2024年中考數(shù)學(xué)二輪題型突破練習(xí)題型10 閱讀理解及定義型問題 (專題訓(xùn)練)(教師版)_第1頁
2024年中考數(shù)學(xué)二輪題型突破練習(xí)題型10 閱讀理解及定義型問題 (專題訓(xùn)練)(教師版)_第2頁
2024年中考數(shù)學(xué)二輪題型突破練習(xí)題型10 閱讀理解及定義型問題 (專題訓(xùn)練)(教師版)_第3頁
2024年中考數(shù)學(xué)二輪題型突破練習(xí)題型10 閱讀理解及定義型問題 (專題訓(xùn)練)(教師版)_第4頁
2024年中考數(shù)學(xué)二輪題型突破練習(xí)題型10 閱讀理解及定義型問題 (專題訓(xùn)練)(教師版)_第5頁
已閱讀5頁,還剩53頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

PAGE題型十閱讀理解及定義型問題(專題訓(xùn)練)1.(2023·湖南岳陽·統(tǒng)考中考真題)若一個點的坐標滿足SKIPIF1<0,我們將這樣的點定義為“倍值點”.若關(guān)于SKIPIF1<0的二次函數(shù)SKIPIF1<0(SKIPIF1<0為常數(shù),SKIPIF1<0)總有兩個不同的倍值點,則SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】利用“倍值點”的定義得到方程SKIPIF1<0,則方程的SKIPIF1<0,可得SKIPIF1<0,利用對于任意的實數(shù)SKIPIF1<0總成立,可得不等式的判別式小于0,解不等式可得出SKIPIF1<0的取值范圍.【詳解】解:由“倍值點”的定義可得:SKIPIF1<0,整理得,SKIPIF1<0∵關(guān)于SKIPIF1<0的二次函數(shù)SKIPIF1<0(SKIPIF1<0為常數(shù),SKIPIF1<0)總有兩個不同的倍值點,∴SKIPIF1<0∵對于任意實數(shù)SKIPIF1<0總成立,∴SKIPIF1<0整理得,SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0,∴SKIPIF1<0,或SKIPIF1<0當(dāng)SKIPIF1<0時,解得SKIPIF1<0,當(dāng)SKIPIF1<0時,此不等式組無解,∴SKIPIF1<0,故選:D.【點睛】本題主要考查了二次函數(shù)圖象上點的坐標特征,一元二次方程根的判別式以及二次函數(shù)與不等式的關(guān)系,理解新定義并能熟練運用是解答本題的關(guān)鍵.2.(2021·甘肅武威市·中考真題)對于任意的有理數(shù)SKIPIF1<0,如果滿足SKIPIF1<0,那么我們稱這一對數(shù)SKIPIF1<0為“相隨數(shù)對”,記為SKIPIF1<0.若SKIPIF1<0是“相隨數(shù)對”,則SKIPIF1<0()A.SKIPIF1<0 B.SKIPIF1<0 C.2 D.3【答案】A【分析】先根據(jù)新定義,可得9m+4n=0,將整式SKIPIF1<0去括號合并同類項化簡得SKIPIF1<0,然后整體代入計算即可.【詳解】解:∵SKIPIF1<0是“相隨數(shù)對”,∴SKIPIF1<0,整理得9m+4n=0,SKIPIF1<0.故選擇A.【點睛】本題考查新定義相隨數(shù)對,找出數(shù)對之間關(guān)系,整式加減計算求值,掌握新定義相隨數(shù)對,找出數(shù)對之間關(guān)系,整式加減計算求值是解題關(guān)鍵.3.(四川省雅安市2021年中考數(shù)學(xué)真題)定義:SKIPIF1<0,若函數(shù)SKIPIF1<0,則該函數(shù)的最大值為()A.0 B.2 C.3 D.4【答案】C【分析】根據(jù)題目中所給的運算法則,分兩種情況進行求解即可.【詳解】令SKIPIF1<0,當(dāng)SKIPIF1<0時,即SKIPIF1<0時,SKIPIF1<0,令SKIPIF1<0,則w與x軸的交點坐標為(2,0),(-1,0),∴當(dāng)SKIPIF1<0時,SKIPIF1<0,∴SKIPIF1<0(SKIPIF1<0),∵y隨x的增大而增大,∴當(dāng)x=2時,SKIPIF1<0;當(dāng)SKIPIF1<0時,即SKIPIF1<0時,SKIPIF1<0,令SKIPIF1<0,則w與x軸的交點坐標為(2,0),(-1,0),∴當(dāng)SKIPIF1<0時,SKIPIF1<0或SKIPIF1<0,∴SKIPIF1<0(SKIPIF1<0或SKIPIF1<0),∵SKIPIF1<0的對稱軸為x=1,∴當(dāng)SKIPIF1<0時,y隨x的增大而減小,∵當(dāng)x=2時,SKIPIF1<0=3,∴當(dāng)SKIPIF1<0時,y<3;當(dāng)SKIPIF1<0,y隨x的增大而增大,∴當(dāng)x=-1時,SKIPIF1<0=0;∴當(dāng)SKIPIF1<0時,y<0;綜上,SKIPIF1<0的最大值為3.故選C.【點睛】本題是新定義運算與二次函數(shù)相結(jié)合的題目,解題時要注意分情況討論,不要漏解.4.(內(nèi)蒙古通遼市2021年中考數(shù)學(xué)真題)定義:一次函數(shù)SKIPIF1<0的特征數(shù)為SKIPIF1<0,若一次函數(shù)SKIPIF1<0的圖象向上平移3個單位長度后與反比例函數(shù)SKIPIF1<0的圖象交于A,B兩點,且點A,B關(guān)于原點對稱,則一次函數(shù)SKIPIF1<0的特征數(shù)是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】先求出平移后的直線解析式為SKIPIF1<0,根據(jù)與反比例函數(shù)SKIPIF1<0的圖象交于A,B兩點,且點A,B關(guān)于原點對稱,得到直線SKIPIF1<0經(jīng)過原點,從而求出m,根據(jù)特征數(shù)的定義即可求解.【詳解】解:由題意得一次函數(shù)SKIPIF1<0的圖象向上平移3個單位長度后解析式為SKIPIF1<0,∵直線SKIPIF1<0與反比例函數(shù)SKIPIF1<0的圖象交于A,B兩點,且點A,B關(guān)于原點對稱,∴點A,B,O在同一直線上,∴直線SKIPIF1<0經(jīng)過原點,∴m+3=0,∴m=-3,∴一次函數(shù)SKIPIF1<0的解析式為SKIPIF1<0,∴一次函數(shù)SKIPIF1<0的特征數(shù)是SKIPIF1<0.故選:D【點睛】本題考查了新定義,直線的平移,一次函數(shù)與反比例函數(shù)交點,中心對稱等知識,綜合性較強,根據(jù)點A,B關(guān)于原點對稱得到平移后直線經(jīng)過原點是解題關(guān)鍵.5.(2021·廣西來賓市·中考真題)定義一種運算:SKIPIF1<0,則不等式SKIPIF1<0的解集是()A.SKIPIF1<0或SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0或SKIPIF1<0 D.SKIPIF1<0或SKIPIF1<0【答案】C【分析】根據(jù)新定義運算規(guī)則,分別從SKIPIF1<0和SKIPIF1<0兩種情況列出關(guān)于x的不等式,求解后即可得出結(jié)論.【詳解】解:由題意得,當(dāng)SKIPIF1<0時,即SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0,∴此時原不等式的解集為SKIPIF1<0;當(dāng)SKIPIF1<0時,即SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0,∴此時原不等式的解集為SKIPIF1<0;綜上所述,不等式SKIPIF1<0的解集是SKIPIF1<0或SKIPIF1<0.故選:C.【點睛】本題主要考查解一元一次不等式,解題的關(guān)鍵是根據(jù)新定義運算規(guī)則列出關(guān)于x的不等式.6.(2021·湖北中考真題)定義新運算“※”:對于實數(shù)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,有SKIPIF1<0,其中等式右邊是通常的加法和乘法運算,如:SKIPIF1<0.若關(guān)于SKIPIF1<0的方程SKIPIF1<0有兩個實數(shù)根,則SKIPIF1<0的取值范圍是()A.SKIPIF1<0且SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0且SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】按新定義規(guī)定的運算法則,將其化為關(guān)于x的一元二次方程,從二次項系數(shù)和判別式兩個方面入手,即可解決.【詳解】解:∵[x2+1,x]※[5?2k,k]=0,∴SKIPIF1<0.整理得,SKIPIF1<0.∵方程有兩個實數(shù)根,∴判別式SKIPIF1<0且SKIPIF1<0.由SKIPIF1<0得,SKIPIF1<0,解得,SKIPIF1<0.∴k的取值范圍是SKIPIF1<0且SKIPIF1<0.故選:C【點睛】本題考查了新定義運算、一元二次方程的根的判別等知識點,正確理解新定義的運算法則是解題的基礎(chǔ),熟知一元二次方程的條件、根的不同情況與判別式符號之間的對應(yīng)關(guān)系是解題的關(guān)鍵.此類題目容易忽略之處在于二次項系數(shù)不能為零的條件限制,要引起高度重視.7.(山東省菏澤市2021年中考數(shù)學(xué)真題)定義:SKIPIF1<0為二次函數(shù)SKIPIF1<0(SKIPIF1<0)的特征數(shù),下面給出特征數(shù)為SKIPIF1<0的二次函數(shù)的一些結(jié)論:①當(dāng)SKIPIF1<0時,函數(shù)圖象的對稱軸是SKIPIF1<0軸;②當(dāng)SKIPIF1<0時,函數(shù)圖象過原點;③當(dāng)SKIPIF1<0時,函數(shù)有最小值;④如果SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0隨SKIPIF1<0的增大而減小,其中所有正確結(jié)論的序號是______.【答案】①②③.【分析】利用二次函數(shù)的性質(zhì)根據(jù)特征數(shù)SKIPIF1<0,以及SKIPIF1<0的取值,逐一代入函數(shù)關(guān)系式,然判斷后即可確定正確的答案.【詳解】解:當(dāng)SKIPIF1<0時,把SKIPIF1<0代入SKIPIF1<0,可得特征數(shù)為SKIPIF1<0∴SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴函數(shù)解析式為SKIPIF1<0,函數(shù)圖象的對稱軸是SKIPIF1<0軸,故①正確;當(dāng)SKIPIF1<0時,把SKIPIF1<0代入SKIPIF1<0,可得特征數(shù)為SKIPIF1<0∴SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴函數(shù)解析式為SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,函數(shù)圖象過原點,故②正確;函數(shù)SKIPIF1<0當(dāng)SKIPIF1<0時,函數(shù)SKIPIF1<0圖像開口向上,有最小值,故③正確;當(dāng)SKIPIF1<0時,函數(shù)SKIPIF1<0圖像開口向下,對稱軸為:SKIPIF1<0∴SKIPIF1<0時,SKIPIF1<0可能在函數(shù)對稱軸的左側(cè),也可能在對稱軸的右側(cè),故不能判斷其增減性,故④錯誤;綜上所述,正確的是①②③,故答案是:①②③.【點睛】本題考查了二次函數(shù)的圖像與性質(zhì),二次函數(shù)的對稱軸等知識點,牢記二次函數(shù)的基本性質(zhì)是解題的關(guān)鍵.8.(2023·湖北隨州·統(tǒng)考中考真題)某天老師給同學(xué)們出了一道趣味數(shù)學(xué)題:設(shè)有編號為1-100的100盞燈,分別對應(yīng)著編號為1-100的100個開關(guān),燈分為“亮”和“不亮”兩種狀態(tài),每按一次開關(guān)改變一次相對應(yīng)編號的燈的狀態(tài),所有燈的初始狀態(tài)為“不亮”.現(xiàn)有100個人,第1個人把所有編號是1的整數(shù)倍的開關(guān)按一次,第2個人把所有編號是2的整數(shù)倍的開關(guān)按一次,第3個人把所有編號是3的整數(shù)倍的開關(guān)按一次,……,第100個人把所有編號是100的整數(shù)倍的開關(guān)按一次.問最終狀態(tài)為“亮”的燈共有多少盞?幾位同學(xué)對該問題展開了討論:甲:應(yīng)分析每個開關(guān)被按的次數(shù)找出規(guī)律:乙:1號開關(guān)只被第1個人按了1次,2號開關(guān)被第1個人和第2個人共按了2次,3號開關(guān)被第1個人和第3個人共按了2次,……丙:只有按了奇數(shù)次的開關(guān)所對應(yīng)的燈最終是“亮”的狀態(tài).根據(jù)以上同學(xué)的思維過程,可以得出最終狀態(tài)為“亮”的燈共有___________盞.【答案】10【分析】燈的初始狀態(tài)為“不亮”,按奇數(shù)次,則狀態(tài)為“亮”,按偶數(shù)次,則狀態(tài)為“不亮”,確定1-100中,各個數(shù)因數(shù)的個數(shù),完全平方數(shù)的因數(shù)為奇數(shù)個,從而求解.【詳解】所有燈的初始狀態(tài)為“不亮”,按奇數(shù)次,則狀態(tài)為“亮”,按偶數(shù)次,則狀態(tài)為“不亮”;因數(shù)的個數(shù)為奇數(shù)的自然數(shù)只有完全平方數(shù),1-100中,完全平方數(shù)為1,4,9,16,25,36,49,64,81,100;有10個數(shù),故有10盞燈被按奇數(shù)次,為“亮”的狀態(tài);故答案為:10.【點睛】本題考查因數(shù)分解,完全平方數(shù),理解因數(shù)的意義,完全平方數(shù)的概念是解題的關(guān)鍵.9.(廣西貴港市2021年中考數(shù)學(xué)真題)我們規(guī)定:若SKIPIF1<0,則SKIPIF1<0.例如SKIPIF1<0,則SKIPIF1<0.已知SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的最大值是________.【答案】8【分析】根據(jù)平面向量的新定義運算法則,列出關(guān)于SKIPIF1<0的二次函數(shù),根據(jù)二次函數(shù)最值的求法解答即可.【詳解】解:根據(jù)題意知:SKIPIF1<0.因為SKIPIF1<0,所以當(dāng)SKIPIF1<0時,SKIPIF1<0.即SKIPIF1<0的最大值是8.故答案是:8.【點睛】本題主要考查了平面向量,解題時,利用了配方法求得二次函數(shù)的最值.10.(2023·重慶·統(tǒng)考中考真題)如果一個四位自然數(shù)SKIPIF1<0的各數(shù)位上的數(shù)字互不相等且均不為0,滿足SKIPIF1<0,那么稱這個四位數(shù)為“遞減數(shù)”.例如:四位數(shù)4129,∵SKIPIF1<0,∴4129是“遞減數(shù)”;又如:四位數(shù)5324,∵SKIPIF1<0,∴5324不是“遞減數(shù)”.若一個“遞減數(shù)”為SKIPIF1<0,則這個數(shù)為___________;若一個“遞減數(shù)”的前三個數(shù)字組成的三位數(shù)SKIPIF1<0與后三個數(shù)字組成的三位數(shù)SKIPIF1<0的和能被9整除,則滿足條件的數(shù)的最大值是___________.【答案】SKIPIF1<0;8165【分析】根據(jù)遞減數(shù)的定義進行求解即可.【詳解】解:∵SKIPIF1<0是遞減數(shù),∴SKIPIF1<0,∴SKIPIF1<0,∴這個數(shù)為SKIPIF1<0;故答案為:SKIPIF1<0∵一個“遞減數(shù)”的前三個數(shù)字組成的三位數(shù)SKIPIF1<0與后三個數(shù)字組成的三位數(shù)SKIPIF1<0的和能被9整除,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,能被SKIPIF1<0整除,∴SKIPIF1<0能被9整除,∵各數(shù)位上的數(shù)字互不相等且均不為0,∴SKIPIF1<0,∵最大的遞減數(shù),∴SKIPIF1<0,∴SKIPIF1<0,即:SKIPIF1<0,∴SKIPIF1<0最大取SKIPIF1<0,此時SKIPIF1<0,∴這個最大的遞減數(shù)為8165.故答案為:8165.【點睛】本題考查一元一次方程和二元一次方程的應(yīng)用.理解并掌握遞減數(shù)的定義,是解題的關(guān)鍵.11.(2023·四川樂山·統(tǒng)考中考真題)定義:若x,y滿足SKIPIF1<0且SKIPIF1<0(t為常數(shù)),則稱點SKIPIF1<0為“和諧點”.(1)若SKIPIF1<0是“和諧點”,則SKIPIF1<0__________.(2)若雙曲線SKIPIF1<0存在“和諧點”,則k的取值范圍為__________.【答案】SKIPIF1<0;SKIPIF1<0【分析】(1)根據(jù)“和諧點”的定義得到SKIPIF1<0,整理得到SKIPIF1<0,解得SKIPIF1<0(不合題意,舍去),即可得到答案;(2)設(shè)點SKIPIF1<0為雙曲線SKIPIF1<0上的“和諧點”,根據(jù)“和諧點”的定義整理得到SKIPIF1<0,由SKIPIF1<0得到SKIPIF1<0,則SKIPIF1<0,由SKIPIF1<0進一步得到SKIPIF1<0,且SKIPIF1<0,根據(jù)二次函數(shù)的圖象和性質(zhì)即可得到k的取值范圍.【詳解】解:(1)若SKIPIF1<0是“和諧點”,則SKIPIF1<0,則SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0(不合題意,舍去),∴SKIPIF1<0,故答案為:SKIPIF1<0(2)設(shè)點SKIPIF1<0為雙曲線SKIPIF1<0上的“和諧點”,∴SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0,則SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,且SKIPIF1<0,對拋物線SKIPIF1<0來說,∵SKIPIF1<0,∴開口向下,當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,∵對稱軸為SKIPIF1<0,SKIPIF1<0,∴當(dāng)SKIPIF1<0時,k取最大值為4,∴k的取值范圍為SKIPIF1<0,故答案為:SKIPIF1<0【點睛】此題考查了反比例函數(shù)的性質(zhì)、二次函數(shù)的圖象和性質(zhì)等知識,讀懂題意,熟練掌握反比例函數(shù)和二次函數(shù)的性質(zhì)是解題的關(guān)鍵.12.(2021·湖北中考真題)對于任意實數(shù)a、b,定義一種運算:SKIPIF1<0,若SKIPIF1<0,則x的值為________.【答案】SKIPIF1<0或2【分析】根據(jù)新定義的運算得到SKIPIF1<0,整理并求解一元二次方程即可.【詳解】解:根據(jù)新定義內(nèi)容可得:SKIPIF1<0,整理可得SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,故答案為:SKIPIF1<0或2.【點睛】本題考查新定義運算、解一元二次方程,根據(jù)題意理解新定義運算是解題的關(guān)鍵.13.(2023·重慶·統(tǒng)考中考真題)對于一個四位自然數(shù)M,若它的千位數(shù)字比個位數(shù)字多6,百位數(shù)字比十位數(shù)字多2,則稱M為“天真數(shù)”.如:四位數(shù)7311,∵SKIPIF1<0,SKIPIF1<0,∴7311是“天真數(shù)”;四位數(shù)8421,∵SKIPIF1<0,∴8421不是“天真數(shù)”,則最小的“天真數(shù)”為________;一個“天真數(shù)”M的千位數(shù)字為a,百位數(shù)字為b,十位數(shù)字為c,個位數(shù)字為d,記SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0能被10整除,則滿足條件的M的最大值為________.【答案】6200;9313【分析】根據(jù)題中“天真數(shù)”可求得最小的“天真數(shù)”;先根據(jù)題中新定義得到SKIPIF1<0,進而SKIPIF1<0,若M最大,只需千位數(shù)字a取最大,即SKIPIF1<0,再根據(jù)SKIPIF1<0能被10整除求得SKIPIF1<0,進而可求解.【詳解】解:根據(jù)題意,只需千位數(shù)字和百位數(shù)字盡可能的小,所以最小的“天真數(shù)”為6200;根據(jù)題意,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,若M最大,只需千位數(shù)字a取最大,即SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0能被10整除,∴SKIPIF1<0,∴滿足條件的M的最大值為9313,故答案為:6200,9313.【點睛】本題是一道新定義題,涉及有理數(shù)的運算、整式的加減、數(shù)的整除等知識,理解新定義是解答的關(guān)鍵.14.規(guī)定:如果一個四邊形有一組對邊平行,一組鄰邊相等,那么四邊形為廣義菱形.根據(jù)規(guī)定判斷下面四個結(jié)論:①正方形和菱形都是廣義菱形;②平行四邊形是廣義菱形;③對角線互相垂直,且兩組鄰邊分別相等的四邊形是廣義菱形;④若M、N的坐標分別為(0,1),(0,-1),P是二次函數(shù)y=x2的圖象上在第一象限內(nèi)的任意一點,PQ垂直直線y=-1于點Q,則四邊形PMNQ是廣義菱形.其中正確的是.(填序號)【答案】①④【解析】正方形和菱形滿足一組對邊平行,一組鄰邊相等,故都是廣義菱形,故①正確;平行四邊形雖然滿足一組對邊平行,但是鄰邊不一定相等,因此不是廣義菱形,故②錯誤;對角線互相垂直,且兩組鄰邊分別相等的四邊形的對邊不一定平行,鄰邊也不一定相等,因此不是廣義菱形,故③錯誤;④中的四邊形PMNQ滿足MN∥PQ,設(shè)P(m,0)(m>0),∵PM==+1,PQ=-(-1)=+1,∴PM=PQ,故四邊形PMNQ是廣義菱形.綜上所述正確的是①④.15.定義:等腰三角形的頂角與其一個底角的度數(shù)的比值k稱為這個等腰三角形的“特征值”.若等腰△ABC中,∠A=80°,則它的特征值k=.【答案】SKIPIF1<0或SKIPIF1<0.【解析】當(dāng)∠A是頂角時,底角是50°,則k=SKIPIF1<0;當(dāng)∠A是底角時,則底角是20°,k=SKIPIF1<0,故答案為:SKIPIF1<0或SKIPIF1<0.16.(2023·內(nèi)蒙古赤峰·統(tǒng)考中考真題)定義:在平面直角坐標系SKIPIF1<0中,當(dāng)點N在圖形M的內(nèi)部,或在圖形M上,且點N的橫坐標和縱坐標相等時,則稱點N為圖形M的“夢之點”.

(1)如圖①,矩形SKIPIF1<0的頂點坐標分別是SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,在點SKIPIF1<0,SKIPIF1<0,SKIPIF1<0中,是矩形SKIPIF1<0“夢之點”的是___________;(2)點SKIPIF1<0是反比例函數(shù)SKIPIF1<0圖象上的一個“夢之點”,則該函數(shù)圖象上的另一個“夢之點”H的坐標是___________,直線SKIPIF1<0的解析式是SKIPIF1<0___________.當(dāng)SKIPIF1<0時,x的取值范圍是___________.(3)如圖②,已知點A,B是拋物線SKIPIF1<0上的“夢之點”,點C是拋物線的頂點,連接SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,判斷SKIPIF1<0的形狀,并說明理由.【答案】(1)SKIPIF1<0,SKIPIF1<0(2)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0或SKIPIF1<0(3)SKIPIF1<0是直角三角形,理由見解析【分析】(1)根據(jù)“夢之點”的定義判斷這幾個點是否在矩形內(nèi)部或邊上即可;(2)把SKIPIF1<0代入SKIPIF1<0求出解析式,再求與SKIPIF1<0的交點即為SKIPIF1<0,最后根據(jù)函數(shù)圖象判斷當(dāng)SKIPIF1<0時,x的取值范圍;(3)根據(jù)“夢之點”的定義求出點A,B的坐標,再求出頂點C的坐標,最后求出SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,即可判斷SKIPIF1<0的形狀.【詳解】(1)∵矩形SKIPIF1<0的頂點坐標分別是SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴矩形SKIPIF1<0“夢之點”SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,∴點SKIPIF1<0,SKIPIF1<0是矩形SKIPIF1<0“夢之點”,點SKIPIF1<0不是矩形SKIPIF1<0“夢之點”,故答案為:SKIPIF1<0,SKIPIF1<0;(2)∵點SKIPIF1<0是反比例函數(shù)SKIPIF1<0圖象上的一個“夢之點”,∴把SKIPIF1<0代入SKIPIF1<0得SKIPIF1<0,∴SKIPIF1<0,∵“夢之點”的橫坐標和縱坐標相等,∴“夢之點”都在直線SKIPIF1<0上,聯(lián)立SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,∴SKIPIF1<0,∴直線SKIPIF1<0的解析式是SKIPIF1<0,函數(shù)圖象如圖:

由圖可得,當(dāng)SKIPIF1<0時,x的取值范圍是SKIPIF1<0或SKIPIF1<0;故答案為:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0或SKIPIF1<0;(3)SKIPIF1<0是直角三角形,理由如下:∵點A,B是拋物線SKIPIF1<0上的“夢之點”,∴聯(lián)立SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0∴頂點SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0是直角三角形.【點睛】本題是函數(shù)的綜合題,考查了一次函數(shù)、反比例函數(shù)、二次函數(shù),理解坐標與圖形性質(zhì),記住兩點間的距離公式,正確理解新定義是解決此題的關(guān)鍵.17.閱讀下面的材料:如果函數(shù)y=f(x)滿足:對于自變量x的取值范圍內(nèi)的任意x1,x2,(1)若x1<x2,都有f(x1)<f(x2),則稱f(x)是增函數(shù);(2)若x1<x2,都有f(x1)>f(x2),則稱f(x)是減函數(shù).例題:證明函數(shù)f(x)=SKIPIF1<0(x>0)是減函數(shù).證明:設(shè)0<x1<x2,f(x1)–f(x2)=SKIPIF1<0.∵0<x1<x2,∴x2–x1>0,x1x2>0.∴SKIPIF1<0>0.即f(x1)–f(x2)>0.∴f(x1)>f(x2),∴函數(shù)f(x)═SKIPIF1<0(x>0)是減函數(shù).根據(jù)以上材料,解答下面的問題:已知函數(shù)f(x)=SKIPIF1<0+x(x<0),f(–1)=SKIPIF1<0+(–1)=0,f(–2)=SKIPIF1<0+(–2)=–SKIPIF1<0.(1)計算:f(–3)=__________,f(–4)=__________;(2)猜想:函數(shù)f(x)=SKIPIF1<0+x(x<0)是__________函數(shù)(填“增”或“減”);(3)請仿照例題證明你的猜想.【答案】(1)–SKIPIF1<0,–SKIPIF1<0;(2)增;(3)見解析.【解析】(1)∵f(x)=SKIPIF1<0+x(x<0),∴f(–3)=SKIPIF1<0–3=–SKIPIF1<0,f(–4)=SKIPIF1<0–4=–SKIPIF1<0,故答案為:–SKIPIF1<0,–SKIPIF1<0;(2)∵–4<–3,f(–4)>f(–3),∴函數(shù)f(x)=SKIPIF1<0+x(x<0)是增函數(shù),故答案為:增;(3)設(shè)x1<x2<0,∵f(x1)–f(x2)=SKIPIF1<0=(x1–x2)(1–SKIPIF1<0)∵x1<x2<0,∴x1–x2<0,x1+x2<0,∴f(x1)–f(x2)<0,∴f(x1)<f(x2),∴函數(shù)f(x)=SKIPIF1<0+x(x<0)是增函數(shù).【名師點睛】本題考查反比例函數(shù)圖象上的坐標特征、反比例函數(shù)的性質(zhì),解答本題的關(guān)鍵是明確題意,找出所求問題需要的條件,利用反比例函數(shù)的性質(zhì)解答.18.(2023·湖南張家界·統(tǒng)考中考真題)閱讀下面材料:將邊長分別為a,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的正方形面積分別記為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.則SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0例如:當(dāng)SKIPIF1<0,SKIPIF1<0時,SKIPIF1<0根據(jù)以上材料解答下列問題:(1)當(dāng)SKIPIF1<0,SKIPIF1<0時,SKIPIF1<0______,SKIPIF1<0______;(2)當(dāng)SKIPIF1<0,SKIPIF1<0時,把邊長為SKIPIF1<0的正方形面積記作SKIPIF1<0,其中n是正整數(shù),從(1)中的計算結(jié)果,你能猜出SKIPIF1<0等于多少嗎?并證明你的猜想;(3)當(dāng)SKIPIF1<0,SKIPIF1<0時,令SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,…,SKIPIF1<0,且SKIPIF1<0,求T的值.【答案】(1)SKIPIF1<0,SKIPIF1<0(2)猜想結(jié)論:SKIPIF1<0,證明見解析(3)SKIPIF1<0【分析】(1)根據(jù)題意,直接代入然后利用完全平方公式展開合并求解即可;(2)根據(jù)題意得出猜想,然后由完全平方公式展開證明即可;(3)結(jié)合題意利用(2)中結(jié)論求解即可.【詳解】(1)解:SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0當(dāng)SKIPIF1<0,SKIPIF1<0時,原式SKIPIF1<0;SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0當(dāng)SKIPIF1<0,SKIPIF1<0時,原式SKIPIF1<0;(2)猜想結(jié)論:SKIPIF1<0證明:SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0;(3)SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0.【點睛】題目主要考查利用完全平方公式進行計算,理解題意,得出相應(yīng)規(guī)律是解題關(guān)鍵.19.(2022·四川涼山)閱讀材料:材料1:若關(guān)于x的一元二次方程ax2+bx+c=0(a≠0)的兩個根為x1,x2,則x1+x2=SKIPIF1<0,x1x2=SKIPIF1<0材料2:已知一元二次方程x2-x-1=0的兩個實數(shù)根分別為m,n,求m2n+mn2的值.解:∵一元二次方程x2-x-1=0的兩個實數(shù)根分別為m,n,∴m+n=1,mn=-1,則m2n+mn2=mn(m+n)=-1×1=-1根據(jù)上述材料,結(jié)合你所學(xué)的知識,完成下列問題:(1)材料理解:一元二次方程2x2-3x-1=0的兩個根為x1,x2,則x1+x2=;x1x2=.(2)類比應(yīng)用:已知一元二次方程2x2-3x-1=0的兩根分別為m、n,求SKIPIF1<0的值.(3)思維拓展:已知實數(shù)s、t滿足2s2-3s-1=0,2t2-3t-1=0,且s≠t,求SKIPIF1<0的值.【答案】(1)SKIPIF1<0;SKIPIF1<0(2)SKIPIF1<0(3)SKIPIF1<0或SKIPIF1<0【分析】(1)根據(jù)一元二次方程根與系數(shù)的關(guān)系直接進行計算即可;(2)根據(jù)根與系數(shù)的關(guān)系先求出SKIPIF1<0,SKIPIF1<0,然后將SKIPIF1<0進行變形求解即可;(3)根據(jù)根與系數(shù)的關(guān)系先求出SKIPIF1<0,SKIPIF1<0,然后求出s-t的值,然后將SKIPIF1<0進行變形求解即可.【解析】(1)解:∵一元二次方程2x2-3x-1=0的兩個根為x1,x2,∴SKIPIF1<0,SKIPIF1<0.故答案為:SKIPIF1<0;SKIPIF1<0.(2)∵一元二次方程2x2-3x-1=0的兩根分別為m、n,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0(3)∵實數(shù)s、t滿足2s2-3s-1=0,2t2-3t-1=0,∴s、t可以看作方程2x2-3x-1=0的兩個根,∴SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0∴SKIPIF1<0或SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,綜上分析可知,SKIPIF1<0的值為SKIPIF1<0或SKIPIF1<0.【點睛】本題主要考查了一元二次方程根與系數(shù)的關(guān)系,完全平方公式的變形計算,根據(jù)根與系數(shù)的關(guān)系求出SKIPIF1<0或SKIPIF1<0,是解答本題的關(guān)鍵.20.若一個兩位數(shù)十位、個位上的數(shù)字分別為m,n,我們可將這個兩位數(shù)記為SKIPIF1<0,易知SKIPIF1<0=10m+n;同理,一個三位數(shù)、四位數(shù)等均可以用此記法,如SKIPIF1<0=100a+10b+c.【基礎(chǔ)訓(xùn)練】(1)解方程填空:①若SKIPIF1<0+SKIPIF1<0=45,則x=__________;②若SKIPIF1<0–SKIPIF1<0=26,則y=__________;③若SKIPIF1<0+SKIPIF1<0=SKIPIF1<0,則t=__________;【能力提升】(2)交換任意一個兩位數(shù)SKIPIF1<0的個位數(shù)字與十位數(shù)字,可得到一個新數(shù)SKIPIF1<0,則SKIPIF1<0+SKIPIF1<0一定能被__________整除,SKIPIF1<0–SKIPIF1<0一定能被__________整除,SKIPIF1<0?SKIPIF1<0–mn一定能被__________整除;(請從大于5的整數(shù)中選擇合適的數(shù)填空)【探索發(fā)現(xiàn)】(3)北京時間2019年4月10日21時,人類拍攝的首張黑洞照片問世,黑洞是一種引力極大的天體,連光都逃脫不了它的束縛.?dāng)?shù)學(xué)中也存在有趣的黑洞現(xiàn)象:任選一個三位數(shù),要求個、十、百位的數(shù)字各不相同,把這個三位數(shù)的三個數(shù)字按大小重新排列,得出一個最大的數(shù)和一個最小的數(shù),用得出的最大的數(shù)減去最小的數(shù)得到一個新數(shù)(例如若選的數(shù)為325,則用532–235=297),再將這個新數(shù)按上述方式重新排列,再相減,像這樣運算若干次后一定會得到同一個重復(fù)出現(xiàn)的數(shù),這個數(shù)稱為“卡普雷卡爾黑洞數(shù)”.①該“卡普雷卡爾黑洞數(shù)”為__________;②設(shè)任選的三位數(shù)為SKIPIF1<0(不妨設(shè)a>b>c),試說明其均可產(chǎn)生該黑洞數(shù).【答案】(1)①2.②4.③7.(2)11;9;10.【解析】(1)①∵SKIPIF1<0=10m+n,∴若SKIPIF1<0+SKIPIF1<0=45,則10×2+x+10x+3=45,∴x=2,故答案為:2.②若SKIPIF1<0–SKIPIF1<0=26,則10×7+y–(10y+8)=26,解得y=4,故答案為:4.③由SKIPIF1<0=100a+10b+c,及四位數(shù)的類似公式得若SKIPIF1<0+SKIPIF1<0=SKIPIF1<0,則100t+10×9+3+100×5+10t+8=1000×1+100×3+10t+1,∴100t=700,∴t=7,故答案為:7.(2)∵SKIPIF1<0+SKIPIF1<0=10m+n+10n+m=11m+11n=11(m+n),∴則SKIPIF1<0+SKIPIF1<0一定能被11整除,∵SKIPIF1<0–SKIPIF1<0=10m+n–(10n+m)=9m–9n=9(m–n),∴SKIPIF1<0–SKIPIF1<0一定能被9整除.∵SKIPIF1<0?SKIPIF1<0–mn=(10m+n)(10n+m)–mn=100mn+10m2+10n2+mn–mn=10(10mn+m2+n2)∴SKIPIF1<0?SKIPIF1<0–mn一定能被10整除.故答案為:11;9;10.(3)①若選的數(shù)為325,則用532–235=297,以下按照上述規(guī)則繼續(xù)計算,972–279=693,963–369=594,954–459=495,954–459=495,…故答案為:495.②當(dāng)任選的三位數(shù)為SKIPIF1<0時,第一次運算后得:100a+10b+c–(100c+10b+a)=99(a–c),結(jié)果為99的倍數(shù),由于a>b>c,故a≥b+1≥c+2,∴a–c≥2,又9≥a>c≥0,∴a–c≤9,∴a–c=2,3,4,5,6,7,8,9,∴第一次運算后可能得到:198,297,396,495,594,693,792,891,再讓這些數(shù)字經(jīng)過運算,分別可以得到:981–189=792,972–279=693,963–369=594,954–459–495,954–459=495…,故都可以得到該黑洞數(shù)495.【名師點睛】本題是較為復(fù)雜的新定義試題,題目設(shè)置的問題較多,但解答方法大同小異,總體中等難度略大.21.(2023·山西·統(tǒng)考中考真題)閱讀與思考:下面是一位同學(xué)的數(shù)學(xué)學(xué)習(xí)筆記,請仔細閱讀并完成相應(yīng)任務(wù).瓦里尼翁平行四邊形我們知道,如圖1,在四邊形SKIPIF1<0中,點SKIPIF1<0分別是邊SKIPIF1<0,SKIPIF1<0的中點,順次連接SKIPIF1<0,得到的四邊形SKIPIF1<0是平行四邊形.

我查閱了許多資料,得知這個平行四邊形SKIPIF1<0被稱為瓦里尼翁平行四邊形.瓦里尼翁SKIPIF1<0是法國數(shù)學(xué)家、力學(xué)家.瓦里尼翁平行四邊形與原四邊形關(guān)系密切.

①當(dāng)原四邊形的對角線滿足一定關(guān)系時,瓦里尼翁平行四邊形可能是菱形、矩形或正方形.②瓦里尼翁平行四邊形的周長與原四邊形對角線的長度也有一定關(guān)系.③瓦里尼翁平行四邊形的面積等于原四邊形面積的一半.此結(jié)論可借助圖1證明如下:證明:如圖2,連接SKIPIF1<0,分別交SKIPIF1<0于點SKIPIF1<0,過點SKIPIF1<0作SKIPIF1<0于點SKIPIF1<0,交SKIPIF1<0于點SKIPIF1<0.∵SKIPIF1<0分別為SKIPIF1<0的中點,∴SKIPIF1<0.(依據(jù)1)

∴SKIPIF1<0.∵SKIPIF1<0,∴SKIPIF1<0.∵四邊形SKIPIF1<0是瓦里尼翁平行四邊形,∴SKIPIF1<0,即SKIPIF1<0.∵SKIPIF1<0,即SKIPIF1<0,∴四邊形SKIPIF1<0是平行四邊形.(依據(jù)2)∴SKIPIF1<0.∵SKIPIF1<0,∴SKIPIF1<0.同理,…任務(wù):(1)填空:材料中的依據(jù)1是指:_____________.依據(jù)2是指:_____________.(2)請用刻度尺、三角板等工具,畫一個四邊形SKIPIF1<0及它的瓦里尼翁平行四邊形SKIPIF1<0,使得四邊形SKIPIF1<0為矩形;(要求同時畫出四邊形SKIPIF1<0的對角線)(3)在圖1中,分別連接SKIPIF1<0得到圖3,請猜想瓦里尼翁平行四邊形SKIPIF1<0的周長與對角線SKIPIF1<0長度的關(guān)系,并證明你的結(jié)論.

【答案】(1)三角形中位線定理(或三角形的中位線平行于第三邊,且等于第三邊的一半);平行四邊形的定義(或兩組對邊分別平行的四邊形叫做平行四邊形)(2)答案不唯一,見解析(3)平行四邊形SKIPIF1<0的周長等于對角線SKIPIF1<0與SKIPIF1<0長度的和,見解析【分析】(1)根據(jù)三角形中位線定理和平行四邊形的定義解答即可;(2)作對角線互相垂直的四邊形,再順次連接這個四邊形各邊中點即可;(3)根據(jù)三角形中位線定理得瓦里尼翁平行四邊形一組對邊和等于四邊形的一條對角線,即可得妯結(jié)論.【詳解】(1)解:三角形中位線定理(或三角形的中位線平行于第三邊,且等于第三邊的一半)平行四邊形的定義(或兩組對邊分別平行的四邊形叫做平行四邊形)(2)解:答案不唯一,只要是對角線互相垂直的四邊形,它的瓦里尼翁平行四邊形即為矩形均可.例如:如圖即為所求

(3)瓦里尼翁平行四邊形SKIPIF1<0的周長等于四邊形SKIPIF1<0的兩條對角線SKIPIF1<0與SKIPIF1<0長度的和,證明如下:∵點SKIPIF1<0分別是邊SKIPIF1<0的中點,∴SKIPIF1<0.∴SKIPIF1<0.同理SKIPIF1<0.∴四邊形SKIPIF1<0的周長SKIPIF1<0.即瓦里尼翁平行四邊形SKIPIF1<0的周長等于對角線SKIPIF1<0與SKIPIF1<0長度的和.【點睛】本題考查平行四邊形的判定,矩形的判定,三角形中位線.熟練掌握三角形中位線定理是解題的關(guān)鍵.22.在平面直角坐標系SKIPIF1<0中,SKIPIF1<0的半徑為1,對于點SKIPIF1<0和線段SKIPIF1<0,給出如下定義:若將線段SKIPIF1<0繞點SKIPIF1<0旋轉(zhuǎn)可以得到SKIPIF1<0的弦SKIPIF1<0(SKIPIF1<0分別是SKIPIF1<0的對應(yīng)點),則稱線段SKIPIF1<0是SKIPIF1<0的以點SKIPIF1<0為中心的“關(guān)聯(lián)線段”.(1)如圖,點SKIPIF1<0的橫?縱坐標都是整數(shù).在線段SKIPIF1<0中,SKIPIF1<0的以點SKIPIF1<0為中心的“關(guān)聯(lián)線段”是______________;(2)SKIPIF1<0是邊長為1的等邊三角形,點SKIPIF1<0,其中SKIPIF1<0.若SKIPIF1<0是SKIPIF1<0的以點SKIPIF1<0為中心的“關(guān)聯(lián)線段”,求SKIPIF1<0的值;(3)在SKIPIF1<0中,SKIPIF1<0.若SKIPIF1<0是SKIPIF1<0的以點SKIPIF1<0為中心的“關(guān)聯(lián)線段”,直接寫出SKIPIF1<0的最小值和最大值,以及相應(yīng)的SKIPIF1<0長.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0;(3)當(dāng)SKIPIF1<0時,此時SKIPIF1<0;當(dāng)SKIPIF1<0時,此時SKIPIF1<0.【分析】(1)以點A為圓心,分別以SKIPIF1<0為半徑畫圓,進而觀察是否與SKIPIF1<0有交點即可;(2)由旋轉(zhuǎn)的性質(zhì)可得SKIPIF1<0是等邊三角形,且SKIPIF1<0是SKIPIF1<0的弦,進而畫出圖象,則根據(jù)等邊三角形的性質(zhì)可進行求解;(3)由SKIPIF1<0是SKIPIF1<0的以點SKIPIF1<0為中心的“關(guān)聯(lián)線段”,則可知SKIPIF1<0都在SKIPIF1<0上,且SKIPIF1<0,然后由題意可根據(jù)圖象來進行求解即可.【詳解】解:(1)由題意得:通過觀察圖象可得:線段SKIPIF1<0能繞點A旋轉(zhuǎn)90°得到SKIPIF1<0的“關(guān)聯(lián)線段”,SKIPIF1<0都不能繞點A進行旋轉(zhuǎn)得到;故答案為SKIPIF1<0;(2)由題意可得:當(dāng)SKIPIF1<0是SKIPIF1<0的以點SKIPIF1<0為中心的“關(guān)聯(lián)線段”時,則有SKIPIF1<0是等邊三角形,且邊長也為1,當(dāng)點A在y軸的正半軸上時,如圖所示:設(shè)SKIPIF1<0與y軸的交點為D,連接SKIPIF1<0,易得SKIPIF1<0軸,∴SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0;當(dāng)點A在y軸的正半軸上時,如圖所示:同理可得此時的SKIPIF1<0,∴SKIPIF1<0;(3)由SKIPIF1<0是SKIPIF1<0的以點SKIPIF1<0為中心的“關(guān)聯(lián)線段”,則可知SKIPIF1<0都在SKIPIF1<0上,且SKIPIF1<0,則有當(dāng)以SKIPIF1<0為圓心,1為半徑作圓,然后以點A為圓心,2為半徑作圓,即可得到點A的運動軌跡,如圖所示:由運動軌跡可得當(dāng)點A也在SKIPIF1<0上時為最小,最小值為1,此時SKIPIF1<0為SKIPIF1<0的直徑,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0;由以上情況可知當(dāng)點SKIPIF1<0三點共線時,OA的值為最大,最大值為2,如圖所示:連接SKIPIF1<0,過點SKIPIF1<0作SKIPIF1<0于點P,∴SKIPIF1<0,設(shè)SKIPIF1<0,則有SKIPIF1<0,∴由勾股定理可得:SKIPIF1<0,即SKIPIF1<0,解得:SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,∴SKIPIF1<0;綜上所述:當(dāng)SKIPIF1<0時,此時SKIPIF1<0;當(dāng)SKIPIF1<0時,此時SKIPIF1<0.【點睛】本題主要考查旋轉(zhuǎn)的綜合、圓的基本性質(zhì)、三角函數(shù)及等邊三角形的性質(zhì),熟練掌握旋轉(zhuǎn)的性質(zhì)、圓的基本性質(zhì)、三角函數(shù)及等邊三角形的性質(zhì)是解題的關(guān)鍵.23.定義:若一個函數(shù)圖象上存在橫、縱坐標相等的點,則稱該點為這個函數(shù)圖象的“等值點”.例如,點SKIPIF1<0是函數(shù)SKIPIF1<0的圖象的“等值點”.(1)分別判斷函數(shù)SKIPIF1<0的圖象上是否存在“等值點”?如果存在,求出“等值點”的坐標;如果不存在,說明理由;(2)設(shè)函數(shù)SKIPIF1<0的圖象的“等值點”分別為點A,B,過點B作

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論