版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
山東省濰坊市濰城區(qū)達標名校2024屆中考數(shù)學最后沖刺濃縮精華卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.已知平面內不同的兩點A(a+2,4)和B(3,2a+2)到x軸的距離相等,則a的值為(
)A.﹣3 B.﹣5 C.1或﹣3 D.1或﹣52.我省2013年的快遞業(yè)務量為1.2億件,受益于電子商務發(fā)展和法治環(huán)境改善等多重因素,快遞業(yè)務迅猛發(fā)展,2012年增速位居全國第一.若2015年的快遞業(yè)務量達到2.5億件,設2012年與2013年這兩年的平均增長率為x,則下列方程正確的是()A.1.2(1+x)=2.5B.1.2(1+2x)=2.5C.1.2(1+x)2=2.5D.1.2(1+x)+1.2(1+x)2=2.53.下列立體圖形中,主視圖是三角形的是()A. B. C. D.4.學校為創(chuàng)建“書香校園”購買了一批圖書.已知購買科普類圖書花費10000元,購買文學類圖書花費9000元,其中科普類圖書平均每本的價格比文學類圖書平均每本的價格貴5元,且購買科普書的數(shù)量比購買文學書的數(shù)量少100本.求科普類圖書平均每本的價格是多少元?若設科普類圖書平均每本的價格是x元,則可列方程為()A.﹣=100 B.﹣=100C.﹣=100 D.﹣=1005.關于x的方程x2+(k2﹣4)x+k+1=0的兩個根互為相反數(shù),則k值是()A.﹣1 B.±2 C.2 D.﹣26.如果一個正多邊形內角和等于1080°,那么這個正多邊形的每一個外角等于()A. B. C. D.7.在2016年泉州市初中體育中考中,隨意抽取某校5位同學一分鐘跳繩的次數(shù)分別為:158,160,154,158,170,則由這組數(shù)據(jù)得到的結論錯誤的是()A.平均數(shù)為160 B.中位數(shù)為158 C.眾數(shù)為158 D.方差為20.38.如果一組數(shù)據(jù)1、2、x、5、6的眾數(shù)是6,則這組數(shù)據(jù)的中位數(shù)是()A.1 B.2 C.5 D.69.某中學為了創(chuàng)建“最美校園圖書屋”,新購買了一批圖書,其中科普類圖書平均每本書的價格是文學類圖書平均每本書價格的1.2倍.已知學校用12000元購買文學類圖書的本數(shù)比用這些錢購買科普類圖書的本數(shù)多100本,那么學校購買文學類圖書平均每本書的價格是多少元?設學校購買文學類圖書平均每本書的價格是x元,則下面所列方程中正確的是()A. B.C. D.10.下列方程中,是一元二次方程的是()A.2x﹣y=3 B.x2+=2 C.x2+1=x2﹣1 D.x(x﹣1)=011.下列命題是真命題的個數(shù)有()①菱形的對角線互相垂直;②平分弦的直徑垂直于弦;③若點(5,﹣5)是反比例函數(shù)y=圖象上的一點,則k=﹣25;④方程2x﹣1=3x﹣2的解,可看作直線y=2x﹣1與直線y=3x﹣2交點的橫坐標.A.1個 B.2個 C.3個 D.4個12.如圖直線y=mx與雙曲線y=交于點A、B,過A作AM⊥x軸于M點,連接BM,若S△AMB=2,則k的值是()A.1 B.2 C.3 D.4二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,在矩形ABCD中,AB=4,AD=3,矩形內部有一動點P滿足S△PAB=S矩形ABCD,則點P到A、B兩點的距離之和PA+PB的最小值為______.14.某地區(qū)的居民用電,按照高峰時段和空閑時段規(guī)定了不同的單價.某戶5月份高峰時段用電量是空閑時段用電量2倍,6月份高峰時段用電量比5月份高峰時段用電量少50%,結果6月份的用電量和5月份的用電量相等,但6月份的電費卻比5月份的電費少25%,求該地區(qū)空閑時段民用電的單價比高峰時段的用電單價低的百分率是_____.15.如圖,AB是圓O的直徑,AC是圓O的弦,AB=2,∠BAC=30°.在圖中畫出弦AD,使AD=1,則∠CAD的度數(shù)為_____°.16.如圖,在平面直角坐標系中,⊙P的圓心在x軸上,且經過點A(m,﹣3)和點B(﹣1,n),點C是第一象限圓上的任意一點,且∠ACB=45°,則⊙P的圓心的坐標是_____.17.計算:2a×(﹣2b)=_____.18.如圖所示,在△ABC中,∠C=90°,∠CAB=50°.按以下步驟作圖:①以點A為圓心,小于AC的長為半徑畫弧,分別交AB,AC于點E,F;②分別以點E,F為圓心,大于EF的長為半徑畫弧,兩弧相交于點G;③作射線AG交BC邊于點D.則∠ADC的度數(shù)為.
三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)問題探究(1)如圖①,點E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,則線段BE、EF、FD之間的數(shù)量關系為;(2)如圖②,在△ADC中,AD=2,CD=4,∠ADC是一個不固定的角,以AC為邊向△ADC的另一側作等邊△ABC,連接BD,則BD的長是否存在最大值?若存在,請求出其最大值;若不存在,請說明理由;問題解決(3)如圖③,在四邊形ABCD中,AB=AD,∠BAD=60°,BC=4,若BD⊥CD,垂足為點D,則對角線AC的長是否存在最大值?若存在,請求出其最大值;若不存在,請說明理由.20.(6分)2015年1月,市教育局在全市中小學中選取了63所學校從學生的思想品德、學業(yè)水平、學業(yè)負擔、身心發(fā)展和興趣特長五個維度進行了綜合評價.評價小組在選取的某中學七年級全體學生中隨機抽取了若干名學生進行問卷調查,了解他們每天在課外用于學習的時間,并繪制成如下不完整的統(tǒng)計圖.根據(jù)上述信息,解答下列問題:(1)本次抽取的學生人數(shù)是______;扇形統(tǒng)計圖中的圓心角α等于______;補全統(tǒng)計直方圖;(2)被抽取的學生還要進行一次50米跑測試,每5人一組進行.在隨機分組時,小紅、小花兩名女生被分到同一個小組,請用列表法或畫樹狀圖求出她倆在抽道次時抽在相鄰兩道的概率.21.(6分)如圖,△ABC是等邊三角形,AO⊥BC,垂足為點O,⊙O與AC相切于點D,BE⊥AB交AC的延長線于點E,與⊙O相交于G、F兩點.(1)求證:AB與⊙O相切;(2)若等邊三角形ABC的邊長是4,求線段BF的長?22.(8分)已知關于x的方程.(1)當該方程的一個根為1時,求a的值及該方程的另一根;(2)求證:不論a取何實數(shù),該方程都有兩個不相等的實數(shù)根.23.(8分)在Rt△ABC中,∠ACB=90°,BE平分∠ABC,D是邊AB上一點,以BD為直徑的⊙O經過點E,且交BC于點F.(1)求證:AC是⊙O的切線;(2)若BF=6,⊙O的半徑為5,求CE的長.24.(10分)程大位是珠算發(fā)明家,他的名著《直指算法統(tǒng)宗》詳述了傳統(tǒng)的珠算規(guī)則,確立了算盤用書中有如下問題:一百饅頭一百僧,大僧三個更無爭,小僧三人分一個,大小和尚得幾?。馑际牵河?00個和尚分100個饅頭,如果大和尚1人分3個,小和尚3人分1個,正好分完,大、小和尚各有多少人?25.(10分)“校園安全”受到全社會的廣泛關注,某中學對部分學生就校園安全知識的了解程度,采用隨機抽樣調查的方式,并根據(jù)收集到的信息進行統(tǒng)計,繪制了下面兩幅尚不完整的統(tǒng)計圖,請根據(jù)統(tǒng)計圖中所提供的信息解答下列問題:(1)接受問卷調查的學生共有人,扇形統(tǒng)計圖中“基本了解”部分所對應扇形的圓心角為度;(2)請補全條形統(tǒng)計圖;(3)若該中學共有學生900人,請根據(jù)上述調查結果,估計該中學學生中對校園安全知識達到“了解”和“基本了解”程度的總人數(shù).26.(12分)如圖,⊙O是△ABC的外接圓,AE平分∠BAC交⊙O于點E,交BC于點D,過點E做直線l∥BC.(1)判斷直線l與⊙O的位置關系,并說明理由;(2)若∠ABC的平分線BF交AD于點F,求證:BE=EF;(3)在(2)的條件下,若DE=4,DF=3,求AF的長.27.(12分)某市A,B兩個蔬菜基地得知四川C,D兩個災民安置點分別急需蔬菜240t和260t的消息后,決定調運蔬菜支援災區(qū),已知A蔬菜基地有蔬菜200t,B蔬菜基地有蔬菜300t,現(xiàn)將這些蔬菜全部調運C,D兩個災區(qū)安置點.從A地運往C,D兩處的費用分別為每噸20元和25元,從B地運往C,D兩處的費用分別為每噸15元和18元.設從B地運往C處的蔬菜為x噸.請?zhí)顚懴卤?,并求兩個蔬菜基地調運蔬菜的運費相等時x的值;CD總計/tA200Bx300總計/t240260500(2)設A,B兩個蔬菜基地的總運費為w元,求出w與x之間的函數(shù)關系式,并求總運費最小的調運方案;經過搶修,從B地到C處的路況得到進一步改善,縮短了運輸時間,運費每噸減少m元(m>0),其余線路的運費不變,試討論總運費最小的調動方案.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】分析:根據(jù)點A(a+2,4)和B(3,2a+2)到x軸的距離相等,得到4=|2a+2|,即可解答.詳解:∵點A(a+2,4)和B(3,2a+2)到x軸的距離相等,∴4=|2a+2|,a+2≠3,解得:a=?3,故選A.點睛:考查點的坐標的相關知識;用到的知識點為:到x軸和y軸的距離相等的點的橫縱坐標相等或互為相反數(shù).2、C【解析】試題解析:設2015年與2016年這兩年的平均增長率為x,由題意得:1.2(1+x)2=2.5,故選C.3、A【解析】
考查簡單幾何體的三視圖.根據(jù)從正面看得到的圖形是主視圖,可得圖形的主視圖【詳解】A、圓錐的主視圖是三角形,符合題意;B、球的主視圖是圓,不符合題意;C、圓柱的主視圖是矩形,不符合題意;D、正方體的主視圖是正方形,不符合題意.故選A.【點睛】主視圖是從前往后看,左視圖是從左往右看,俯視圖是從上往下看4、B【解析】【分析】直接利用購買科普書的數(shù)量比購買文學書的數(shù)量少100本得出等式進而得出答案.【詳解】科普類圖書平均每本的價格是x元,則可列方程為:﹣=100,故選B.【點睛】本題考查了分式方程的應用,弄清題意,找準等量關系列出方程是解題的關鍵.5、D【解析】
根據(jù)一元二次方程根與系數(shù)的關系列出方程求解即可.【詳解】設方程的兩根分別為x1,x1,
∵x1+(k1-4)x+k-1=0的兩實數(shù)根互為相反數(shù),
∴x1+x1,=-(k1-4)=0,解得k=±1,
當k=1,方程變?yōu)椋簒1+1=0,△=-4<0,方程沒有實數(shù)根,所以k=1舍去;
當k=-1,方程變?yōu)椋簒1-3=0,△=11>0,方程有兩個不相等的實數(shù)根;
∴k=-1.
故選D.【點睛】本題考查的是根與系數(shù)的關系.x1,x1是一元二次方程ax1+bx+c=0(a≠0)的兩根時,x1+x1=?,x1x1=,反過來也成立.6、A【解析】
首先設此多邊形為n邊形,根據(jù)題意得:180(n-2)=1080,即可求得n=8,再由多邊形的外角和等于360°,即可求得答案.【詳解】設此多邊形為n邊形,根據(jù)題意得:180(n-2)=1080,解得:n=8,∴這個正多邊形的每一個外角等于:360°÷8=45°.故選A.【點睛】此題考查了多邊形的內角和與外角和的知識.注意掌握多邊形內角和定理:(n-2)?180°,外角和等于360°.7、D【解析】解:A.平均數(shù)為(158+160+154+158+170)÷5=160,正確,故本選項不符合題意;B.按照從小到大的順序排列為154,158,158,160,170,位于中間位置的數(shù)為158,故中位數(shù)為158,正確,故本選項不符合題意;C.數(shù)據(jù)158出現(xiàn)了2次,次數(shù)最多,故眾數(shù)為158,正確,故本選項不符合題意;D.這組數(shù)據(jù)的方差是S2=[(154﹣160)2+2×(158﹣160)2+(160﹣160)2+(170﹣160)2]=28.8,錯誤,故本選項符合題意.故選D.點睛:本題考查了眾數(shù)、平均數(shù)、中位數(shù)及方差,解題的關鍵是掌握它們的定義,難度不大.8、C【解析】分析:根據(jù)眾數(shù)的定義先求出x的值,再把數(shù)據(jù)按從小到大的順序排列,找出最中間的數(shù),即可得出答案.詳解:∵數(shù)據(jù)1,2,x,5,6的眾數(shù)為6,∴x=6,把這些數(shù)從小到大排列為:1,2,5,6,6,最中間的數(shù)是5,則這組數(shù)據(jù)的中位數(shù)為5;故選C.點睛:本題考查了中位數(shù)的知識點,將一組數(shù)據(jù)按照從小到大的順序排列,如果數(shù)據(jù)的個數(shù)為奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù);如果這組數(shù)據(jù)的個數(shù)為偶數(shù),則中間兩個數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù).9、B【解析】
首先設文學類圖書平均每本的價格為x元,則科普類圖書平均每本的價格為1.2x元,根據(jù)題意可得等量關系:學校用12000元購買文學類圖書的本數(shù)比用這些錢購買科普類圖書的本數(shù)多100本,根據(jù)等量關系列出方程,【詳解】設學校購買文學類圖書平均每本書的價格是x元,可得:故選B.【點睛】此題主要考查了分式方程的應用,關鍵是正確理解題意,找出題目中的等量關系,列出方程.10、D【解析】試題解析:含有兩個未知數(shù),不是整式方程,C沒有二次項.故選D.點睛:一元二次方程需要滿足三個條件:含有一個未知數(shù),未知數(shù)的最高次數(shù)是2,整式方程.11、C【解析】
根據(jù)菱形的性質、垂徑定理、反比例函數(shù)和一次函數(shù)進行判斷即可.【詳解】解:①菱形的對角線互相垂直是真命題;②平分弦(非直徑)的直徑垂直于弦,是假命題;③若點(5,-5)是反比例函數(shù)y=圖象上的一點,則k=-25,是真命題;④方程2x-1=3x-2的解,可看作直線y=2x-1與直線y=3x-2交點的橫坐標,是真命題;故選C.【點睛】本題考查了命題與定理:判斷一件事情的語句,叫做命題.許多命題都是由題設和結論兩部分組成,題設是已知事項,結論是由已知事項推出的事項,一個命題可以寫成“如果…那么…”形式.一些命題的正確性是用推理證實的,這樣的真命題叫做定理.12、B【解析】
此題可根據(jù)反比例函數(shù)圖象的對稱性得到A、B兩點關于原點對稱,再由S△ABM=1S△AOM并結合反比例函數(shù)系數(shù)k的幾何意義得到k的值.【詳解】根據(jù)雙曲線的對稱性可得:OA=OB,則S△ABM=1S△AOM=1,S△AOM=|k|=1,則k=±1.又由于反比例函數(shù)圖象位于一三象限,k>0,所以k=1.故選B.【點睛】本題主要考查了反比例函數(shù)y=中k的幾何意義,即過雙曲線上任意一點引x軸、y軸垂線,所得矩形面積為|k|,是經常考查的一個知識點.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、4【解析】分析:首先由S△PAB=S矩形ABCD,得出動點P在與AB平行且與AB的距離是2的直線l上,作A關于直線l的對稱點E,連接AE,連接BE,則BE的長就是所求的最短距離.然后在直角三角形ABE中,由勾股定理求得BE的值,即PA+PB的最小值.詳解:設△ABP中AB邊上的高是h.∵S△PAB=S矩形ABCD,∴AB?h=AB?AD,∴h=AD=2,∴動點P在與AB平行且與AB的距離是2的直線l上,如圖,作A關于直線l的對稱點E,連接AE,連接BE,則BE的長就是所求的最短距離.在Rt△ABE中,∵AB=4,AE=2+2=4,∴BE=,即PA+PB的最小值為4.故答案為4.點睛:本題考查了軸對稱-最短路線問題,三角形的面積,矩形的性質,勾股定理,兩點之間線段最短的性質.得出動點P所在的位置是解題的關鍵.14、60%【解析】
設空閑時段民用電的單價為x元/千瓦時,高峰時段民用電的單價為y元/千瓦時,該用戶5月份空閑時段用電量為a千瓦時,則5月份高峰時段用電量為2a千瓦時,6月份空閑時段用電量為2a千瓦時,6月份高峰時段用電量為a千瓦時,根據(jù)總價=單價×數(shù)量結合6月份的電費卻比5月份的電費少25%,即可得出關于x,y的二元一次方程,解之即可得出x,y之間的關系,進而即可得出結論.【詳解】設空閑時段民用電的單價為x元/千瓦時,高峰時段民用電的單價為y元/千瓦時,該用戶5月份空閑時段用電量為a千瓦時,則5月份高峰時段用電量為2a千瓦時,6月份空閑時段用電量為2a千瓦時,6月份高峰時段用電量為a千瓦時,依題意,得:(1﹣25%)(ax+2ay)=2ax+ay,解得:x=0.4y,∴該地區(qū)空閑時段民用電的單價比高峰時段的用電單價低×100%=60%.故答案為60%.【點睛】本題考查了二元一次方程的應用,找準等量關系,正確列出二元一次方程是解題的關鍵.15、30或1.【解析】
根據(jù)題意作圖,由AB是圓O的直徑,可得∠ADB=∠AD′B=1°,繼而可求得∠DAB的度數(shù),則可求得答案.【詳解】解:如圖,∵AB是圓O的直徑,∴∠ADB=∠AD′B=1°,∵AD=AD′=1,AB=2,∴cos∠DAB=cosD′AB=,∴∠DAB=∠D′AB=60°,∵∠CAB=30°,∴∠CAD=30°,∠CAD′=1°.∴∠CAD的度數(shù)為:30°或1°.故答案為30或1.【點睛】本題考查圓周角定理;含30度角的直角三角形.16、(2,0)【解析】【分析】作輔助線,構建三角形全等,先根據(jù)同弧所對的圓心角是圓周角的二倍得:∠APB=90°,再證明△BPE≌△PAF,根據(jù)PE=AF=3,列式可得結論.【詳解】連接PB、PA,過B作BE⊥x軸于E,過A作AF⊥x軸于F,∵A(m,﹣3)和點B(﹣1,n),∴OE=1,AF=3,∵∠ACB=45°,∴∠APB=90°,∴∠BPE+∠APF=90°,∵∠BPE+∠EBP=90°,∴∠APF=∠EBP,∵∠BEP=∠AFP=90°,PA=PB,∴△BPE≌△PAF,∴PE=AF=3,設P(a,0),∴a+1=3,a=2,∴P(2,0),故答案為(2,0).【點睛】本題考查了圓周角定理和坐標與圖形性質,三角形全等的性質和判定,作輔助線構建三角形全等是關鍵.17、﹣4ab【解析】
根據(jù)單項式與單項式的乘法解答即可.【詳解】2a×(﹣2b)=﹣4ab.故答案為﹣4ab.【點睛】本題考查了單項式的乘法,關鍵是根據(jù)單項式的乘法法則解答.18、65°【解析】
根據(jù)已知條件中的作圖步驟知,AG是∠CAB的平分線,根據(jù)角平分線的性質解答即可.【詳解】根據(jù)已知條件中的作圖步驟知,AG是∠CAB的平分線,∵∠CAB=50°,
∴∠CAD=25°;
在△ADC中,∠C=90°,∠CAD=25°,
∴∠ADC=65°(直角三角形中的兩個銳角互余);
故答案是:65°.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)BE+DF=EF;(2)存在,BD的最大值為6;(3)存在,AC的最大值為2+2.【解析】
(1)作輔助線,首先證明△ABE≌△ADG,再證明△AEF≌△AEG,進而得到EF=FG問題即可解決;(2)將△ABD繞著點B順時針旋轉60°,得到△BCE,連接DE,由旋轉可得,CE=AD=2,BD=BE,∠DBE=60°,可得DE=BD,根據(jù)DE<DC+CE,則當D、C、E三點共線時,DE存在最大值,問題即可解決;(3)以BC為邊作等邊三角形BCE,過點E作EF⊥BC于點F,連接DE,由旋轉的性質得△DBE是等邊三角形,則DE=AC,根據(jù)在等邊三角形BCE中,EF⊥BC,可求出BF,EF,以BC為直徑作⊙F,則點D在⊙F上,連接DF,可求出DF,則AC=DE≤DF+EF,代入數(shù)值即可解決問題.【詳解】(1)如圖①,延長CD至G,使得DG=BE,∵正方形ABCD中,AB=AD,∠B=∠AFG=90°,∴△ABE≌△ADG,∴AE=AG,∠BAE=∠DAG,∵∠EAF=45°,∠BAD=90°,∴∠BAE+∠DAF=45°,∴∠DAG+∠DAF=45°,即∠GAF=∠EAF,又∵AF=AF,∴△AEF≌△AEG,∴EF=GF=DG+DF=BE+DF,故答案為:BE+DF=EF;(2)存在.在等邊三角形ABC中,AB=BC,∠ABC=60°,如圖②,將△ABD繞著點B順時針旋轉60°,得到△BCE,連接DE.由旋轉可得,CE=AD=2,BD=BE,∠DBE=60°,∴△DBE是等邊三角形,∴DE=BD,∴在△DCE中,DE<DC+CE=4+2=6,∴當D、C、E三點共線時,DE存在最大值,且最大值為6,∴BD的最大值為6;(3)存在.如圖③,以BC為邊作等邊三角形BCE,過點E作EF⊥BC于點F,連接DE,∵AB=BD,∠ABC=∠DBE,BC=BE,∴△ABC≌△DBE,∴DE=AC,∵在等邊三角形BCE中,EF⊥BC,∴BF=BC=2,∴EF=BF=×2=2,以BC為直徑作⊙F,則點D在⊙F上,連接DF,∴DF=BC=×4=2,∴AC=DE≤DF+EF=2+2,即AC的最大值為2+2.【點睛】本題考查了全等三角形的判定與性質以及旋轉的性質,解題的關鍵是熟練的掌握全等三角形的判定與性質以及旋轉的性質.20、(1)30;;(2).【解析】試題分析:(1)根據(jù)題意列式求值,根據(jù)相應數(shù)據(jù)畫圖即可;(2)根據(jù)題意列表,然后根據(jù)表中數(shù)據(jù)求出概率即可.解:(1)6÷20%=30,(30﹣3﹣7﹣6﹣2)÷30×360=12÷30×26=144°,答:本次抽取的學生人數(shù)是30人;扇形統(tǒng)計圖中的圓心角α等于144°;故答案為30,144°;補全統(tǒng)計圖如圖所示:(2)根據(jù)題意列表如下:設豎列為小紅抽取的跑道,橫排為小花抽取的跑道,記小紅和小花抽在相鄰兩道這個事件為A,∴.考點:列表法與樹狀圖法;扇形統(tǒng)計圖;利用頻率估計概率.21、(2)證明見試題解析;(2).【解析】
(2)過點O作OM⊥AB于M,證明OM=圓的半徑OD即可;(2)過點O作ON⊥BE,垂足是N,連接OF,得到四邊形OMBN是矩形,在直角△OBM中利用三角函數(shù)求得OM和BM的長,進而求得BN和ON的長,在直角△ONF中利用勾股定理求得NF,則BF即可求解.【詳解】解:(2)過點O作OM⊥AB,垂足是M.∵⊙O與AC相切于點D,∴OD⊥AC,∴∠ADO=∠AMO=90°.∵△ABC是等邊三角形,∴∠DAO=∠MAO,∴OM=OD,∴AB與⊙O相切;(2)過點O作ON⊥BE,垂足是N,連接OF.∵O是BC的中點,∴OB=2.在直角△OBM中,∠MBO=60°,∴∠MOB=30°,BM=OB=2,OM=BM=,∵BE⊥AB,∴四邊形OMBN是矩形,∴ON=BM=2,BN=OM=.∵OF=OM=,由勾股定理得NF=.∴BF=BN+NF=.考點:2.切線的判定與性質;2.勾股定理;3.解直角三角形;4.綜合題.22、(1),;(2)證明見解析.【解析】試題分析:(1)根據(jù)一元二次方程根與系數(shù)的關系列方程組求解即可.(2)要證方程都有兩個不相等的實數(shù)根,只要證明根的判別式大于0即可.試題解析:(1)設方程的另一根為x1,∵該方程的一個根為1,∴.解得.∴a的值為,該方程的另一根為.(2)∵,∴不論a取何實數(shù),該方程都有兩個不相等的實數(shù)根.考點:1.一元二次方程根與系數(shù)的關系;2.一元二次方程根根的判別式;3.配方法的應用.23、(1)證明見解析;(2)CE=1.【解析】
(1)根據(jù)等角對等邊得∠OBE=∠OEB,由角平分線的定義可得∠OBE=∠EBC,從而可得∠OEB=∠EBC,根據(jù)內錯角相等,兩直線平行可得OE∥BC,根據(jù)兩直線平行,同位角相等可得∠OEA=90°,從而可證AC是⊙O的切線.
(2)根據(jù)垂徑定理可求BH=BF=3,根據(jù)三個角是直角的四邊形是矩形,可得四邊形OHCE是矩形,由矩形的對邊相等可得CE=OH,在Rt△OBH中,利用勾股定理可求出OH的長,從而求出CE的長.【詳解】(1)證明:如圖,連接OE,
∵OB=OE,
∴∠OBE=∠OEB,
∵BE平分∠ABC.
∴∠OBE=∠EBC,
∴∠OEB=∠EBC,
∴OE∥BC,
∵∠ACB=90°,
∴∠OEA=∠ACB=90°,
∴AC是⊙O的切線.
(2)解:過O作OH⊥BF,
∴BH=BF=3,四邊形OHCE是矩形,
∴CE=OH,
在Rt△OBH中,BH=3,OB=5,
∴OH==1,
∴CE=1.【點睛】本題考查切線的判定定理:經過半徑的外端且垂直于這條半徑的直線是圓的切線和垂徑定理以及勾股定理的運用,具有一定的綜合性.24、大和尚有25人,小和尚有75人.【解析】
設大和尚有x人,小和尚有y人,根據(jù)100個和尚吃100個饅頭且1個大和尚分3個、3個小和尚分1個,即可得出關于x,y的二元一次方程組,解之即可得出結論.【詳解】解:設大和尚有x人,小和尚有y人,依題意,得:,解得:.答:大和尚有25人,小和尚有75人.【點睛】考查了二元一次方程組的應用,找準等量關系,正確列出二元一次方程組是解題的關鍵.25、(1)60,90;(2)見解析;(3)300人【解析】
(1)由了解很少的有30人,占50%,可求得接受問卷調查的學生數(shù),繼而求得扇形統(tǒng)計圖中“基本了解”部分所對應扇形的圓心角;(2)由(1)可求得了解的人數(shù),繼而補全條形統(tǒng)計圖;(3)利用樣本估計總體的方法,即可求得答案.【詳解】解:(1)∵了解很少的有30人,占50%,∴接受問卷調查的學生共有:30÷50%=60(人);∴扇形統(tǒng)計圖中“基本了解”部分所對應扇形的圓心角為:×360°=90°;故答案為60,90;(2)60﹣15﹣30﹣10=5;補全條形統(tǒng)計圖得:(3)根據(jù)題意得:900×=300(人),則估計該中學學生中對校園安全知識達到“了解”和“
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《跨境電子商務綜合試驗區(qū)對我國進出口的影響研究》
- 2024年瑪麗珍鞋項目申請報告模板
- 2024-2030年中國甲酸鈉產業(yè)供需狀況及投資可行性研究報告權威版
- 2024年電腦數(shù)控車床項目提案報告范稿
- 2024-2030年中國獼猴桃鮮果市場競爭動態(tài)與投資效益預測報告
- 2024-2030年中國牙科激光治療儀行業(yè)深度調研及投資前景展望報告
- 2024-2030年中國煤炭物流行業(yè)發(fā)展規(guī)模及投資可行性研究報告版
- 《國際中文微課教學中的教師話語分析及其優(yōu)化對策研究》
- 2024-2030年中國港口機械行業(yè)發(fā)展現(xiàn)狀分析投資策略研究報告
- 2024年熱壓氮化硼制品項目提案報告模板
- 生產設備更新和技術改造項目資金申請報告-超長期國債
- 2024年廣東惠州市惠城區(qū)招聘事業(yè)單位工作人員23人歷年(高頻重點復習提升訓練)共500題附帶答案詳解
- 孩子改名字理由申請書
- 2024北京首都旅游集團公司招聘188人(高頻重點提升專題訓練)共500題附帶答案詳解
- 福建省公需課考試題目(2024年)
- 全國新世紀版信息技術七年級上冊第一單元第四課《電腦是如何工作的》教學設計
- 工程倫理與工程認識智慧樹知到期末考試答案章節(jié)答案2024年哈爾濱工程大學
- 旅游景區(qū)物業(yè)管理方案
- 侵權告知函(盜用圖片)
- 豬、牛、家禽屠宰冷鏈加工一體化項目可行性研究報告
- 諾貝爾生理學或醫(yī)學獎史話 知到智慧樹網(wǎng)課答案
評論
0/150
提交評論