山東省濟鋼高中2024屆高考沖刺押題(最后一卷)數(shù)學(xué)試卷含解析_第1頁
山東省濟鋼高中2024屆高考沖刺押題(最后一卷)數(shù)學(xué)試卷含解析_第2頁
山東省濟鋼高中2024屆高考沖刺押題(最后一卷)數(shù)學(xué)試卷含解析_第3頁
山東省濟鋼高中2024屆高考沖刺押題(最后一卷)數(shù)學(xué)試卷含解析_第4頁
山東省濟鋼高中2024屆高考沖刺押題(最后一卷)數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

山東省濟鋼高中2024屆高考沖刺押題(最后一卷)數(shù)學(xué)試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.給出以下四個命題:①依次首尾相接的四條線段必共面;②過不在同一條直線上的三點,有且只有一個平面;③空間中如果一個角的兩邊與另一個角的兩邊分別平行,那么這兩個角必相等;④垂直于同一直線的兩條直線必平行.其中正確命題的個數(shù)是()A.0 B.1 C.2 D.32.已知全集,函數(shù)的定義域為,集合,則下列結(jié)論正確的是A. B.C. D.3.已知圓M:x2+y2-2ay=0a>0截直線x+y=0A.內(nèi)切 B.相交 C.外切 D.相離4.如圖所示的程序框圖,若輸入,,則輸出的結(jié)果是()A. B. C. D.5.若實數(shù)滿足不等式組,則的最大值為()A. B. C.3 D.26.高斯是德國著名的數(shù)學(xué)家,近代數(shù)學(xué)奠基者之一,享有“數(shù)學(xué)王子”的稱號,用其名字命名的“高斯函數(shù)”為:設(shè),用表示不超過的最大整數(shù),則稱為高斯函數(shù),例如:,,已知函數(shù)(),則函數(shù)的值域為()A. B. C. D.7.各項都是正數(shù)的等比數(shù)列的公比,且成等差數(shù)列,則的值為()A. B.C. D.或8.函數(shù)在上的最大值和最小值分別為()A.,-2 B.,-9 C.-2,-9 D.2,-29.已知數(shù)列是以1為首項,2為公差的等差數(shù)列,是以1為首項,2為公比的等比數(shù)列,設(shè),,則當(dāng)時,的最大值是()A.8 B.9 C.10 D.1110.設(shè)a,b∈(0,1)∪(1,+∞),則"a=b"是"logA.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件11.若為虛數(shù)單位,則復(fù)數(shù)的共軛復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限12.已知函數(shù)是定義在上的奇函數(shù),函數(shù)滿足,且時,,則()A.2 B. C.1 D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)的最大值為3,的圖象與y軸的交點坐標(biāo)為,其相鄰兩條對稱軸間的距離為2,則14.某部門全部員工參加一項社會公益活動,按年齡分為三組,其人數(shù)之比為,現(xiàn)用分層抽樣的方法從總體中抽取一個容量為20的樣本,若組中甲、乙二人均被抽到的概率是,則該部門員工總?cè)藬?shù)為__________.15.假如某人有壹元、貳元、伍元、拾元、貳拾元、伍拾元、壹佰元的紙幣各兩張,要支付貳佰壹拾玖(219)元的貨款,則有________種不同的支付方式.16.已知,滿足不等式組,則的取值范圍為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)若在上為單調(diào)函數(shù),求實數(shù)a的取值范圍:(2)若,記的兩個極值點為,,記的最大值與最小值分別為M,m,求的值.18.(12分)已知f(x)=|x+3|-|x-2|(1)求函數(shù)f(x)的最大值m;(2)正數(shù)a,b,c滿足a+2b+3c=m,求證:19.(12分)設(shè)(1)證明:當(dāng)時,;(2)當(dāng)時,求整數(shù)的最大值.(參考數(shù)據(jù):,)20.(12分)某市調(diào)硏機構(gòu)對該市工薪階層對“樓市限購令”態(tài)度進行調(diào)查,抽調(diào)了50名市民,他們月收入頻數(shù)分布表和對“樓市限購令”贊成人數(shù)如下表:月收入(單位:百元)頻數(shù)51055頻率0.10.20.10.1贊成人數(shù)4812521(1)若所抽調(diào)的50名市民中,收入在的有15名,求,,的值,并完成頻率分布直方圖.(2)若從收入(單位:百元)在的被調(diào)查者中隨機選取2人進行追蹤調(diào)查,選中的2人中恰有人贊成“樓市限購令”,求的分布列與數(shù)學(xué)期望.(3)從月收入頻率分布表的6組市民中分別隨機抽取3名市民,恰有一組的3名市民都不贊成“樓市限購令”,根據(jù)表格數(shù)據(jù),判斷這3名市民來自哪組的可能性最大?請直接寫出你的判斷結(jié)果.21.(12分)如圖,四邊形為菱形,為與的交點,平面.(1)證明:平面平面;(2)若,,三棱錐的體積為,求菱形的邊長.22.(10分)在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求直線的普通方程與曲線的直角坐標(biāo)方程;(2)若射線與和分別交于點,求.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

用空間四邊形對①進行判斷;根據(jù)公理2對②進行判斷;根據(jù)空間角的定義對③進行判斷;根據(jù)空間直線位置關(guān)系對④進行判斷.【詳解】①中,空間四邊形的四條線段不共面,故①錯誤.②中,由公理2知道,過不在同一條直線上的三點,有且只有一個平面,故②正確.③中,由空間角的定義知道,空間中如果一個角的兩邊與另一個角的兩邊分別平行,那么這兩個角相等或互補,故③錯誤.④中,空間中,垂直于同一直線的兩條直線可相交,可平行,可異面,故④錯誤.故選:B【點睛】本小題考查空間點,線,面的位置關(guān)系及其相關(guān)公理,定理及其推論的理解和認識;考查空間想象能力,推理論證能力,考查數(shù)形結(jié)合思想,化歸與轉(zhuǎn)化思想.2、A【解析】

求函數(shù)定義域得集合M,N后,再判斷.【詳解】由題意,,∴.故選A.【點睛】本題考查集合的運算,解題關(guān)鍵是確定集合中的元素.確定集合的元素時要注意代表元形式,集合是函數(shù)的定義域,還是函數(shù)的值域,是不等式的解集還是曲線上的點集,都由代表元決定.3、B【解析】化簡圓M:x2+(y-a)2=a又N(1,1),r4、B【解析】

列舉出循環(huán)的每一步,可得出輸出結(jié)果.【詳解】,,不成立,,;不成立,,;不成立,,;成立,輸出的值為.故選:B.【點睛】本題考查利用程序框圖計算輸出結(jié)果,一般要將算法的每一步列舉出來,考查計算能力,屬于基礎(chǔ)題.5、C【解析】

作出可行域,直線目標(biāo)函數(shù)對應(yīng)的直線,平移該直線可得最優(yōu)解.【詳解】作出可行域,如圖由射線,線段,射線圍成的陰影部分(含邊界),作直線,平移直線,當(dāng)過點時,取得最大值1.故選:C.【點睛】本題考查簡單的線性規(guī)劃問題,解題關(guān)鍵是作出可行域,本題要注意可行域不是一個封閉圖形.6、B【解析】

利用換元法化簡解析式為二次函數(shù)的形式,根據(jù)二次函數(shù)的性質(zhì)求得的取值范圍,由此求得的值域.【詳解】因為(),所以,令(),則(),函數(shù)的對稱軸方程為,所以,,所以,所以的值域為.故選:B【點睛】本小題考查函數(shù)的定義域與值域等基礎(chǔ)知識,考查學(xué)生分析問題,解決問題的能力,運算求解能力,轉(zhuǎn)化與化歸思想,換元思想,分類討論和應(yīng)用意識.7、C【解析】分析:解決該題的關(guān)鍵是求得等比數(shù)列的公比,利用題中所給的條件,建立項之間的關(guān)系,從而得到公比所滿足的等量關(guān)系式,解方程即可得結(jié)果.詳解:根據(jù)題意有,即,因為數(shù)列各項都是正數(shù),所以,而,故選C.點睛:該題應(yīng)用題的條件可以求得等比數(shù)列的公比,而待求量就是,代入即可得結(jié)果.8、B【解析】

由函數(shù)解析式中含絕對值,所以去絕對值并畫出函數(shù)圖象,結(jié)合圖象即可求得在上的最大值和最小值.【詳解】依題意,,作出函數(shù)的圖象如下所示;由函數(shù)圖像可知,當(dāng)時,有最大值,當(dāng)時,有最小值.故選:B.【點睛】本題考查了絕對值函數(shù)圖象的畫法,由函數(shù)圖象求函數(shù)的最值,屬于基礎(chǔ)題.9、B【解析】

根據(jù)題意計算,,,解不等式得到答案.【詳解】∵是以1為首項,2為公差的等差數(shù)列,∴.∵是以1為首項,2為公比的等比數(shù)列,∴.∴.∵,∴,解得.則當(dāng)時,的最大值是9.故選:.【點睛】本題考查了等差數(shù)列,等比數(shù)列,f分組求和,意在考查學(xué)生對于數(shù)列公式方法的靈活運用.10、A【解析】

根據(jù)題意得到充分性,驗證a=2,b=1【詳解】a,b∈0,1∪1,+∞,當(dāng)"a=b當(dāng)logab=log故選:A.【點睛】本題考查了充分不必要條件,意在考查學(xué)生的計算能力和推斷能力.11、B【解析】

由共軛復(fù)數(shù)的定義得到,通過三角函數(shù)值的正負,以及復(fù)數(shù)的幾何意義即得解【詳解】由題意得,因為,,所以在復(fù)平面內(nèi)對應(yīng)的點位于第二象限.故選:B【點睛】本題考查了共軛復(fù)數(shù)的概念及復(fù)數(shù)的幾何意義,考查了學(xué)生概念理解,數(shù)形結(jié)合,數(shù)學(xué)運算的能力,屬于基礎(chǔ)題.12、D【解析】

說明函數(shù)是周期函數(shù),由周期性把自變量的值變小,再結(jié)合奇偶性計算函數(shù)值.【詳解】由知函數(shù)的周期為4,又是奇函數(shù),,又,∴,∴.故選:D.【點睛】本題考查函數(shù)的奇偶性與周期性,掌握周期性與奇偶性的概念是解題基礎(chǔ).二、填空題:本題共4小題,每小題5分,共20分。13、【解析】,由題意,得,解得,則的周期為4,且,所以.考點:三角函數(shù)的圖像與性質(zhì).14、60【解析】

根據(jù)樣本容量及各組人數(shù)比,可求得C組中的人數(shù);由組中甲、乙二人均被抽到的概率是可求得C組的總?cè)藬?shù),即可由各組人數(shù)比求得總?cè)藬?shù).【詳解】三組人數(shù)之比為,現(xiàn)用分層抽樣的方法從總體中抽取一個容量為20的樣本,則三組抽取人數(shù)分別.設(shè)組有人,則組中甲、乙二人均被抽到的概率,∴解得.∴該部門員工總共有人.故答案為:60.【點睛】本題考查了分層抽樣的定義與簡單應(yīng)用,古典概型概率的簡單應(yīng)用,由各層人數(shù)求總?cè)藬?shù)的應(yīng)用,屬于基礎(chǔ)題.15、1【解析】

按照個位上的9元的支付情況分類,三個數(shù)位上的錢數(shù)分步計算,相加即可.【詳解】9元的支付有兩種情況,或者,①當(dāng)9元采用方式支付時,200元的支付方式為,或者或者共3種方式,10元的支付只能用1張10元,此時共有種支付方式;②當(dāng)9元采用方式支付時:200元的支付方式為,或者或者共3種方式,10元的支付只能用1張10元,此時共有種支付方式;所以總的支付方式共有種.故答案為:1.【點睛】本題考查了分類加法計數(shù)原理和分步乘法計數(shù)原理,屬于中檔題.做題時注意分類做到不重不漏,分步做到步驟完整.16、【解析】

畫出不等式組表示的平面區(qū)域如下圖中陰影部分所示,易知在點處取得最小值,即,所以由圖可知的取值范圍為.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】

(1)求導(dǎo).根據(jù)單調(diào),轉(zhuǎn)化為對恒成立求解(2)由(1)知,是的兩個根,不妨設(shè),令.根據(jù),確定,將轉(zhuǎn)化為.令,用導(dǎo)數(shù)法研究其單調(diào)性求最值.【詳解】(1)的定義域為,.因為單調(diào),所以對恒成立,所以,恒成立,因為,當(dāng)且僅當(dāng)時取等號,所以;(2)由(1)知,是的兩個根.從而,,不妨設(shè),則.因為,所以t為關(guān)于a的減函數(shù),所以..令,則.因為當(dāng)時,在上為減函數(shù).所以當(dāng)時,.從而,所以在上為減函數(shù).所以當(dāng)時,.【點睛】本題主要考查導(dǎo)數(shù)在函數(shù)中的綜合應(yīng)用,還考查了轉(zhuǎn)化化歸的思想和運算求解的能力,屬于難題.18、(1)(2)見解析【解析】

(1)利用絕對值三角不等式求得的最大值.(2)由(1)得.方法一,利用柯西不等式證得不等式成立;方法二,利用“的代換”的方法,結(jié)合基本不等式證得不等式成立.【詳解】(1)由絕對值不等式性質(zhì)得當(dāng)且僅當(dāng)即時等號成立,所以(2)由(1)得.法1:由柯西不等式得當(dāng)且僅當(dāng)時等號成立,即,所以.法2:由得,,當(dāng)且僅當(dāng)時“=”成立.【點睛】本小題主要考查絕對值三角不等式,考查利用柯西不等式、基本不等式證明不等式,屬于中檔題.19、(1)證明見解析;(2).【解析】

(1)將代入函數(shù)解析式可得,構(gòu)造函數(shù),求得并令,由導(dǎo)函數(shù)符號判斷函數(shù)單調(diào)性并求得最大值,由即可證明恒成立,即不等式得證.(2)對函數(shù)求導(dǎo),變形后討論當(dāng)時的函數(shù)單調(diào)情況:當(dāng)時,可知滿足題意;將不等式化簡后構(gòu)造函數(shù),利用導(dǎo)函數(shù)求得極值點與函數(shù)的單調(diào)性,從而求得最小值為,分別依次代入檢驗的符號,即可確定整數(shù)的最大值;當(dāng)時不滿足題意,因為求整數(shù)的最大值,所以時無需再討論.【詳解】(1)證明:當(dāng)時代入可得,令,,則,令解得,當(dāng)時,所以在單調(diào)遞增,當(dāng)時,所以在單調(diào)遞減,所以,則,即成立.(2)函數(shù)則,若時,當(dāng)時,,則在時單調(diào)遞減,所以,即當(dāng)時成立;所以此時需滿足的整數(shù)解即可,將不等式化簡可得,令則令解得,當(dāng)時,即在內(nèi)單調(diào)遞減,當(dāng)時,即在內(nèi)單調(diào)遞增,所以當(dāng)時取得最小值,則,,,所以此時滿足的整數(shù)的最大值為;當(dāng)時,在時,此時,與題意矛盾,所以不成立.因為求整數(shù)的最大值,所以時無需再討論,綜上所述,當(dāng)時,整數(shù)的最大值為.【點睛】本題考查了導(dǎo)數(shù)在證明不等式中的應(yīng)用,導(dǎo)數(shù)與函數(shù)單調(diào)性、極值、最值的關(guān)系和應(yīng)用,構(gòu)造函數(shù)法求最值,并判斷函數(shù)值法符號,綜合性強,屬于難題.20、(1),頻率分布直方圖見解析;(2)分布列見解析,;(3)來自的可能性最大.【解析】

(1)由頻率和為可知,根據(jù)求得,從而計算得到頻數(shù),補全頻率分布表后可畫出頻率分布直方圖;(2)首先確定的所有可能取值,由超幾何分布概率公式可計算求得每個取值對應(yīng)的概率,由此得到分布列;根據(jù)數(shù)學(xué)期望的計算公式可求得期望;(3)根據(jù)中不贊成比例最大可知來自的可能性最大.【詳解】(1)由頻率分布表得:,即.收入在的有名,,,,則頻率分布直方圖如下:(2)收入在中贊成人數(shù)為,不贊成人數(shù)為,可能取值為,則;;,的分布列為:.(3)來自的可能性更大.【點睛】本題考查概率與統(tǒng)計部分知識的綜合應(yīng)用,涉及到頻數(shù)、頻率的計算、頻率分布直方圖的繪制、服從于超幾何分布的隨機變量的分布列與數(shù)學(xué)期望的求解、統(tǒng)計估計等知識;考查學(xué)生的運算和求解能力.21、(1)證明見解析;(2)1【解析】

(1)由菱形的性質(zhì)和線面垂直的性質(zhì),可得平面,再由面面垂直的判定定理,即可得證;(2)設(shè)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論