且,則的最小值是()A. B. C. D.6.已知平面向量,的夾角為,,,則向的值為()A.-2 B. C.4 D.7.設(shè)為直線,是兩個(gè)不同的平面,下列說(shuō)法中正確的是()A.若,則B.若,則C.若,則D.若,則8.若是一個(gè)圓的方程,則實(shí)數(shù)的取值范圍是()A. B.C. D.9.已知三棱錐的所有頂點(diǎn)都在球的求面上,是邊長(zhǎng)為的正三角形,為球的直徑,且,則此棱錐的體積為()A. B. C. D.10.下列函數(shù)中,在區(qū)間上為增函數(shù)的是().A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.等差數(shù)列前9項(xiàng)的和等于前4項(xiàng)的和.若,則.12.若是等差數(shù)列,首項(xiàng),,,則使前項(xiàng)和最大的自然數(shù)是________.13.如圖所示為函數(shù)的部分圖像,其中、分別是函數(shù)圖像的最高點(diǎn)和最低點(diǎn),且,那么________.14.?dāng)?shù)列的前項(xiàng)和,則的通項(xiàng)公式_____.15.已知,且,則_____.16.已知為等差數(shù)列,,前n項(xiàng)和取得最大值時(shí)n的值為_(kāi)__________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.在中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知.求A;已知,的面積為的周長(zhǎng).18.在中,,,的對(duì)邊分別為,,,已知.(1)判斷的形狀;(2)若,,求.19.已知函數(shù).(1)求的最小正周期及單調(diào)遞減區(qū)間;(2)若,且,求的值.20.某高中非畢業(yè)班學(xué)生人數(shù)分布情況如下表,為了了解這2000個(gè)學(xué)生的體重情況,從中隨機(jī)抽取160個(gè)學(xué)生并測(cè)量其體重?cái)?shù)據(jù),根據(jù)測(cè)量數(shù)據(jù)制作了下圖所示的頻率分布直方圖.(1)為了使抽取的160個(gè)樣品更具代表性,宜采取分層抽樣,請(qǐng)你給出一個(gè)你認(rèn)為合適的分層抽樣方案,并確定每層應(yīng)抽取的樣品個(gè)數(shù);(2)根據(jù)頻率分布直方圖,求的值,并估計(jì)全體非畢業(yè)班學(xué)生中體重在內(nèi)的人數(shù);(3)已知高一全體學(xué)生的平均體重為,高二全體學(xué)生的平均體重為,試估計(jì)全體非畢業(yè)班學(xué)生的平均體重.21.某企業(yè)生產(chǎn)一種產(chǎn)品,質(zhì)量測(cè)試分為:指標(biāo)不小于為一等品;指標(biāo)不小于且小于為二等品;指標(biāo)小于為三等品。其中每件一等品可盈利元,每件二等品可盈利元,每件三等品虧損元?,F(xiàn)對(duì)學(xué)徒甲和正式工人乙生產(chǎn)的產(chǎn)品各件的檢測(cè)結(jié)果統(tǒng)計(jì)如下:測(cè)試指標(biāo)甲乙根據(jù)上表統(tǒng)計(jì)得到甲、乙生產(chǎn)產(chǎn)品等級(jí)的頻率分別估計(jì)為他們生產(chǎn)產(chǎn)品等級(jí)的概率。求:(1)乙生產(chǎn)一件產(chǎn)品,盈利不小于元的概率;(2)若甲、乙一天生產(chǎn)產(chǎn)品分別為件和件,估計(jì)甲、乙兩人一天共為企業(yè)創(chuàng)收多少元?(3)從甲測(cè)試指標(biāo)為與乙測(cè)試指標(biāo)為共件產(chǎn)品中選取件,求兩件產(chǎn)品的測(cè)試指標(biāo)差的絕對(duì)值大于的概率.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、D【解析】【分析】根據(jù)題意,求得,結(jié)合,即可求解,得到答案.【詳解】由題意,正項(xiàng)等比數(shù)列滿(mǎn)足,,即,,所以,又由,因?yàn)椋?故選:D.【點(diǎn)睛】本題主要考查了的等比數(shù)列的通項(xiàng)公式,以及等比數(shù)列的前n項(xiàng)和公式的應(yīng)用,其中解答中熟記等比數(shù)列的通項(xiàng)公式,以及等比數(shù)列的前n項(xiàng)和公式,合理運(yùn)算是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.2、C【解析】【分析】本道題結(jié)合三視圖,還原直觀圖,結(jié)合直線與平面判定,即可?!驹斀狻拷Y(jié)合三視圖,還原直觀圖,得到AB平行平面OCD,DC平行平面OBA,BC平行平面ODA,DA平行平面OBC,故有4對(duì)。故選C?!军c(diǎn)睛】本道題考查了三視圖還原直觀圖,難度中等。3、A【解析】【分析】取的中點(diǎn),利用三角形中位線定理,可以得到,與所成角為,運(yùn)用三角形中位線定理和正弦定理,可以求出的大小,也就能求出與所成角的度數(shù).【詳解】取的中點(diǎn)連接,如下圖所示:因?yàn)?,分別是,的中點(diǎn),所以有,因?yàn)榕c所成角的度數(shù)為30°,所以,與所成角的大小等于的度數(shù).在中,,故本題選A.【點(diǎn)睛】本題考查了異面直線所成角的求法,考查了正弦定理,取中點(diǎn)利用三角形中位線定理是解題的關(guān)鍵.4、C【解析】【分析】根據(jù)向量的坐標(biāo)表示求出,即可得到模長(zhǎng).【詳解】由題,,所以.故選:C【點(diǎn)睛】此題考查向量的數(shù)乘運(yùn)算和減法運(yùn)算的坐標(biāo)表示,并求向量的模長(zhǎng),關(guān)鍵在于熟記公式,準(zhǔn)確求解.5、D【解析】【分析】由已知的所給的直線,可以判斷出直線過(guò)定點(diǎn)(3,1),直線過(guò)定點(diǎn)(1,3),兩直線互相垂直,從而可以得到的軌跡方程,設(shè)圓心為M,半徑為,作直線,可以求出的值,設(shè)圓的半徑為,求得的最小值,進(jìn)而可求出的最小值.【詳解】圓的半徑為,直線與直線互相垂直,直線過(guò)定點(diǎn)(3,1),直線過(guò)定點(diǎn)(1,3),所以P點(diǎn)的軌跡為:設(shè)圓心為M,半徑為作直線,根據(jù)垂徑定理和勾股定理可得:,如下圖所示:的最小值就是在同一條直線上時(shí),即則的最小值為,故本題選D.【點(diǎn)睛】本題考查了直線與圓相交的性質(zhì),考查了圓與圓的位置關(guān)系,考查了平面向量模的最小值求法,運(yùn)用平面向量的加法的幾何意義是解題的關(guān)鍵.6、C【解析】【分析】通過(guò)已知條件,利用向量的數(shù)量積化簡(jiǎn)求解即可.【詳解】平面向量,的夾角為,或,則向量.故選:【點(diǎn)睛】本題考查向量數(shù)量積公式,屬于基礎(chǔ)題.7、C【解析】【分析】畫(huà)出長(zhǎng)方體,按照選項(xiàng)的內(nèi)容在長(zhǎng)方體中找到相應(yīng)的情況,即可得到答案【詳解】對(duì)于選項(xiàng)A,在長(zhǎng)方體中,任何一條棱都和它相對(duì)的兩個(gè)平面平行,但這兩個(gè)平面相交,所以A不正確;對(duì)于選項(xiàng)B,若,分別是長(zhǎng)方體的上、下底面,在下底面所在平面中任選一條直線,都有,但,所以B不正確;對(duì)于選項(xiàng)D,在長(zhǎng)方體中,令下底面為,左邊側(cè)面為,此時(shí),在右邊側(cè)面中取一條對(duì)角線,則,但與不垂直,所以D不正確;對(duì)于選項(xiàng)C,設(shè)平面,且,因?yàn)椋?,又,所以,又,所以,所以C正確.【點(diǎn)睛】本題考查直線與平面的位置關(guān)系,屬于簡(jiǎn)單題8、C【解析】【分析】根據(jù)即可求出結(jié)果.【詳解】據(jù)題意,得,所以.【點(diǎn)睛】本題考查圓的一般方程,屬于基礎(chǔ)題型.9、A【解析】【詳解】根據(jù)題意作出圖形:設(shè)球心為O,過(guò)ABC三點(diǎn)的小圓的圓心為O1,則OO1⊥平面ABC,延長(zhǎng)CO1交球于點(diǎn)D,則SD⊥平面ABC.∵CO1=,∴,∴高SD=2OO1=,∵△ABC是邊長(zhǎng)為1的正三角形,∴S△ABC=,∴.考點(diǎn):棱錐與外接球,體積.【名師點(diǎn)睛】本題考查棱錐與外接球問(wèn)題,首先我們要熟記一些特殊的幾何體與外接球(內(nèi)切球)的關(guān)系,如正方體(長(zhǎng)方體)的外接球(內(nèi)切球)球心是對(duì)角線的交點(diǎn),正棱錐的外接球(內(nèi)切球)球心在棱錐的高上,對(duì)一般棱錐來(lái)講,外接球球心到名頂點(diǎn)距離相等,當(dāng)問(wèn)題難以考慮時(shí),可減少點(diǎn)的個(gè)數(shù),如先考慮到三個(gè)頂點(diǎn)的距離相等的點(diǎn)是三角形的外心,球心一定在過(guò)此點(diǎn)與此平面垂直的直線上.如直角三角形斜邊中點(diǎn)到三頂點(diǎn)距離相等等等.10、B【解析】試題分析:根據(jù)初等函數(shù)的圖象,可得函數(shù)在區(qū)間(0,1)上的單調(diào)性,從而可得結(jié)論.解:由題意,A的底數(shù)大于0小于1、C是圖象在一、三象限的單調(diào)減函數(shù)、D是余弦函數(shù),,在(0,+∞)上不單調(diào),B的底數(shù)大于1,在(0,+∞)上單調(diào)增,故在區(qū)間(0,1)上是增函數(shù),故選B考點(diǎn):函數(shù)的單調(diào)性點(diǎn)評(píng):本題考查函數(shù)的單調(diào)性,掌握初等函數(shù)的圖象與性質(zhì)是關(guān)鍵.二、填空題:本大題共6小題,每小題5分,共30分。11、10【解析】【分析】根據(jù)等差數(shù)列的前n項(xiàng)和公式可得,結(jié)合等差數(shù)列的性質(zhì)即可求得k的值.【詳解】因?yàn)?,且所以由等差?shù)列性質(zhì)可知因?yàn)樗詣t根據(jù)等差數(shù)列性質(zhì)可知可得【點(diǎn)睛】本題考查了等差數(shù)列的前n項(xiàng)和公式,等差數(shù)列性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.12、【解析】【分析】由已知條件推導(dǎo)出,,由此能求出使前項(xiàng)和成立的最大自然數(shù)的值.【詳解】解:等差數(shù)列,首項(xiàng),,,,.如若不然,,則,而,得,矛盾,故不可能.使前項(xiàng)和成立的最大自然數(shù)為.故答案為:.【點(diǎn)睛】本題考查等差數(shù)列的前項(xiàng)和取最大值時(shí)的值的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意等差數(shù)列的通項(xiàng)公式的合理運(yùn)用.13、【解析】【分析】由圖可知:,因?yàn)?,由周期公式得到,結(jié)合以及誘導(dǎo)公式即可求解.【詳解】由圖可知:,因?yàn)樗?,即由題意可知:,即故答案為:【點(diǎn)睛】本題主要考查了正弦型函數(shù)的圖像的性質(zhì)以及求值,關(guān)鍵是從圖像得出周期,最值等,屬于基礎(chǔ)題.14、【解析】【分析】根據(jù)和之間的關(guān)系,應(yīng)用公式得出結(jié)果【詳解】當(dāng)時(shí),;當(dāng)時(shí),;∴故答案為【點(diǎn)睛】本題考查了和之間的關(guān)系式,注意當(dāng)和時(shí)要分開(kāi)討論,題中的數(shù)列非等差數(shù)列.本題屬于基礎(chǔ)題15、【解析】【分析】首先根據(jù)已知條件求得的值,平方后利用同角三角函數(shù)的基本關(guān)系式求得的值.【詳解】由得,兩邊平方并化簡(jiǎn)得,由于,所以.而,由于,所以【點(diǎn)睛】本小題主要考查同角三角函數(shù)的基本關(guān)系式,考查兩角和的正弦公式,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于基礎(chǔ)題.16、20【解析】【分析】先由條件求出,算出,然后利用二次函數(shù)的知識(shí)求出即可【詳解】設(shè)的公差為,由題意得即,①即,②由①②聯(lián)立得所以故當(dāng)時(shí),取得最大值400故答案為:20【點(diǎn)睛】等差數(shù)列的是關(guān)于的二次函數(shù),但要注意只能取正整數(shù).三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)【解析】【分析】(1)在中,由正弦定理及題設(shè)條件,化簡(jiǎn)得,即可求解.(2)由題意,根據(jù)題設(shè)條件,列出方程,求的,得到,即可求解周長(zhǎng).【詳解】(1)在中,由正弦定理及已知得,化簡(jiǎn)得,,所以.(2)因?yàn)?,所以,又的面積為,則,則,所以的周長(zhǎng)為.【點(diǎn)睛】在解有關(guān)三角形的題目時(shí),要有意識(shí)地考慮用哪個(gè)定理更合適,或是兩個(gè)定理都要用,要抓住能夠利用某個(gè)定理的信息.一般地,如果式子中含有角的余弦或邊的二次式時(shí),要考慮用余弦定理;如果式子中含有角的正弦或邊的一次式時(shí),則考慮用正弦定理;以上特征都不明顯時(shí),則要考慮兩個(gè)定理都有可能用到.18、(1)為直角三角形或等腰三角形(2)【解析】【分析】(1)由正弦定理和題設(shè)條件,得,再利用三角恒等變換的公式,化簡(jiǎn)得,進(jìn)而求得或,即可得到答案.(2)在中,利用余弦定理,求得,即可求得的值.【詳解】(1)由正弦定理可知,代入,,又由,所以,所以,所以,則,則或,所以或,所以為直角三角形或等腰三角形.(2)因?yàn)椋瑒t為等腰三角形,從而,由余弦定理,得,所以.【點(diǎn)睛】本題主要考查了正弦定理、余弦定理的應(yīng)用,其中利用正弦、余弦定理可以很好地解決三角形的邊角關(guān)系,熟練掌握定理、合理運(yùn)用是解本題的關(guān)鍵.通常當(dāng)涉及兩邊及其中一邊的對(duì)角或兩角及其中一角對(duì)邊時(shí),運(yùn)用正弦定理求解;當(dāng)涉及三邊或兩邊及其夾角時(shí),運(yùn)用余弦定理求解.19、(1)最小正周期為,單調(diào)遞減區(qū)間為(2).【解析】【分析】(1)利用二倍角降冪公式和輔助角公式將函數(shù)的解析式化為,利用周期公式可得出函數(shù)的最小正周期,然后解不等式可得出函數(shù)的單調(diào)遞減區(qū)間;(2)由可得出角的值,再利用兩角和的正切公式可計(jì)算出的值.【詳解】(1).函數(shù)的最小正周期為,令,解得.所以,函數(shù)的單調(diào)遞減區(qū)間為;(2),即,,.,故,因此.【點(diǎn)睛】本題考查三角函數(shù)基本性質(zhì),考查兩角和的正切公式求值,解題時(shí)要利用三角恒等變換思想將三角函數(shù)的解析式化簡(jiǎn),利用正弦、余弦函數(shù)的性質(zhì)求解,考查運(yùn)算求解能力,屬于中等題.20、(1)見(jiàn)解析;(2);1350人;(3)平均體重為.【解析】【分析】(1)考慮到體重應(yīng)與年級(jí)及性別均有關(guān),最合理的分層應(yīng)分為以下四層:高一男生,高一女生,高二男生,高二女生,高一男44人,高一女52人,高二男34人,高二女30人,由此能求出結(jié)果.(2)體重在之間的學(xué)生人數(shù)的率,從而,體重在,內(nèi)人數(shù)的頻率為0.675,由此能求出估計(jì)全體非畢業(yè)班學(xué)生體重在,內(nèi)的人數(shù).(3)設(shè)高一全體學(xué)生的平均體重為:,頻率為,高二全體學(xué)生的平均體重為,頻率為,由此能估計(jì)全體非畢業(yè)班學(xué)生的平均體重.【詳解】(1)考慮到體重應(yīng)與年級(jí)及性別均有關(guān),最合理的分層應(yīng)分為以下四層:高一男生、高一女生、高二男生、高二女生高一男:人,高一女:人高二男:,高二女:人可能的方案一:按性別分為兩層,男生與女生男生人數(shù):人,女生人數(shù):人可能的方案二:按年級(jí)分為兩層,高一學(xué)生與高二學(xué)生高一人數(shù):人,高二人數(shù):人(2)體重在70-80之間學(xué)生人數(shù)的頻率:體重在內(nèi)人數(shù)的頻率為:∴估計(jì)全體非畢業(yè)班學(xué)生體重在內(nèi)的人數(shù)為:人(3)設(shè)高一全體學(xué)生的平均體重為,頻率為高二全體學(xué)生的平均體重為,頻率為則估計(jì)全體非畢業(yè)班學(xué)生平均體重為答:估計(jì)全校非畢業(yè)班學(xué)生平均體重為.【點(diǎn)睛】本題考查頻率分布直方圖、頻率、分層抽樣、平均數(shù)等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,屬于基礎(chǔ)題.21、(1);(2)元;(3)【解析】【分析】(1)設(shè)事件表示“乙生產(chǎn)一件產(chǎn)品,盈利不小于25元”,即該產(chǎn)品的測(cè)試指標(biāo)不小于80,由此能求出乙生產(chǎn)一件產(chǎn)品,盈利不小于25元的概率.(2)由表格知甲生產(chǎn)的一等品、二等品、三等品比例為即,所以甲一天生產(chǎn)30件產(chǎn)品,其中一等品有3件,二等品有21件,三等品有6件;由表格知乙生產(chǎn)的一等品、二等品、三等品比例為,所以乙一天生產(chǎn)20件產(chǎn)品,其中一等品有6件,二等品有12件,三等品有2件,由此能求出甲、乙兩人一天共為企業(yè)創(chuàng)收1195元.(3)設(shè)甲測(cè)試指標(biāo)為,的7件產(chǎn)品用,,,,,,表示,乙測(cè)試指標(biāo)為,的7件產(chǎn)品用,表示,利用列舉法能求出兩件產(chǎn)品的測(cè)試指標(biāo)差的絕對(duì)值大于10的概率.【詳解】(1)設(shè)事件表示“乙生產(chǎn)一件產(chǎn)品,盈利不小于元”,即該產(chǎn)品的測(cè)試指標(biāo)不小于,則;(2)甲一天生產(chǎn)件產(chǎn)品,其中一等品有件;二等品有件;三等品有件;甲一天生產(chǎn)件產(chǎn)品,其中一等品有件;二等品有件;三等品有,即甲、乙兩人一天共為企業(yè)創(chuàng)收元;(3)設(shè)甲測(cè)試指標(biāo)為的件產(chǎn)品用,,,,表示,乙測(cè)試指標(biāo)為的件產(chǎn)品用,表示,用(,且)表示從件產(chǎn)品中選取件產(chǎn)品的一個(gè)結(jié)果.不同結(jié)果為,,,,,,,,,,,,,,,,,,,,,,共有36個(gè)不同結(jié)果.設(shè)事件表示“選取的兩件產(chǎn)品的測(cè)試指標(biāo)差的絕對(duì)值大于”,即從甲、乙生產(chǎn)的產(chǎn)品中各取件產(chǎn)品,不同的結(jié)果為,,,,,,,,,,,,,,共有個(gè)不同結(jié)果.則.【點(diǎn)睛】本題主要考查古典概型概率的求法,即按照古典概型的概率計(jì)算公式分別求出基本事件總數(shù)以及有利事件數(shù)即可算出概率,以及列舉法和隨機(jī)抽樣的應(yīng)用.

2020-2021高一下數(shù)學(xué)期末模擬試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫(xiě)在答題紙相應(yīng)的答題區(qū)內(nèi)。寫(xiě)在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知函數(shù),如果不等式的解集為,那么不等式的解集為()A. B.C. D.2.平面與平面平行的充分條件可以是()A.內(nèi)有無(wú)窮多條直線都與平行B.直線,,且直線a不在內(nèi),也不在內(nèi)C.直線,直線,且,D.內(nèi)的任何一條直線都與平行3.已知集合,,則()A. B.C. D.4.已知函數(shù),當(dāng)時(shí),取得最小值,則等于()A.9 B.7 C.5 D.35.在中,,,是邊的中點(diǎn).為所在平面內(nèi)一點(diǎn)且滿(mǎn)足,則的值為()A. B. C. D.6.在中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,若,,則一定是()A.直角三角形 B.鈍角三角形 C.等腰直角三角形 D.等邊三角形7.若直線上存在點(diǎn)滿(mǎn)足則實(shí)數(shù)的最大值為A. B. C. D.8.下面一段程序執(zhí)行后的結(jié)果是()A.6 B.4 C.8 D.109.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,若,,則在方向上的投影為()A.1 B.2 C.3 D.410.若點(diǎn)(m,n)在反比例函數(shù)y=的圖象上,其中m<0,則m+3n的最大值等于()A.2 B.2 C.﹣2 D.﹣2二、填空題:本大題共6小題,每小題5分,共30分。11.如圖,在正方體中,點(diǎn)是線段上的動(dòng)點(diǎn),則直線與平面所成的最大角的余弦值為_(kāi)_______.12.設(shè),用,表示所有形如的正整數(shù)集合,其中且,為集合中的所有元素之和,則的通項(xiàng)公式為_(kāi)______13.已知正實(shí)數(shù)a,b滿(mǎn)足2a+b=1,則1a14.不等式有解,則實(shí)數(shù)的取值范圍是______.15.用列舉法表示集合__________.16.下列關(guān)于函數(shù)與的命題中正確的結(jié)論是______.①它們互為反函數(shù);②都是增函數(shù);③都是周期函數(shù);④都是奇函數(shù).三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.某公司為了解廣告投入對(duì)銷(xiāo)售收益的影響,在若干地區(qū)各投入4萬(wàn)元廣告費(fèi)用,并將各地的銷(xiāo)售收益繪制成頻率分布直方圖(如圖所示),由于工作人員操作失誤,橫軸的數(shù)據(jù)丟失,但可以確定橫軸是從0開(kāi)始計(jì)數(shù)的.(1)根據(jù)頻率分布直方圖計(jì)算圖中各小長(zhǎng)方形的寬度;(2)試估計(jì)該公司在若干地區(qū)各投入4萬(wàn)元廣告費(fèi)用之后,對(duì)應(yīng)銷(xiāo)售收益的平均值(以各組的區(qū)間中點(diǎn)值代表該組的取值);(3)該公司按照類(lèi)似的研究方法,測(cè)得另外一些數(shù)據(jù),并整理得到下表:廣告投入(單位:萬(wàn)元)12345銷(xiāo)售收益(單位:萬(wàn)元)2337由表中的數(shù)據(jù)顯示,與之間存在著線性相關(guān)關(guān)系,請(qǐng)將(2)的結(jié)果填入空白欄,并求出關(guān)于的回歸直線方程.(參考公式:)18.已知集合,,求.19.如圖,在平面直角坐標(biāo)系中,銳角、的終邊分別與單位圓交于、兩點(diǎn).(1)如果,點(diǎn)的橫坐標(biāo)為,求的值;(2)已知點(diǎn),函數(shù),若,求.20.經(jīng)觀測(cè),某公路段在某時(shí)段內(nèi)的車(chē)流量(千輛/小時(shí))與汽車(chē)的平均速度(千米/小時(shí))之間有函數(shù)關(guān)系:.(1)在該時(shí)段內(nèi),當(dāng)汽車(chē)的平均速度為多少時(shí)車(chē)流量最大?最大車(chē)流量為多少?(精確到0.01)(2)為保證在該時(shí)段內(nèi)車(chē)流量至少為10千輛/小時(shí),則汽車(chē)的平均速度應(yīng)控制在什么范圍內(nèi)?21.已知函數(shù).(1)證明函數(shù)在定義域上單調(diào)遞增;(2)求函數(shù)的值域;(3)令,討論函數(shù)零點(diǎn)的個(gè)數(shù).

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、A【解析】【分析】一元二次不等式大于零解集是,先判斷二次項(xiàng)系數(shù)為負(fù),再根據(jù)根與系數(shù)關(guān)系,可求出a,b的值,代入解析式,求解不等式.【詳解】由的解集是,則故有,即.由解得或故不等式的解集是,故選:A.【點(diǎn)睛】對(duì)于含參數(shù)的一元二次不等式需要先判斷二次項(xiàng)系數(shù)的正負(fù),再進(jìn)一步求解參數(shù).2、D【解析】【分析】利用平面與平面平行的判定定理一一進(jìn)行判斷,可得正確答案.【詳解】解:A選項(xiàng),內(nèi)有無(wú)窮多條直線都與平行,并不能保證平面內(nèi)有兩條相交直線與平面平行,這無(wú)窮多條直線可以是一組平行線,故A錯(cuò)誤;B選項(xiàng),直線,,且直線a不在內(nèi),也不在內(nèi),直線a可以是平行平面與平面的相交直線,故不能保證平面與平面平行,故B錯(cuò)誤;C選項(xiàng),直線,直線,且,,當(dāng)直線,同樣不能保證平面與平面平行,故C錯(cuò)誤;D選項(xiàng),內(nèi)的任何一條直線都與平行,則內(nèi)至少有兩條相交直線與平面平行,故平面與平面平行;故選:D.【點(diǎn)睛】本題主要考查平面與平面平行的判斷,解題時(shí)要認(rèn)真審題,熟練掌握面與平面平行的判定定理,注意空間思維能力的培養(yǎng).3、A【解析】【分析】先化簡(jiǎn)集合,根據(jù)交集與并集的概念,即可得出結(jié)果?!驹斀狻恳?yàn)?,,所以?故選A【點(diǎn)睛】本題主要考查集合的基本運(yùn)算,熟記概念即可,屬于基礎(chǔ)題型.4、B【解析】【分析】先對(duì)函數(shù)進(jìn)行配湊,使得能夠使用均值不等式,再利用均值不等式,求得結(jié)果.【詳解】因?yàn)楣十?dāng)且僅當(dāng),即時(shí),取得最小值.故,則.故選:B.【點(diǎn)睛】本題考查均值不等式的使用,屬基礎(chǔ)題;需要注意均值不等式使用的條件.5、D【解析】【分析】根據(jù)平面向量基本定理可知,將所求數(shù)量積化為;由模長(zhǎng)的等量關(guān)系可知和為等腰三角形,根據(jù)三線合一的特點(diǎn)可將和化為和,代入可求得結(jié)果.【詳解】為中點(diǎn)和為等腰三角形,同理可得:本題正確選項(xiàng):【點(diǎn)睛】本題考查向量數(shù)量積的求解問(wèn)題,關(guān)鍵是能夠利用模長(zhǎng)的等量關(guān)系得到等腰三角形,從而將含夾角的運(yùn)算轉(zhuǎn)化為已知模長(zhǎng)的向量的運(yùn)算.6、D【解析】【分析】利用余弦定理、等邊三角形的判定方法即可得出.【詳解】由余弦定理得,則,即,所以.∵∴是等邊三角形.故選D.【點(diǎn)睛】本題考查了余弦定理、等邊三角形的判定方法,考查了推理能力與計(jì)算能力,熟練掌握余弦定理是解答本題的關(guān)鍵.7、B【解析】【分析】首先畫(huà)出可行域,然后結(jié)合交點(diǎn)坐標(biāo)平移直線即可確定實(shí)數(shù)m的最大值.【詳解】不等式組表示的平面區(qū)域如下圖所示,由,得:,即C點(diǎn)坐標(biāo)為(-1,-2),平移直線x=m,移到C點(diǎn)或C點(diǎn)的左邊時(shí),直線上存在點(diǎn)在平面區(qū)域內(nèi),所以,m≤-1,即實(shí)數(shù)的最大值為-1.【點(diǎn)睛】本題主要考查線性規(guī)劃及其應(yīng)用,屬于中等題.8、A【解析】【分析】根據(jù)題中的程序語(yǔ)句,直接按照順序結(jié)構(gòu)的功能即可求出?!驹斀狻坑深}意可得:,,,所以輸出為6,故選A.【點(diǎn)睛】本題主要考查順序結(jié)構(gòu)的程序框圖的理解,理解語(yǔ)句的含義是解題關(guān)鍵。9、A【解析】【分析】根據(jù)正弦定理,將已知條件進(jìn)行轉(zhuǎn)化化簡(jiǎn),結(jié)合兩角和差的正弦公式可求,根據(jù)在方向上的投影為,代入數(shù)值,即可求解.【詳解】因?yàn)?,所以,即,即,因?yàn)椋?,所以,所以在方向上的投影為:.故選:A.【點(diǎn)睛】本題主要考查正弦定理和平面向量投影的應(yīng)用,根據(jù)正弦定理結(jié)合兩角和差的正弦公式是解決本題的關(guān)鍵,屬于中檔題.10、C【解析】【分析】根據(jù)題意可得出,再根據(jù)可得,將添上兩個(gè)負(fù)號(hào)運(yùn)用基本不等式,即可求解.【詳解】由題意,可得,因?yàn)?,所以,所以,?dāng)且僅當(dāng),即時(shí),等號(hào)成立,故選:C.【點(diǎn)睛】本題主要考查了基本不等式的應(yīng)用,其中解答中熟記基本不等式的使用條件,合理運(yùn)算是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】【分析】作的中心,可知平面,所以直線與平面所成角為,當(dāng)在中點(diǎn)時(shí),最大,求出即可?!驹斀狻吭O(shè)正方體的邊長(zhǎng)為1,連接,由于為正方體,所以為正四面體,棱長(zhǎng)為,為等邊三角形,作的中心,連接,,由于為正四面體,為的中心,所以平面,所以為直線與平面所成角,則當(dāng)在中點(diǎn)時(shí),最大,當(dāng)在中點(diǎn)時(shí),由于為正四面體,棱長(zhǎng)為,等邊三角形,為的中心,所以,,所以直線與平面所成的最大角的余弦值為故直線與平面所成的最大角的余弦值為故答案為【點(diǎn)睛】本題考查線面所成角,解題的關(guān)鍵是確定當(dāng)在中點(diǎn)時(shí),最大,考查學(xué)生的空間想象能力以及計(jì)算能力。12、【解析】【分析】把集合中每個(gè)數(shù)都表示為2的0到的指數(shù)冪相加的形式,并確定,,,,每個(gè)數(shù)都出現(xiàn)次,于是利用等比數(shù)列求和公式計(jì)算,可求出數(shù)列的通項(xiàng)公式.【詳解】由題意可知,,,,是0,1,2,,的一個(gè)排列,且集合中共有個(gè)數(shù),若把集合中每個(gè)數(shù)表示為的形式,則,,,,每個(gè)數(shù)都出現(xiàn)次,因此,,故答案為:.【點(diǎn)睛】本題以數(shù)列新定義為問(wèn)題背景,考查等比數(shù)列的求和公式,考查學(xué)生的理解能力與計(jì)算能力,屬于中等題.13、9【解析】【分析】利用“乘1法”和基本不等式即可得出.【詳解】解:∵正實(shí)數(shù)a,b滿(mǎn)足2a+b=1,∴1a+12b=(2a+b∴1a+故答案為:9【點(diǎn)睛】本題考查了“乘1法”和基本不等式的應(yīng)用,屬于基礎(chǔ)題.14、【解析】【分析】由參變量分離法可得知,由二倍角的余弦公式以及二次函數(shù)的基本性質(zhì)求出函數(shù)的最小值,即可得出實(shí)數(shù)的取值范圍.【詳解】不等式有解,等價(jià)于存在實(shí)數(shù),使得關(guān)于的不等式成立,故只需.令,,由二次函數(shù)的基本性質(zhì)可知,當(dāng)時(shí),該函數(shù)取得最小值,即,.因此,實(shí)數(shù)的取值范圍是.故答案為:.【點(diǎn)睛】本題考查不等式有解的問(wèn)題,涉及二倍角余弦公式以及二次函數(shù)基本性質(zhì)的應(yīng)用,一般轉(zhuǎn)化為函數(shù)的最值來(lái)求解,考查計(jì)算能力,屬于中等題.15、【解析】【分析】先將的表示形式求解出來(lái),然后根據(jù)范圍求出的可取值.【詳解】因?yàn)?,所以,又因?yàn)?,所以,此時(shí)或,則可得集合:.【點(diǎn)睛】本題考查根據(jù)三角函數(shù)值求解給定區(qū)間中變量的值,難度較易.16、④【解析】【分析】利用反函數(shù),增減性,周期函數(shù),奇偶性判斷即可【詳解】①,當(dāng)時(shí),的反函數(shù)是,故錯(cuò)誤;②,當(dāng)時(shí),是增函數(shù),故錯(cuò)誤;③,不是周期函數(shù),故錯(cuò)誤;④,與都是奇函數(shù),故正確故答案為④【點(diǎn)睛】本題考查正弦函數(shù)及其反函數(shù)的性質(zhì),熟記其基本性質(zhì)是關(guān)鍵,是基礎(chǔ)題三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)2;(2)5;(3)空白欄中填5,【解析】【分析】(1)根據(jù)頻率等于小長(zhǎng)方形的面積以及頻率和為,得到關(guān)于的等式,求解出即可;(2)根據(jù)各組數(shù)據(jù)的組中值與頻率的乘積之和得到對(duì)應(yīng)的銷(xiāo)售收益的平均值;(3)先填寫(xiě)空白欄數(shù)據(jù),然后根據(jù)所給數(shù)據(jù)計(jì)算出,即可求解出回歸直線方程.【詳解】(1)設(shè)各小長(zhǎng)方形的寬度為.由頻率分布直方圖中各小長(zhǎng)方形的面積總和為1,可知,解得.故圖中各小長(zhǎng)方形的寬度為2.(2)由(1)知各小組依次是,其中點(diǎn)分別為對(duì)應(yīng)的頻率分別為故可估計(jì)平均值為.(3)由(2)可知空白欄中填5.由題意可知,,,根據(jù)公式,可求得,.所以所求的回歸直線方程為.【點(diǎn)睛】本題考查頻率分布直方圖的實(shí)際應(yīng)用以及回歸直線方程的求法,難度一般.(1)頻率分布直方圖中,小矩形的面積代表該組數(shù)據(jù)的頻率,所有小矩形面積之和為;(2)求解回歸直線方程時(shí),先求解出,然后根據(jù)回歸直線方程過(guò)樣本點(diǎn)的中心再求解出.18、【解析】【分析】根據(jù)集合A,B的意義,求出集合A,B,再根據(jù)交集的運(yùn)算求得結(jié)果即可.【詳解】對(duì)于集合A,,對(duì)于集合B,當(dāng)x<1時(shí),故B=;故A∩B=故答案為【點(diǎn)睛】本題考查了交集的運(yùn)算,準(zhǔn)確計(jì)算集合A,B是關(guān)鍵,是基礎(chǔ)題.19、(1);(2)【解析】【分析】(1)根據(jù)條件求出的正余弦值,利用兩角和的余弦公式計(jì)算即可(2)利用向量的數(shù)量積坐標(biāo)公式運(yùn)算可得,由求出即可求解.【詳解】(1),為銳角,則,點(diǎn)的橫坐標(biāo)為,即有,,則;(2)由題意可知,,,則,即,由,可得,則,即有..【點(diǎn)睛】本題主要考查了單位圓,三角函數(shù)的定義,同角三角函數(shù)之間的關(guān)系,向量數(shù)量積的坐標(biāo)運(yùn)算,屬于中檔題.20、(1)v=40千米/小時(shí),車(chē)流量最大,最大值為11.08千輛/小時(shí)(2)汽車(chē)的平均速度應(yīng)控制在25≤v≤64這個(gè)范圍內(nèi)【解析】【分析】(1)將已知函數(shù)化簡(jiǎn),利用基本不等式求車(chē)流量y最大值;

(2)要使該時(shí)段內(nèi)車(chē)流量至少為10千輛/小時(shí),即使,解之即可得汽車(chē)的平均速度的控制范圍.【詳解】解:(1)=≤=≈11.08,當(dāng)v=,即v=40千米/小時(shí),車(chē)流量最大,最大值為11.08千輛/小時(shí).(2)據(jù)題意有:,化簡(jiǎn)得,即,所以,所以汽車(chē)的平均速度應(yīng)控制在這個(gè)范圍內(nèi).【點(diǎn)睛】本題以已知函數(shù)關(guān)系式為載體,考查基本不等式的使用,考查解不等式,屬于基礎(chǔ)題.21、(1)證明見(jiàn)解析;(2);(3)當(dāng)時(shí),沒(méi)有零點(diǎn);當(dāng)時(shí),有且僅有一個(gè)零點(diǎn)【解析】【分析】(1)求出函數(shù)定義域后直接用定義法即可證明;(2)由題意得,對(duì)兩邊同時(shí)平方得,求出的取值范圍即可得解;(3)轉(zhuǎn)化條件得,令,利用二次函數(shù)的性質(zhì)分類(lèi)討論即可得解.【詳解】(1)證明:令,解得,故函數(shù)的定義域?yàn)榱?,由,可得,所以,,故即,所以函?shù)在定義域上單調(diào)遞增.(2)由,,故,,當(dāng)時(shí),,有,可得:,故,由,可得,故函數(shù)的值域?yàn)?,?)由(2)知,則,令,則,令,①當(dāng)時(shí),,此時(shí)函數(shù)沒(méi)有零點(diǎn),故函數(shù)也沒(méi)有零點(diǎn);②當(dāng)時(shí),二次函數(shù)的對(duì)稱(chēng)軸為,則函數(shù)在區(qū)間單調(diào)遞增,而,,故函數(shù)有一個(gè)零點(diǎn),又由函數(shù)單調(diào)遞增,可得函數(shù)也只有一個(gè)零點(diǎn);③當(dāng)時(shí),,二次函數(shù)開(kāi)口向下,對(duì)稱(chēng)軸,又,,此時(shí)函數(shù)沒(méi)有零點(diǎn),故函數(shù)也沒(méi)有零點(diǎn).綜上,當(dāng)時(shí),函數(shù)沒(méi)有零點(diǎn);當(dāng)時(shí),函數(shù)有且僅有一個(gè)零點(diǎn).【點(diǎn)睛】本題考查了函數(shù)單調(diào)性的證明、值域的求解和零點(diǎn)問(wèn)題,考查了轉(zhuǎn)化化歸思想和分類(lèi)討論思想,屬于中檔題.

2020-2021高一下數(shù)學(xué)期末模擬試卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知數(shù)列的前項(xiàng)和為,若,對(duì)任意的正整數(shù)均成立,則()A.162 B.54 C.32 D.162.甲、乙兩名運(yùn)動(dòng)員分別進(jìn)行了5次射擊訓(xùn)練,成績(jī)?nèi)缦拢杭祝?,7,8,8,1;乙:8,9,9,9,1.若甲、乙兩名運(yùn)動(dòng)員的平均成績(jī)分別用表示,方差分別用表示,則A. B.C. D.3.已知的定義域?yàn)?,若?duì)于,,,,,分別為某個(gè)三角形的三邊長(zhǎng),則稱(chēng)為“三角形函數(shù)”,下例四個(gè)函數(shù)為“三角形函數(shù)”的是()A.; B.;C.; D.4.已知,則下列不等式中成立的是()A. B. C. D.5.已知平面向量,且,則()A. B. C. D.6.化簡(jiǎn)的結(jié)果是()A. B. C. D.7.將函數(shù)的圖象向右平移個(gè)單位長(zhǎng)度,所得圖象對(duì)應(yīng)的函數(shù)A.在區(qū)間上單調(diào)遞增 B.在區(qū)間上單調(diào)遞減C.在區(qū)間上單調(diào)遞增 D.在區(qū)間上單調(diào)遞減8.某班的60名同學(xué)已編號(hào)1,2,3,…,60,為了解該班同學(xué)的作業(yè)情況,老師收取了號(hào)碼能被5整除的12名同學(xué)的作業(yè)本,這里運(yùn)用的抽樣方法是()A.簡(jiǎn)單隨機(jī)抽樣 B.系統(tǒng)抽樣C.分層抽樣 D.抽簽法9.已知三棱錐O-ABC,側(cè)棱OA,OB,OC兩兩垂直,且OA=OB=OC=2,則以O(shè)為球心且1為半徑的球與三棱錐O-ABC重疊部分的體積是()A.π8 B.π6 C.π10.已知數(shù)列1,,,9是等差數(shù)列,數(shù)列1,,,,9是等比數(shù)列,則()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.當(dāng)函數(shù)取得最大值時(shí),=__________.12.若數(shù)列是等差數(shù)列,則數(shù)列也為等差數(shù)列,類(lèi)比上述性質(zhì),相應(yīng)地,若正項(xiàng)數(shù)列是等比數(shù)列,則數(shù)列_________也是等比數(shù)列.13.設(shè)的內(nèi)角,,所對(duì)的邊分別為,,.已知,,如果解此三角形有且只有兩個(gè)解,則的取值范圍是_____.14.在等腰中,為底邊的中點(diǎn),為的中點(diǎn),直線與邊交于點(diǎn),若,則___________.15.已知關(guān)于實(shí)數(shù)x,y的不等式組構(gòu)成的平面區(qū)域?yàn)?,若,使得恒成立,則實(shí)數(shù)m的最小值是______.16.已知正實(shí)數(shù)x,y滿(mǎn)足,則的最小值為_(kāi)_______.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.已知,函數(shù)(其中),且圖象在軸右側(cè)的第一個(gè)最高點(diǎn)的橫坐標(biāo)為,并過(guò)點(diǎn).(1)求函數(shù)的解析式;(2)求函數(shù)的單調(diào)增區(qū)間.18.已知數(shù)列的通項(xiàng)公式為.(1)求這個(gè)數(shù)列的第10項(xiàng);(2)在區(qū)間內(nèi)是否存在數(shù)列中的項(xiàng)?若有,有幾項(xiàng)?若沒(méi)有,請(qǐng)說(shuō)明理由.19.已知數(shù)列的前項(xiàng)和為,且滿(mǎn)足,().(Ⅰ)求的值,并求數(shù)列的通項(xiàng)公式;(Ⅱ)設(shè)數(shù)列的前項(xiàng)和為,求證:().20.已知函數(shù).(1)求的最小正周期,并求其單調(diào)遞減區(qū)間;(2)的內(nèi)角,,所對(duì)的邊分別為,,,若,且為鈍角,,求面積的最大值.21.如圖,當(dāng)甲船位于處時(shí)獲悉,在其正東方向相距20海里的處有一艘漁船遇險(xiǎn)等待營(yíng)救.甲船立即前往救援,同時(shí)把消息告知在甲船的南偏西30°,相距10海里處的乙船,試問(wèn)乙船應(yīng)朝北偏東多少度的方向沿直線前往處救援?(角度精確到1°,參考數(shù)據(jù):,)

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、B【解析】【分析】由,得到數(shù)列表示公比為3的等比數(shù)列,求得,進(jìn)而利用,即可求解.【詳解】由,可得,所以數(shù)列表示公比為3的等比數(shù)列,又由,,得,解得,所以,所以故選B.【點(diǎn)睛】本題主要考查了等比數(shù)列的定義,以及數(shù)列中與之間的關(guān)系,其中解答中熟記等比數(shù)列的定義和與之間的關(guān)系是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.2、D【解析】【分析】分別計(jì)算平均值和方差,比較得到答案.【詳解】由題意可得,,.故.故答案選D【點(diǎn)睛】本題考查了數(shù)據(jù)的平均值和方差的計(jì)算,意在考查學(xué)生的計(jì)算能力.3、B【解析】由三角形的三邊關(guān)系,可得“三角形函數(shù)”的最大值小于最小值的二倍,因?yàn)閱握{(diào)遞增,無(wú)最大值和最小值,故排除A,,符合“三角形函數(shù)”的條件,即B正確,單調(diào)遞增,最大值為4,最小值為1,故排除C,單調(diào)遞增,最小值為1,最大值為,故排除D.故選B.點(diǎn)睛:本題以新定義為載體考查函數(shù)的單調(diào)性和最值;解決本題的關(guān)鍵在于正確理解“三角形函數(shù)”的含義,正確將問(wèn)題轉(zhuǎn)化為“判定函數(shù)的最大值和最小值間的關(guān)系”進(jìn)行處理,充分體現(xiàn)轉(zhuǎn)化思想的應(yīng)用.4、D【解析】【分析】由,,計(jì)算可判斷;由,,計(jì)算可判斷;由,可判斷;作差可判斷.【詳解】解:,當(dāng),時(shí),可得,故錯(cuò)誤;當(dāng),時(shí),,故錯(cuò)誤;當(dāng),,故錯(cuò)誤;,即,故正確.故選:.【點(diǎn)睛】本題考查不等式的性質(zhì),考查特殊值的運(yùn)用,以及運(yùn)算能力,屬于基礎(chǔ)題.5、B【解析】試題分析:因?yàn)?,,且,所以,,故選B.考點(diǎn):1、平面向量坐標(biāo)運(yùn)算;2、平行向量的性質(zhì).6、D【解析】【分析】直接利用同角三角函數(shù)基本關(guān)系式以及二倍角公式化簡(jiǎn)求值即可.【詳解】.故選.【點(diǎn)睛】本題主要考查應(yīng)用同角三角函數(shù)基本關(guān)系式和二倍角公式對(duì)三角函數(shù)的化簡(jiǎn)求值.7、A【解析】【分析】由題意首先求得平移之后的函數(shù)解析式,然后確定函數(shù)的單調(diào)區(qū)間即可.【詳解】由函數(shù)圖象平移變換的性質(zhì)可知:將的圖象向右平移個(gè)單位長(zhǎng)度之后的解析式為:.則函數(shù)的單調(diào)遞增區(qū)間滿(mǎn)足:,即,令可得一個(gè)單調(diào)遞增區(qū)間為:.函數(shù)的單調(diào)遞減區(qū)間滿(mǎn)足:,即,令可得一個(gè)單調(diào)遞減區(qū)間為:,本題選擇A選項(xiàng).【點(diǎn)睛】本題主要考查三角函數(shù)的平移變換,三角函數(shù)的單調(diào)區(qū)間的判斷等知識(shí),意在考查學(xué)生的轉(zhuǎn)化能力和計(jì)算求解能力.8、B【解析】由題意,抽出的號(hào)碼是5,10,15,…,60,符合系統(tǒng)抽樣的特點(diǎn):“等距抽樣”,故選B.9、B【解析】【分析】根據(jù)三棱錐三條側(cè)棱的關(guān)系,得到球與三棱錐的重疊部分為球的18【詳解】∵三棱錐O-ABC,側(cè)棱OA,OB,OC兩兩互相垂直,且OA=OB=OC=2,以O(shè)為球心且1為半徑的球與三棱錐O-ABC重疊部分的為球的18即對(duì)應(yīng)的體積為18【點(diǎn)睛】本題主要考查球體體積公式的應(yīng)用,解題的關(guān)鍵就是利用三棱錐與球的關(guān)系,考查空間想象能力,屬于中等題。10、B【解析】【分析】根據(jù)等差數(shù)列和等比數(shù)列性質(zhì)可分別求得,,代入即可得到結(jié)果.【詳解】由成等差數(shù)列得:由成等比數(shù)列得:,又與同號(hào)本題正確選項(xiàng):【點(diǎn)睛】本題考查等差數(shù)列、等比數(shù)列性質(zhì)的應(yīng)用,易錯(cuò)點(diǎn)是忽略等比數(shù)列奇數(shù)項(xiàng)符號(hào)相同的特點(diǎn),從而造成增根.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】【分析】利用輔助角將函數(shù)利用兩角差的正弦公式進(jìn)行化簡(jiǎn),求得函數(shù)取得最大值時(shí)的與的關(guān)系,從而求得,,可得結(jié)果.【詳解】因?yàn)楹瘮?shù),其中,,當(dāng)時(shí),函數(shù)取得最大值,此時(shí),∴,,∴故答案為【點(diǎn)睛】本題考查了兩角差的正弦公式的逆用,著重考查輔助角公式的應(yīng)用與正弦函數(shù)的性質(zhì),屬于中檔題.12、【解析】【分析】利用類(lèi)比推理分析,若數(shù)列是各項(xiàng)均為正數(shù)的等比數(shù)列,則當(dāng)時(shí),數(shù)列也是等比數(shù)列.【詳解】由數(shù)列是等差數(shù)列,則當(dāng)時(shí),數(shù)列也是等差數(shù)列.類(lèi)比上述性質(zhì),若數(shù)列是各項(xiàng)均為正數(shù)的等比數(shù)列,則當(dāng)時(shí),數(shù)列也是等比數(shù)列.故答案為:【點(diǎn)睛】類(lèi)比推理的一般步驟是:(1)找出兩類(lèi)事物之間的相似性或一致性;(2)用一類(lèi)事物的性質(zhì)去推測(cè)另一類(lèi)事物的性質(zhì),得出一個(gè)明確的命題(猜想).13、【解析】【分析】由余弦定理寫(xiě)出c與x的等式,再由有兩個(gè)正解,解出x的取值范圍【詳解】根據(jù)余弦定理:代入數(shù)據(jù)并整理有,有且僅有兩個(gè)解,記為則:【點(diǎn)睛】本題主要考查余弦定理以及韋達(dá)定理,屬于中檔題.14、;【解析】【分析】題中已知等腰中,為底邊的中點(diǎn),不妨于為軸,垂直平分線為軸建立直角坐標(biāo)系,這樣,我們能求出點(diǎn)坐標(biāo),根據(jù)直線與求出交點(diǎn),求向量的數(shù)量積即可.【詳解】如上圖,建立直角坐標(biāo)系,我們可以得出直線,聯(lián)立方程求出,,即填寫(xiě)【點(diǎn)睛】本題中因?yàn)橐阎走吋案叩拈L(zhǎng)度,所有我們建立直角坐標(biāo)系,求出相應(yīng)點(diǎn)坐標(biāo),而作為F點(diǎn)的坐標(biāo)我們可以通過(guò)直線交點(diǎn)求出,把向量數(shù)量積通過(guò)向量坐標(biāo)運(yùn)算來(lái)的更加直觀.15、【解析】【分析】由,使得恒成立可知,只需求出的最大值即可,再由表示平面區(qū)域內(nèi)的點(diǎn)與定點(diǎn)距離的平方,因此結(jié)合平面區(qū)域即可求出結(jié)果.【詳解】作出約束條件所表示的可行域如下:由,使得恒成立可知,只需求出的最大值即可;令目標(biāo)函數(shù),則目標(biāo)函數(shù)表示平面區(qū)域內(nèi)的點(diǎn)與定點(diǎn)距離的平方,由圖像易知,點(diǎn)到的距離最大.由得,所以.因此,即的最小值為37.故答案為37【點(diǎn)睛】本題主要考查簡(jiǎn)單的線性規(guī)劃問(wèn)題,只需分析清楚目標(biāo)函數(shù)的幾何意義,即可結(jié)合可行域來(lái)求解,屬于??碱}型.16、4【解析】【分析】將變形為,展開(kāi),利用基本不等式求最值.【詳解】解:,當(dāng)時(shí)等號(hào)成立,又,得,此時(shí)等號(hào)成立,故答案為:4.【點(diǎn)睛】本題考查基本不等式求最值,特別是掌握“1”的妙用,是基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2).【解析】【分析】(1)根據(jù)向量的數(shù)量積得,結(jié)合,即可求解;(2)令即可求得增區(qū)間.【詳解】(1)由題圖象在軸右側(cè)的第一個(gè)最高點(diǎn)的橫坐標(biāo)為,并過(guò)點(diǎn)所以,解得,,解得:,所以;(2)令函數(shù)的單調(diào)增區(qū)間為.【點(diǎn)睛】此題考查根據(jù)平面向量的數(shù)量積,求函數(shù)解析式,根據(jù)三角函數(shù)的頂點(diǎn)坐標(biāo)和曲線上的點(diǎn)的坐標(biāo)求參數(shù),利用整體代入法求單調(diào)區(qū)間.18、(1)(2)只有一項(xiàng)【解析】【分析】(1)根據(jù)通項(xiàng)公式直接求解(2)根據(jù)條件列不等式,解得結(jié)果【詳解】解:(1);(2)解不等式得,因?yàn)闉檎麛?shù),所以,因此在區(qū)間內(nèi)只有一項(xiàng).【點(diǎn)睛】本題考查數(shù)列通項(xiàng)公式及其應(yīng)用,考查基本分析求解能力,屬基礎(chǔ)題19、(Ⅰ),,(Ⅱ)見(jiàn)解析【解析】【分析】(Ⅰ)根據(jù)和項(xiàng)與通項(xiàng)關(guān)系得,利用等比數(shù)列定義求得結(jié)果(Ⅱ)利用放縮法以及等比數(shù)列求和公式證得結(jié)果【詳解】(Ⅰ),由得,兩式相減得故,又所以數(shù)列是以2為首項(xiàng),公比為2的等比數(shù)列,因此,即.(Ⅱ)當(dāng)時(shí),,所以.當(dāng)時(shí),故又當(dāng)時(shí),,.因此對(duì)一切成立.【點(diǎn)睛】本題主要考查了利用和的關(guān)系以及構(gòu)造法求數(shù)列的通項(xiàng)公式,同時(shí)考查利用放縮法證明數(shù)列不等式,解題難點(diǎn)是如何放縮,意在考查學(xué)生的數(shù)學(xué)建模能力和數(shù)學(xué)運(yùn)算能力。20、(1)最小正周期;單調(diào)遞減區(qū)間為;(2)【解析】【分析】(1)利用二倍角和輔助角公式可化簡(jiǎn)函數(shù)為;利用可求得最小正周期;令解出的范圍即可得到單調(diào)遞減區(qū)間;(2)由可得,根據(jù)的范圍可求出的取值;利用余弦定理和基本不等式可求出的最大值,代入三角形面積公式求得結(jié)果.【詳解】(1)最小正周期:令得:的單調(diào)遞減區(qū)間為:?jiǎn)握{(diào)遞減區(qū)間.(2)由得:,解得:由余弦定理得:(當(dāng)且僅當(dāng)時(shí)取等號(hào))即面積的最大值為:【點(diǎn)睛】本題考查正弦型函數(shù)最小正周期和單調(diào)區(qū)間的求解、解三角形中三角形面積最值的求解問(wèn)題;涉及到二倍角公式和輔助角公式的應(yīng)用、余弦定理和三角形面積公式的應(yīng)用等知識(shí);求解正弦型函數(shù)單調(diào)區(qū)間的常用解法為整體代入的方式,通過(guò)與正弦函數(shù)圖象的對(duì)應(yīng)關(guān)系來(lái)進(jìn)行求解.21、乙船應(yīng)朝北偏東約的方向沿直線前往處救援.【解析】【分析】根據(jù)題意,求得,利用余弦定理求得的長(zhǎng),在中利用正弦定理求得,根據(jù)題目所給參考數(shù)據(jù)求得乙船行駛方向.【詳解】解:由已知,則,在中,由余弦定理,得,∴海里.在中,由正弦定理,有,解得,則,故乙船應(yīng)朝北偏東約的方向沿直線前往處救援.【點(diǎn)睛】本小題主要考查解三角形在實(shí)際生活中的應(yīng)用,考查正弦定理、余弦定理解三角形,屬于基礎(chǔ)題.

2020-2021高一下數(shù)學(xué)期末模擬試卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.某快遞公司在我市的三個(gè)門(mén)店,,分別位于一個(gè)三角形的三個(gè)頂點(diǎn)處,其中門(mén)店,與門(mén)店都相距,而門(mén)店位于門(mén)店的北偏東方向上,門(mén)店位于門(mén)店的北偏西方向上,則門(mén)店,間的距離為()A. B. C. D.2.已知函數(shù),若方程在上有且只有三個(gè)實(shí)數(shù)根,則實(shí)數(shù)的取值范圍為()A. B. C. D.3.設(shè)向量滿(mǎn)足,且,則向量在向量方向上的投影為A.1 B. C. D.4.中國(guó)古代數(shù)學(xué)著作《算法統(tǒng)宗》中有這樣一個(gè)問(wèn)題:“三百七十八里關(guān),初行健步并不難,次日腳痛減一半,六朝才得至其關(guān),欲問(wèn)每朝行里數(shù),請(qǐng)公仔細(xì)算相還”.其意思為:“有一個(gè)人走378里路,第1天健步行走,從第2天起,因腳痛每天走的路程為前一天的一半,走了6天后到達(dá)目的地,可求出此人每天走多少里路.”那么此人第5天走的路程為()A.48里 B.24里 C.12里 D.6里5.下列命題中正確的是()A. B.C. D.6.若直線與圓相切,則()A. B. C. D.或7.在空間四邊形中,分別是的中點(diǎn).若,且與所成的角為,則四邊形的面積為()A. B. C. D.8.《九章算術(shù)》是我國(guó)古代數(shù)學(xué)成就的杰出代表作之一,其中《方田》章給出計(jì)算弧田面積所用的經(jīng)驗(yàn)公式為:弧田面積(弦矢矢),弧田(如圖)由圓弧和其所對(duì)弦所圍成,公式中“弦”指圓弧所對(duì)弦長(zhǎng),“矢”等于半徑長(zhǎng)與圓心到弦的距離之差,現(xiàn)有圓心角為,半徑等于6米的弧田,按照上述經(jīng)驗(yàn)公式計(jì)算所得弧田面積約為()A.12平方米 B.16平方米 C.20平方米 D.24平方米9.若,則A. B. C. D.10.下列說(shuō)法正確的是()A.銳角是第一象限的角,所以第一象限的角都是銳角;B.如果向量,則;C.在中,記,,則向量與可以作為平面ABC內(nèi)的一組基底;D.若,都是單位向量,則.二、填空題:本大題共6小題,每小題5分,共30分。11.已知直線:與直線:互相平行,則直線與之間的距離為_(kāi)_____.12.當(dāng)函數(shù)取得最大值時(shí),=__________.13.設(shè)等差數(shù)列的前項(xiàng)和為,若,,則的最小值為_(kāi)_____.14.長(zhǎng)方體的一個(gè)頂點(diǎn)上的三條棱長(zhǎng)分別是3,4,5,且它的8個(gè)頂點(diǎn)都在同一個(gè)球面上,則這個(gè)球的表面積是15._______________.16.由于堅(jiān)持經(jīng)濟(jì)改革,我國(guó)國(guó)民經(jīng)濟(jì)繼續(xù)保持了較穩(wěn)定的增長(zhǎng).某廠2019年的產(chǎn)值是100萬(wàn)元,計(jì)劃每年產(chǎn)值都比上一年增加,從2019年到2022年的總產(chǎn)值為_(kāi)_____萬(wàn)元(精確到萬(wàn)元).三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.設(shè)數(shù)列的前項(xiàng)和為,若,且成等差數(shù)列.(1)求數(shù)列的通項(xiàng)公式;(2)若的,求的最大值.18.如圖,某污水處理廠要在一個(gè)矩形污水處理池的池底水平鋪設(shè)污水凈化管道(三條邊,是直角頂點(diǎn))來(lái)處理污水,管道越長(zhǎng),污水凈化效果越好.要求管道的接口是的中點(diǎn),分別落在線段上,已知米,米,記.(1)試將污水凈化管道的總長(zhǎng)度(即的周長(zhǎng))表示為的函數(shù),并求出定義域;(2)問(wèn)取何值時(shí),污水凈化效果最好?并求出此時(shí)管道的總長(zhǎng)度.19.?dāng)?shù)列滿(mǎn)足,.(1)試求出,,;(2)猜想數(shù)列的通項(xiàng)公式并用數(shù)學(xué)歸納法證明.20.已知直線l1:ax﹣y﹣2=0與直線l2:(3﹣2a)x+y﹣1=0(a∈R).(1)若l1與l2互相垂直,求a的值:(2)若l1與l2相交且交點(diǎn)在第三象限,求a的取值范圍.21.如圖所示,某住宅小區(qū)的平面圖是圓心角為120°的扇形,小區(qū)的兩個(gè)出入口設(shè)置在點(diǎn)及點(diǎn)處,且小區(qū)里有一條平行于的小路,已知某人從沿走到用了10分鐘,從沿走到用了6分鐘,若此人步行的速度為每分鐘50米,求該扇形的半徑的長(zhǎng).

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、C【解析】【分析】根據(jù)題意,作出圖形,結(jié)合圖形利用正弦定理,即可求解,得到答案.【詳解】如圖所示,依題意知,,,由正弦定理得:,則.故選C.【點(diǎn)睛】本題主要考查了三角形的實(shí)際應(yīng)用問(wèn)題,其中解答中根據(jù)題意作出圖形,合理使用正弦定理求解是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.2、A【解析】【分析】先輔助角公式化簡(jiǎn),先求解方程的根的表達(dá)式,再根據(jù)在上有且只有三個(gè)實(shí)數(shù)根列出對(duì)應(yīng)的不等式求解即可.【詳解】.又在上有且只有三個(gè)實(shí)數(shù)根,故,解得或,即或,.設(shè)直線與在上從做到右的第三個(gè)交點(diǎn)為,第四個(gè)交點(diǎn)為.則,.故.故實(shí)數(shù)的取值范圍為.故選:A【點(diǎn)睛】本題主要考查了根據(jù)三角函數(shù)的根求解參數(shù)范圍的問(wèn)題,需要根據(jù)題意先求解根的解析式,進(jìn)而根據(jù)區(qū)間中的零點(diǎn)個(gè)數(shù)列出區(qū)間端點(diǎn)滿(mǎn)足的關(guān)系式求解即可.屬于中檔題.3、D【解析】【分析】先由題中條件,求出向量的數(shù)量積,再由向量數(shù)量積的幾何意義,即可求出投影.【詳解】因?yàn)椋?,所以,所以,故向量在向量方向上的投影?故選D【點(diǎn)睛】本題主要考查平面向量的數(shù)量積,熟記平面向量數(shù)量積的幾何意義即可,屬于常考題型.4、C【解析】記每天走的路程里數(shù)為{an},由題意知{an}是公比的等比數(shù)列,由S6=378,得=378,解得:a1=192,∴=12(里).故選C.5、D【解析】【分析】根據(jù)向量的加減法的幾何意義以及向量數(shù)乘的定義即可判斷.【詳解】,,,,故選D.【點(diǎn)睛】本題主要考查向量的加減法的幾何意義以及向量數(shù)乘的定義的應(yīng)用.6、D【解析】【分析】本題首先可根據(jù)圓的方程確定圓心以及半徑,然后根據(jù)直線與圓相切即可列出算式并通過(guò)計(jì)算得出結(jié)果?!驹斀狻坑深}意可知,圓方程為,所以圓心坐標(biāo)為,圓的半徑,因?yàn)橹本€與圓相切,所以圓心到直線距離等于半徑,即解得或,故選D。【點(diǎn)睛】本題考查根據(jù)直線與圓相切求參數(shù),考查根據(jù)圓的方程確定圓心與半徑,若直線與圓相切,則圓心到直線距離等于半徑,考查推理能力,是簡(jiǎn)單題。7、A【解析】【分析】【詳解】連接EH,因?yàn)镋H是△ABD的中位線,所以EH∥BD,且EH=BD.同理,F(xiàn)G∥BD,且FG=BD,所以EH∥FG,且EH=FG.所以四邊形EFGH為平行四邊形.因?yàn)锳C=BD=a,AC與BD所成的角為60°所以EF=EH.所以四邊形EFGH為菱形,∠EFG=60°.∴四邊形EFGH的面積是2××()2=a2故答案為a2,故選A.考點(diǎn):本題主要是考查的知識(shí)點(diǎn)簡(jiǎn)單幾何體和公理四,公理四:和同一條直線平行的直線平行,證明菱形常用方法是先證明它是平行四邊形再證明鄰邊相等,以及面積公式屬于基礎(chǔ)題.點(diǎn)評(píng):解決該試題的關(guān)鍵是先證明四邊形EFGH為菱形,然后說(shuō)明∠EFG=60°,最后根據(jù)三角形的面積公式即可求出所求.8、C【解析】【分析】在中,由題意OA=4,∠DAO=,即可求得OD,AD的值,根據(jù)題意可求矢和弦的值,即可利用公式計(jì)算求值得解.【詳解】如圖,由題意可得:∠AOB=,OA=6,在中,可得:∠AOD=,∠DAO=,OD=AO=×6=3,可得:矢=6﹣3=3,由AD=AO=6×=3,可得:弦=2AD=2×3=6,所以:弧田面積=(弦×矢+矢2)=(6×3+32)=9+4.5≈20平方米.故選:C【點(diǎn)睛】本題考查扇形的面積公式,考查數(shù)學(xué)閱讀能力和數(shù)學(xué)運(yùn)算能力,屬于中檔題.9、B【解析】【詳解】分析:由公式可得結(jié)果.詳解:故選B.點(diǎn)睛:本題主要考查二倍角公式,屬于基礎(chǔ)題.10、C【解析】【分析】可舉的角在第一象限,但不是銳角,可判斷A;考慮兩向量是否為零向量,可判斷B;由不共線,推得與不共線,可判斷C;考慮兩向量的方向可判斷D,得到答案.【詳解】對(duì)于A,銳角是第一象限的角,但第一象限的角不一定為銳角,比如的角在第一象限,但不是銳角,故A錯(cuò)誤;對(duì)于B,如果兩個(gè)非零向量滿(mǎn)足,則,若存在零向量,結(jié)論不一定成立,故B錯(cuò)誤;對(duì)于C,在中,記,可得與不共線,則向量與可以作為平面內(nèi)的一組基底,故C正確;對(duì)于D,若都是單位向量,且方向相同時(shí),;若方向不相同,結(jié)論不成立,所以D錯(cuò)誤.故選C.【點(diǎn)睛】本題主要考查了命題的真假判斷,主要是向量共線和垂直的條件,著重考查了判斷能力和分析能力,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、10【解析】【分析】利用兩直線平行,先求出,再由兩平行線的距離公式求解即可【詳解】由題意,,所以,,所以直線:,化簡(jiǎn)得,由兩平行線的距離公式:.故答案為:10【點(diǎn)睛】本題主要考查兩直線平行的充要條件,兩直線和平行的充要條件是,考查兩平行線間的距離公式,屬于基礎(chǔ)題.12、【解析】【分析】利用輔助角將函數(shù)利用兩角差的正弦公式進(jìn)行化簡(jiǎn),求得函數(shù)取得最大值時(shí)的與的關(guān)系,從而求得,,可得結(jié)果.【詳解】因?yàn)楹瘮?shù),其中,,當(dāng)時(shí),函數(shù)取得最大值,此時(shí),∴,,∴故答案為【點(diǎn)睛】本題考查了兩角差的正弦公式的逆用,著重考查輔助角公式的應(yīng)用與正弦函數(shù)的性質(zhì),屬于中檔題.13、【解析】【分析】用基本量法求出數(shù)列的通項(xiàng)公式,由通項(xiàng)公式可得取最小值時(shí)的值,從而得的最小值.【詳解】設(shè)數(shù)列公差為,則由已知得,解得,∴,,,又,、∴的最小值為.故答案為:..【點(diǎn)睛】本題考查等差數(shù)列的前項(xiàng)和的最值.首項(xiàng)為負(fù)且遞增的等差數(shù)列,滿(mǎn)足的最大的使得最小,首項(xiàng)為正且遞減的等差數(shù)列,滿(mǎn)足的最大的使得最大,當(dāng)然也可把表示為的二次函數(shù),由二次函數(shù)知識(shí)求得最值.14、【解析】【分析】利用長(zhǎng)方體的體對(duì)角線是長(zhǎng)方體外接球的直徑,求出球的半徑,從而可得結(jié)果.【詳解】本題主要考查空間幾何體的表面積與體積.長(zhǎng)方體的體對(duì)角線是長(zhǎng)方體外接球的直徑,設(shè)球的半徑為,則,可得,球的表面積故答案為.【點(diǎn)睛】本題主要考查長(zhǎng)方體與球的幾何性質(zhì),以及球的表面積公式,屬于基礎(chǔ)題.15、2【解析】【分析】利用裂項(xiàng)求和法將化簡(jiǎn)為,再求極限即可.【詳解】令...故答案為:【點(diǎn)睛】本題主要考查數(shù)列求和中的列項(xiàng)求和,同時(shí)考查了極限的求法,屬于中檔題.16、464【解析】【分析】根據(jù)等比數(shù)列求和公式求解【詳解】由題意得從2019年到2022年各年產(chǎn)值構(gòu)成以100為首項(xiàng),1.1為公比的等比數(shù)列,其和為【點(diǎn)睛】本題考查等比數(shù)列應(yīng)用以及等比數(shù)列求和公式,考查基本分析求解能力,屬基礎(chǔ)題三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)6.【解析】【分析】(1)根據(jù)已知條件,結(jié)合,得到,再由已知條件求得,即可求得等比數(shù)列的通項(xiàng)公式;(2)根據(jù)(1)中的結(jié)果化簡(jiǎn)得到,由此結(jié)合已知條件,即可求解.【詳解】(1)由已知,所以,即,從而,,又因?yàn)槌傻炔顢?shù)列,即,所以,解得,所以數(shù)列是首項(xiàng)為2,公比為2的等比數(shù)列,故;(2)因?yàn)?,所以,即,所以,所以,所以的最大值?.【點(diǎn)睛】本題主要考查了等比數(shù)列的通項(xiàng)公式及前n項(xiàng)和公式的應(yīng)用,以及數(shù)列的與關(guān)系式的應(yīng)用,其中解答中數(shù)列與關(guān)系式和等比數(shù)列的通項(xiàng)公式、前n項(xiàng)和公式,準(zhǔn)確計(jì)算是解答的關(guān)鍵,著重考查了推理與計(jì)算能力,屬于基礎(chǔ)題.18、(1),;(2)或時(shí),L取得最大值為米..【解析】【分析】(1)解直角三角形求得得EH、FH、EF的解析式,再由L=EH+FH+EF得到污水凈化管道的長(zhǎng)度L的函數(shù)解析式,并注明θ的范圍.(2)設(shè)sinθ+cosθ=t,根據(jù)函數(shù)L=在[,]上是單調(diào)減函數(shù),可求得L的最大值.所以當(dāng)時(shí),即

時(shí),L取得最大值為米.【詳解】由題意可得,,,由于

,,所以,,,即,設(shè),則,由于,由于在上是單調(diào)減函數(shù),當(dāng)時(shí),即或時(shí),L取得最大值為米.【點(diǎn)睛】三角函數(shù)值域得不同求法:1.利用和的值域直接求2.把所有的三角函數(shù)式變換成的形式求值域3.通過(guò)換元,轉(zhuǎn)化成其他類(lèi)型函數(shù)求值域19、(1),,(2),證明見(jiàn)詳解.【解析】【分析】(1)由題意得,在中分別令可求結(jié)果;(2)由數(shù)列前四項(xiàng)可猜想,運(yùn)用數(shù)學(xué)歸納法可證明.【詳解】解:(1),當(dāng)時(shí),,,當(dāng)時(shí),,,當(dāng)時(shí),,,所以,,(2)猜想下面用數(shù)學(xué)歸納法證明:假設(shè)時(shí),有成立,則當(dāng)時(shí),有,故對(duì)成立.【點(diǎn)睛】該題考查由數(shù)列遞推式求數(shù)列的項(xiàng)、通項(xiàng)公式,考查數(shù)學(xué)歸納法,考查學(xué)生的運(yùn)算求解能力.20、(1)a,或a=1(2)a>3【解析】【分析】(1)由題意利用兩條直線互相垂直的性質(zhì),求得的值;(2)聯(lián)立方程組求出兩條直線的交點(diǎn)坐標(biāo),再根據(jù)交點(diǎn)在第三象限,求出的取值范圍.【詳解】(1)∵直線l1:ax﹣y﹣2=0與直線l2:(3﹣2a)x+y﹣1=0,l1與l2互相垂直,∴a?(3﹣2a)+(﹣1)?1=0,求得a,或a=1.(2)若l1與l2相交且交點(diǎn)在第三象限,聯(lián)立方程組,∵l1與l2相交,故a≠3,求得方程組的解為,∴,求得a>3.【點(diǎn)睛】本題主要考查兩條直線互相垂直的性質(zhì),求兩條直線的交點(diǎn)坐標(biāo),屬于基礎(chǔ)題.21、【解析】【分析】連接,由題意,得米,米,,在△中,由余弦定理可得答案.【詳解】設(shè)該扇形的半徑為米,連接,如圖所示:由題意,得米,米,,在△中,由余弦定理得,即,解得米.答:該扇形的半徑的長(zhǎng)為米.【點(diǎn)睛】本題考查了利用余弦定理解三角形,將問(wèn)題轉(zhuǎn)化為在三角形中求解是解題關(guān)鍵,屬于基礎(chǔ)題.

2020-2021高一下數(shù)學(xué)期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫(xiě)在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫(xiě)姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知函數(shù)向左平移個(gè)單位長(zhǎng)度后,其圖象關(guān)于軸對(duì)稱(chēng),則的最小值為()A. B. C. D.2.若,,與的夾角為,則的值是()A. B. C. D.3.已知數(shù)列、、、、,可猜想此數(shù)列的通項(xiàng)公式是().A. B.C. D.4.已知向量,,若,則實(shí)數(shù)a的值為A. B.2或 C.或1 D.5.一塊各面均涂有油漆的正方體被鋸成27個(gè)大小相同的小正方體,若將這些小正方體均勻地?cái)嚮煸谝黄?,從中任意取出一個(gè),則取出的小正方體兩面涂有油漆的概率是()A.127 B.29 C.46.某學(xué)校禮堂有30排座位,每排有20個(gè)座位,一次心理講座時(shí)禮堂中坐滿(mǎn)了學(xué)生,會(huì)后為了了解有關(guān)情況,留下座位號(hào)是15的30名學(xué)生,這里運(yùn)用的抽樣方法是()A.抽簽法 B.隨機(jī)數(shù)法 C.系統(tǒng)抽樣 D.分層抽樣7.如圖所示,在中,點(diǎn)D是邊的中點(diǎn),則向量()A. B.C. D.8.已知點(diǎn),,則直線的斜率是()A. B. C.5 D.19.下列不等式正確的是()A.若,則 B.若,則C.若,則 D.若,則10.已知角、是的內(nèi)角,則“”是“”的()A.充分條件 B.必要條件C.充要條件 D.既不充分也不必要條件二、填空題:本大題共6小題,每小題5分,共30分。11.棱長(zhǎng)為,各面都為等邊三角形的四面體內(nèi)有一點(diǎn),由點(diǎn)向各面作垂線,垂線段的長(zhǎng)度分別為,則=______.12.設(shè)等比數(shù)列滿(mǎn)足a1+a3=10,a2+a4=5,則a1a2…an的最大值為.13.______.14.設(shè)當(dāng)時(shí),函數(shù)取得最大值,則______.15.已知函數(shù),則的取值范圍是____16.已知數(shù)列滿(mǎn)足,若,則的所有可能值的和為_(kāi)_____;三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.已知函數(shù).(1)當(dāng)時(shí),,求的值;(2)令,若對(duì)任意都有恒成立,求的最大值.18.對(duì)于三個(gè)實(shí)數(shù)、、,若成立,則稱(chēng)、具有“性質(zhì)”.(1)試問(wèn):①,0是否具有“性質(zhì)2”;②(),0是否具有“性質(zhì)4”;(2)若存在及,使得成立,且,1具有“性質(zhì)2”,求實(shí)數(shù)的取值范圍;(3)設(shè),,,為2019個(gè)互不相同的實(shí)數(shù),點(diǎn)()均不在函數(shù)的圖象上,是否存在,且,使得、具有“性質(zhì)2018”,請(qǐng)說(shuō)明理由.19.在中,角,,的對(duì)邊分別為,,,已知向量,,且.(1)求角的值;(2)若為銳角三角形,且,求的取值范圍.20.在平面直角坐標(biāo)系中,已知圓和圓.(1)若直線過(guò)點(diǎn),且被圓截得的弦長(zhǎng)為,求直線的方程;(2)設(shè)P為平面上的點(diǎn),滿(mǎn)足:存在過(guò)點(diǎn)P的無(wú)窮多對(duì)互相垂直的直線和,它們分別與圓和圓相交,且直線被圓截得的弦長(zhǎng)與直線被圓截得的弦長(zhǎng)相等,試求所有滿(mǎn)足條件的點(diǎn)P的坐標(biāo).21.已知函數(shù),若在定義域內(nèi)存在,使得成立,則稱(chēng)為函數(shù)的局部對(duì)稱(chēng)點(diǎn).(1)若,證明:函數(shù)必有局部對(duì)稱(chēng)點(diǎn);(2)若函數(shù)在區(qū)間內(nèi)有局部對(duì)稱(chēng)點(diǎn),求實(shí)數(shù)的取值范圍;(3)若函數(shù)在上有局部對(duì)稱(chēng)點(diǎn),求實(shí)數(shù)的取值范圍.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、A【解析】【分析】根據(jù)函數(shù)的圖象變換規(guī)律,三角函數(shù)的圖象關(guān)于軸對(duì)稱(chēng),即為偶函數(shù).,求得的最小值.【詳解】把函數(shù)向左平移個(gè)單位長(zhǎng)度后.可得的圖象.再根據(jù)所得圖象關(guān)于軸對(duì)稱(chēng),即為偶函數(shù).所以即,當(dāng)時(shí),的值最小.所以的最小值為:故選:A【點(diǎn)睛】本題主要考查函數(shù)的圖象變換規(guī)律,三角函數(shù)的圖象的對(duì)稱(chēng)性,屬于基礎(chǔ)題.2、C【解析】【分析】由題意可得||?||?cos,,再利用二倍角公式求得結(jié)果.【詳解】由題意可得||?||?cos,2sin15°4cos15°cos30°=2sin60°,故選:C.【點(diǎn)睛】本題主要考查兩個(gè)向量的數(shù)量積的定義,二倍角公式的應(yīng)用屬于基礎(chǔ)題.3、D【解析】【分析】利用賦值法逐項(xiàng)排除可得出結(jié)果.【詳解】對(duì)于A選項(xiàng),,不合乎題意;對(duì)于B選項(xiàng),,不合乎題意;對(duì)于C選項(xiàng),,不合乎題意;對(duì)于D選項(xiàng),當(dāng)為奇數(shù)時(shí),,此時(shí),當(dāng)為偶數(shù)時(shí),,此時(shí),合乎題意.故選:D.【點(diǎn)睛】本題考查利用觀察法求數(shù)列的通項(xiàng),考查推理能力,屬于中等題.4、C【解析】【分析】根據(jù)題意,由向量平行的坐標(biāo)表示公式可得,解可得a的值,即可得答案.【詳解】根據(jù)題意,向量,,若,則有,解可得或1;故選C.【點(diǎn)睛】本題考查向量平行的坐標(biāo)表示方法,熟記平行的坐標(biāo)表示公式得到關(guān)于a的方程是關(guān)鍵,是基礎(chǔ)題5、C【解析】【分析】先求出基本事件總數(shù)n=27,在得到的27個(gè)小正方體中,若其兩面涂有油漆,則這個(gè)小正方體必在原正方體的某一條棱上,且原正方體的一條棱上只有一個(gè)兩面涂有油漆的小正方體,則兩面涂有油漆的小正方體共有12個(gè),由此能求出在27個(gè)小正方體中,任取一個(gè)其兩面涂有油漆的概率.【詳解】∵一塊各面均涂有油漆的正方體被鋸成27個(gè)大小相同的小正方體,∴基本事件總數(shù)n=27,在得到的27個(gè)小正方體中,若其兩面涂有油漆,則這個(gè)小正方體必在原正方體的某一條棱上,且原正方體的一條棱上只有一個(gè)兩面涂有油漆的小正方體,則兩面涂有油漆的小正方體共有12個(gè),則在27個(gè)小正方體中,任取一個(gè)其兩面涂有油漆的概率P=1227=故選:C【點(diǎn)睛】本題考查概率的求法,考查古典概型、正方體性質(zhì)等基礎(chǔ)知識(shí),考查推理論證能力、空間想象能力,考查函數(shù)與方程思想,是基礎(chǔ)題.6、C【解析】抽名學(xué)生分了組(每排為一組),每組抽一個(gè),符合系統(tǒng)抽樣的定義故選7、D【解析】【分析】根據(jù)向量線性運(yùn)算法則可求得結(jié)果.【詳解】為中點(diǎn)本題正確選項(xiàng):【點(diǎn)睛】本題考查根據(jù)向量線性運(yùn)算,用基底表示向量的問(wèn)題,屬于??碱}型.8、D【解析】【分析】根據(jù)直線的斜率公式,準(zhǔn)確計(jì)算,即可求解,得到答案.【詳解】由題意,根據(jù)直線的斜率公式,可得直線的斜率,故選D.【點(diǎn)睛】本題主要考查了直線的斜率公式的應(yīng)用,其中解答中熟記直線的斜率公式,準(zhǔn)確計(jì)算是解答的關(guān)鍵,著重考查了運(yùn)算與求解能力,屬于基礎(chǔ)題.9、B【解析】試題分析:A.若c<0,則不等號(hào)改變,若c=0,兩式相等,故A錯(cuò)誤;B.若,則,故,故B正確;C.若b=0,則表達(dá)是不成立故C錯(cuò)誤;D.c=0時(shí)錯(cuò)誤.考點(diǎn):不等式的性質(zhì).10、C【解析】【分析】結(jié)合正弦定理,利用充分條件和必要條件的定義進(jìn)行判斷【詳解】在三角形中,根據(jù)大邊對(duì)大角原則,若,則,由正弦定理得,充分條件成立;若,由可得,根據(jù)大邊對(duì)大角原則,則,必要條件成立;故在三角形中,“”是“”的充要條件故選:C【點(diǎn)睛】本題考查充分條件與必要條件的應(yīng)用,利用正弦定理確定邊角關(guān)系,三角形大邊對(duì)大角原則應(yīng)謹(jǐn)記,屬于基礎(chǔ)題二、填空題:本大題共6小題,每小題5分,共30分。11、.【解析】【分析】【詳解】根據(jù)等積法可得∴12、【解析】試題分析:設(shè)等比數(shù)列的公比為,由得,,解得.所以,于是當(dāng)或時(shí),取得最大值.考點(diǎn):等比數(shù)列及其應(yīng)用13、【解析】【分析】【詳解】,,故答案為.考點(diǎn):三角函數(shù)誘導(dǎo)公式、切割化弦思想.14、;【解析】f(x)=sinx-2cosx==sin(x-φ),其中sinφ=,cosφ=,當(dāng)x-φ=2kπ+(k∈Z)時(shí),函數(shù)f(x)取得最大值,即θ=2kπ++φ時(shí),函數(shù)f(x)取到最大值,所以cosθ=-sinφ=-.15、【解析】【分析】分類(lèi)討論,去掉絕對(duì)值,利用函數(shù)的單調(diào)性,求得函數(shù)各段上的取值,進(jìn)而得到函數(shù)的取值范圍,得到答案.【詳解】由題意,當(dāng)時(shí),函數(shù),此時(shí)函數(shù)為單調(diào)遞減函數(shù),所以最大值為,此時(shí)函數(shù)的取值當(dāng)時(shí),函數(shù),此時(shí)函數(shù)為單調(diào)遞減函數(shù),所以最大值為,最小值,所以函數(shù)的取值為當(dāng)時(shí),函數(shù),此時(shí)函數(shù)為單調(diào)遞增函數(shù),所以最大值為,此時(shí)函數(shù)的取值,綜上可知,函數(shù)的取值范圍是.【點(diǎn)睛】本題主要考查了分段函數(shù)的值域問(wèn)題,其中解答中合理分類(lèi)討論去掉絕對(duì)值,利用函數(shù)的單調(diào)性求得各段上的值域是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.16、36【解析】【分析】根據(jù)條件得到的遞推關(guān)系,從而判斷出的類(lèi)型求解出可能的通項(xiàng)公式,即可計(jì)算出的所有可能值,并完成求和.【詳解】因?yàn)椋曰?,?dāng)時(shí),是等差數(shù)列,,所以;當(dāng)時(shí),是等比數(shù)列,,所以,所以的所有可能值之和為:.故答案為:.【點(diǎn)睛】本題考查等差和等比數(shù)列的判斷以及求數(shù)列中項(xiàng)的值,難度一般.已知數(shù)列滿(mǎn)足(為常數(shù)),則是公差為的等差數(shù)列;已知數(shù)列滿(mǎn)足,則是公比為的等比數(shù)列.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)【解析】【分析】(1)根據(jù)得,得或,結(jié)合取值范圍求解;(2)結(jié)合換元法處理二次不等式恒成立求參數(shù)的取值范圍.【詳解】(1),即,即有,所以或,即或由于,,所以;(2),令,對(duì)任意都有恒成立,即對(duì)恒成立,只需,解得:,所以的最大值為.【點(diǎn)睛】此題考查根據(jù)三角函數(shù)值相等求自變量取值的關(guān)系,利用換元法轉(zhuǎn)化為二次函數(shù)處理不等式問(wèn)題,根據(jù)不等式恒成立求參數(shù)的取值范圍,涉及根的分布的問(wèn)題.18、(1)①具有“性質(zhì)2”,②不具有“性質(zhì)4”;(2);(3)存在.【解析】【分析】(1)①根據(jù)題意需要判斷的真假即可②根據(jù)題意判斷是否成立即可得出結(jié)論;(2)根據(jù)具有性質(zhì)2可求出的范圍,由存在性問(wèn)題成立轉(zhuǎn)化為,根據(jù)函數(shù)的性質(zhì)求最值即可求解.【詳解】(1)①因?yàn)椋闪?所以,故,0具有“性質(zhì)2”②因?yàn)?,設(shè),則設(shè),對(duì)稱(chēng)軸為,所以函數(shù)在上單調(diào)遞減,當(dāng)時(shí),,所以當(dāng)時(shí),不恒成立,即不成立,故(),0不具有“性質(zhì)4”.(2)因?yàn)椋?具有“性質(zhì)2”所以化簡(jiǎn)得解得或.因?yàn)榇嬖诩埃沟贸闪?,所以存在及使即?令,則,當(dāng)時(shí),,所以在上是增函數(shù),所以時(shí),,當(dāng)時(shí),,故時(shí),因?yàn)樵谏蠁握{(diào)遞減,在上單調(diào)遞增,所以,故只需滿(mǎn)足即可,解得.(3)假設(shè)具有“性質(zhì)2018”,則,即證明在任意2019個(gè)互不相同的實(shí)數(shù)中,一定存在兩個(gè)實(shí)數(shù),滿(mǎn)足:.證明:由,令,由萬(wàn)能公式知,將等分成2018個(gè)小區(qū)間,則這2019個(gè)數(shù)必然有兩個(gè)數(shù)落在同一個(gè)區(qū)間,令其為:,即,也就是說(shuō),在,,,這2019個(gè)數(shù)中,一定有兩個(gè)數(shù)滿(mǎn)足,即一定存在兩個(gè)實(shí)數(shù),滿(mǎn)足,從而得證.【點(diǎn)睛】本題主要考查了不等式的證明,根據(jù)存在性問(wèn)題求參數(shù)的取值范圍,三角函數(shù)的單調(diào)性,萬(wàn)能公式,考查了創(chuàng)新能力,屬于難題.19、(1);(2)【解析】【分析】(1)根據(jù)和正弦定理余弦定理求得.(2)先利用正弦定理求出R=1,再把化成,再利用三角函數(shù)的圖像和性質(zhì)求解.【詳解】(1)因?yàn)椋?,由正弦定理化角為邊可得,即,由余弦定理可得,又,所以.?)由(1)可得,設(shè)的外接圓的半徑為,因?yàn)椋?,所以,則,因?yàn)闉殇J角三角形,所以,即,所以,所以,所以,故的取值范圍為.【點(diǎn)睛】(1)本題主要考查正弦定理余弦定理解三角形,

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論