版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2023-2024學(xué)年湖南雅禮中學(xué)數(shù)學(xué)高一下期末教學(xué)質(zhì)量檢測(cè)試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知函數(shù)相鄰兩個(gè)零點(diǎn)之間的距離為,將的圖象向右平移個(gè)單位長度,所得的函數(shù)圖象關(guān)于軸對(duì)稱,則的一個(gè)值可能是()A. B. C. D.2.設(shè),則的大小關(guān)系為()A. B. C. D.3.已知平面向量,且,則()A. B. C. D.4.?dāng)?shù)列中,若,則下列命題中真命題個(gè)數(shù)是()(1)若數(shù)列為常數(shù)數(shù)列,則;(2)若,數(shù)列都是單調(diào)遞增數(shù)列;(3)若,任取中的項(xiàng)構(gòu)成數(shù)列的子數(shù)(),則都是單調(diào)數(shù)列.A.個(gè) B.個(gè) C.個(gè) D.個(gè)5.天氣預(yù)報(bào)說,在今后的三天中,每一天下雨的概率均為40%.現(xiàn)采用隨機(jī)模擬試驗(yàn)的方法估計(jì)這三天中恰有兩天下雨的概率:先利用計(jì)算器產(chǎn)生0到9之間取整數(shù)值的隨機(jī)數(shù),用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨;再以每三個(gè)隨機(jī)數(shù)作為一組,代表這三天的下雨情況.經(jīng)隨機(jī)模擬試驗(yàn)產(chǎn)生了如下20組隨機(jī)數(shù):907966191925271932812458569683431257393027556488730113537989據(jù)此估計(jì),這三天中恰有兩天下雨的概率近似為A.0.35 B.0.25 C.0.20 D.0.156.在中,已知,,若點(diǎn)在斜邊上,,則的值為().A.6 B.12 C.24 D.487.已知a,b,c∈R,那么下列命題中正確的是()A.若a>b,則ac2>bc2B.若,則a>bC.若a3>b3且ab<0,則D.若a2>b2且ab>0,則8.若兩個(gè)正實(shí)數(shù),滿足,且不等式有解,則實(shí)數(shù)的取值范圍是()A. B. C. D.9.某三棱錐的左視圖、俯視圖如圖所示,則該三棱錐的體積是()A.3 B.2 C. D.110.下列敘述中,不能稱為算法的是()A.植樹需要運(yùn)苗、挖坑、栽苗、澆水這些步驟B.按順序進(jìn)行下列運(yùn)算:1+1=2,2+1=3,3+1=4,…,99+1=100C.從濟(jì)南到北京旅游,先坐火車,再坐飛機(jī)抵達(dá)D.3x>x+1二、填空題:本大題共6小題,每小題5分,共30分。11.抽樣調(diào)查某地區(qū)名教師的年齡和學(xué)歷狀況,情況如下餅圖:則估計(jì)該地區(qū)歲以下具有研究生學(xué)歷的教師百分比為_______.12.直線與直線垂直,則實(shí)數(shù)的值為_______.13.在邊長為2的正△ABC所在平面內(nèi),以A為圓心,為半徑畫弧,分別交AB,AC于D,E.若在△ABC內(nèi)任丟一粒豆子,則豆子落在扇形ADE內(nèi)的概率是________.14.已知直線分別與x軸、y軸交于A,B兩點(diǎn),則等于________.15.在數(shù)列中,按此規(guī)律,是該數(shù)列的第______項(xiàng)16.一組樣本數(shù)據(jù)8,10,18,12的方差為___________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.已知三棱柱中,平面ABC,,,M為AC中點(diǎn).(1)證明:直線平面;(2)求異面直線與所成角的大小.18.已知關(guān)于的不等式的解集為.(1)求的值;(2)求函數(shù)的最小值.19.已知函數(shù)滿足.(1)若,對(duì)任意都有,求的取值范圍;(2)是否存在實(shí)數(shù),,使得不等式對(duì)一切實(shí)數(shù)恒成立?若存在,請(qǐng)求出,,使;若不存在,請(qǐng)說明理由.20.的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知(1)求A;(2)若A為銳角,,的面積為,求的周長.21.為了研究某種藥物,用小白鼠進(jìn)行試驗(yàn),發(fā)現(xiàn)藥物在血液內(nèi)的濃度與時(shí)間的關(guān)系因使用方式的不同而不同.若使用注射方式給藥,則在注射后的3小時(shí)內(nèi),藥物在白鼠血液內(nèi)的濃度與時(shí)間t滿足關(guān)系式:,若使用口服方式給藥,則藥物在白鼠血液內(nèi)的濃度與時(shí)間t滿足關(guān)系式:現(xiàn)對(duì)小白鼠同時(shí)進(jìn)行注射和口服該種藥物,且注射藥物和口服藥物的吸收與代謝互不干擾.(1)若a=1,求3小時(shí)內(nèi),該小白鼠何時(shí)血液中藥物的濃度最高,并求出最大值?(2)若使小白鼠在用藥后3小時(shí)內(nèi)血液中的藥物濃度不低于4,求正數(shù)a的取值范圍.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、D【解析】
先求周期,從而求得,再由圖象變換求得.【詳解】函數(shù)相鄰兩個(gè)零點(diǎn)之間的距離為,則周期為,∴,,圖象向右平移個(gè)單位得,此函數(shù)圖象關(guān)于軸對(duì)稱,即為偶函數(shù),∴,,.時(shí),.故選D.【點(diǎn)睛】本題考查函數(shù)的圖象與性質(zhì).考查圖象平衡變換.在由圖象確定函數(shù)解析式時(shí),可由最大值和最小值確定,由“五點(diǎn)法”確定周期,從而確定,再由特殊值確定.2、B【解析】
不難發(fā)現(xiàn)從而可得【詳解】,故選B.【點(diǎn)睛】本題考查利用指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的單調(diào)性比較數(shù)大?。?、B【解析】試題分析:因?yàn)椋?,且,所以,,故選B.考點(diǎn):1、平面向量坐標(biāo)運(yùn)算;2、平行向量的性質(zhì).4、C【解析】
對(duì)(1),由數(shù)列為常數(shù)數(shù)列,則,解方程可得的值;對(duì)(2),由函數(shù),,求得導(dǎo)數(shù)和極值,可判斷單調(diào)性;對(duì)(3),由,判斷奇偶性和單調(diào)性,結(jié)合正弦函數(shù)的單調(diào)性,即可得到結(jié)論.【詳解】數(shù)列中,若,,,(1)若數(shù)列為常數(shù)數(shù)列,則,解得或,故(1)不正確;(2)若,,,由函數(shù),,,由,可得極值點(diǎn)唯一且為,極值為,由,可得,則,即有.由于,,由正弦函數(shù)的單調(diào)性,可得,則數(shù)列都是單調(diào)遞增數(shù)列,故(2)正確;(3)若,任取中的9項(xiàng),,,,,構(gòu)成數(shù)列的子數(shù)列,,2,,9,是單調(diào)遞增數(shù)列;由,可得,為奇函數(shù);當(dāng)時(shí),,時(shí),;當(dāng)時(shí),;時(shí),,運(yùn)用正弦函數(shù)的單調(diào)性可得或時(shí),數(shù)列單調(diào)遞增;或時(shí),數(shù)列單調(diào)遞減.所以數(shù)列都是單調(diào)數(shù)列,故(3)正確;故選:C.【點(diǎn)睛】本題考查數(shù)列的單調(diào)性的判斷和運(yùn)用,考查正弦函數(shù)的單調(diào)性,以及分類討論思想方法,屬于難題.5、B【解析】解:由題意知模擬三天中恰有兩天下雨的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了如下20組隨機(jī)數(shù),在20組隨機(jī)數(shù)中表示三天中恰有兩天下雨的有:191、271、932、812、393,共5組隨機(jī)數(shù),∴所求概率為=0.1.故選B6、C【解析】試題分析:因?yàn)?,,,所以==+==,故選C.考點(diǎn):1、平面向量的加減運(yùn)算;2、平面向量的數(shù)量積運(yùn)算.7、C【解析】
根據(jù)不等式的性質(zhì),對(duì)A、B、C、D四個(gè)選項(xiàng)通過舉反例進(jìn)行一一驗(yàn)證.【詳解】A.若a>b,則ac2>bc2(錯(cuò)),若c=0,則A不成立;B.若,則a>b(錯(cuò)),若c<0,則B不成立;C.若a3>b3且ab<0,則(對(duì)),若a3>b3且ab<0,則D.若a2>b2且ab>0,則(錯(cuò)),若,則D不成立.故選:C.【點(diǎn)睛】此題主要考查不等關(guān)系與不等式的性質(zhì)及其應(yīng)用,例如舉反例法求解比較簡單.兩個(gè)式子比較大小的常用方法有:做差和0比,作商和1比,或者直接利用不等式的性質(zhì)得到大小關(guān)系,有時(shí)可以代入一些特殊的數(shù)據(jù)得到具體值,進(jìn)而得到大小關(guān)系.8、D【解析】
利用基本不等式求得的最小值,根據(jù)不等式存在性問題,解一元二次不等式求得的取值范圍.【詳解】由于,而不等式有解,所以,即,解得或.故選:D【點(diǎn)睛】本小題主要考查利用基本不等式求最小值,考查不等式存在性問題的求解,考查一元二次不等式的解法,屬于中檔題.9、D【解析】
根據(jù)三視圖高平齊的原則得知錐體的高,結(jié)合俯視圖可計(jì)算出底面面積,再利用錐體體積公式可得出答案.【詳解】由三視圖“高平齊”的原則可知該三棱錐的高為,俯視圖的面積為錐體底面面積,則該三棱錐的底面面積為,因此,該三棱錐的體積為,故選D.【點(diǎn)睛】本題考查利用三視圖求幾何體的體積,解題時(shí)充分利用三視圖“長對(duì)正,高平齊,寬相等”的原則得出幾何體的某些數(shù)據(jù),并判斷出幾何體的形狀,結(jié)合相關(guān)公式進(jìn)行計(jì)算,考查空間想象能力,屬于中等題.10、D【解析】
利用算法的定義來分析判斷各選項(xiàng)的正確與否,即可求解,得到答案.【詳解】由算法的定義可知,算法、程序是完成一件事情的可操作的步驟:可得A、B、C為算法,D沒有明確的規(guī)則和步驟,所以不是算法,故選D.【點(diǎn)睛】本題主要考查了算法的概念,其中解答的關(guān)鍵是理解算法的概念,由概念作出正確的判斷,著重考查了分析問題和解答問題的能力,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
根據(jù)餅狀圖中的歲以下本科學(xué)歷人數(shù)和占比可求得歲以下教師總?cè)藬?shù),從而可得其中的具有研究生學(xué)歷的教師人數(shù),進(jìn)而得到所求的百分比.【詳解】由歲以下本科學(xué)歷人數(shù)和占比可知,歲以下教師總?cè)藬?shù)為:人歲以下有研究生學(xué)歷的教師人數(shù)為:人歲以下有研究生學(xué)歷的教師的百分比為:本題正確結(jié)果:【點(diǎn)睛】本題考查利用餅狀圖計(jì)算總體中的數(shù)據(jù)分布和頻率分布的問題,屬于基礎(chǔ)題.12、【解析】
由題得(-1),解之即得a的值.【詳解】由題得(-1),所以a=2.故答案為;2【點(diǎn)睛】本題主要考查兩直線垂直的斜率關(guān)系,意在考查學(xué)生對(duì)該知識(shí)的理解掌握水平和分析推理能力.13、【解析】
由三角形ABC的邊長為2不難求出三角形ABC的面積,又由扇形的半徑為,也可以求出扇形的面積,代入幾何概型的計(jì)算公式即可求出答案.【詳解】由題意知,在△ABC中,BC邊上的高AO正好為,∴圓與邊CB相切,如圖.S扇形=×××=,S△ABC=×2×2×=,∴P==.【點(diǎn)睛】本題考查面積型幾何概型概率的求法,屬基礎(chǔ)題.14、5【解析】
分別求得A,B的坐標(biāo),再用兩點(diǎn)間的距離公式求解.【詳解】根據(jù)題意令得所以令得所以所以故答案為:5【點(diǎn)睛】本題主要考查點(diǎn)坐標(biāo)的求法和兩點(diǎn)間的距離公式,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.15、【解析】
分別求出,,,結(jié)果構(gòu)成等比數(shù)列,進(jìn)而推斷數(shù)列是首相為2,公比為2的等比數(shù)列,進(jìn)而求得數(shù)列的通項(xiàng)公式,再由求得答案.【詳解】,,,依此類推可得,,,即.,解得.故答案為:7.【點(diǎn)睛】本題考查利用數(shù)列的遞推關(guān)系求數(shù)列的通項(xiàng)公式,求解的關(guān)鍵在于推斷是等比數(shù)列,再用累加法求得數(shù)列的通項(xiàng)公式,考查邏輯推理能力和運(yùn)算求解能力.16、14【解析】
直接利用平均數(shù)和方差的公式,即可得到本題答案.【詳解】平均數(shù),方差.故答案為:14【點(diǎn)睛】本題主要考查平均數(shù)公式與方差公式的應(yīng)用.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】
(1)連接交于點(diǎn)O,再證明,得證;(2)先求,可得.再結(jié)合即可得解.【詳解】證明:(1)連接交于點(diǎn)O,連接OM,為平行四邊形,為的中點(diǎn),又M為AC的中點(diǎn),.又平面,平面.平面.(2)平面ABC,,.又,由M為AC中點(diǎn),,,又O為的中點(diǎn),.,.所以異面直線與所成角的大小為.【點(diǎn)睛】本題考查了線面平行的判定定理,重點(diǎn)考查了異面直線所成角的求法,屬基礎(chǔ)題.18、(1);(2)1.【解析】
(1)利用根與系數(shù)的關(guān)系,得到等式和不等式,最后求出的值;(2)化簡函數(shù)的解析式,利用基本不等式可以求出函數(shù)的最小值.【詳解】解:(1)由題意知:,解得.(2)由(1)知,∴,而時(shí),當(dāng)且僅當(dāng),即時(shí)取等號(hào)而,∴的最小值為1.【點(diǎn)睛】本題考查了已知一元二次不等式的解集求參數(shù)問題,考查了基本不等式的應(yīng)用,考查了數(shù)學(xué)運(yùn)算能力.19、(1)(2)存在,使不等式恒成立,詳見解析.【解析】
(1)由知函數(shù)關(guān)于對(duì)稱,求出后,通過構(gòu)造函數(shù)求出;(2)利用不等式的兩邊夾定理,令,得,結(jié)合已知條件,解出;然后設(shè)存在實(shí)數(shù),,命題成立,運(yùn)用根的判別式建立關(guān)于實(shí)數(shù)的不等式組,解得.【詳解】(1)由得此時(shí),,構(gòu)造函數(shù),.即的取值范圍是.(2)由對(duì)一切實(shí)數(shù)恒成立,得由得由得恒成立,也即,此時(shí),.把,.代入,不等式也恒成立,所以,.【點(diǎn)睛】本題第(1)問,常用“反客為主法”,即把參數(shù)當(dāng)成主元,而把看成參數(shù);第(2)問,不等式對(duì)任意實(shí)數(shù)恒成立,常用賦值法切入問題.20、(1)或;(2).【解析】
(1)由正弦定理將邊化為對(duì)應(yīng)角的正弦值,即可求出結(jié)果;(2)由余弦定理和三角形的面積公式聯(lián)立,即可求出結(jié)果
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024-2030年中國地產(chǎn)綠化商業(yè)計(jì)劃書
- 2024-2030年中國咸菜市場發(fā)展前景調(diào)研與投資策略分析報(bào)告
- 2024-2030年中國印花熱熔膠融資商業(yè)計(jì)劃書
- 2024年體育用品銷售租賃合同
- 滿洲里俄語職業(yè)學(xué)院《STEM課程教學(xué)與微課制作》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024年兒童個(gè)性化教育服務(wù)聘請(qǐng)教師勞動(dòng)合同模板3篇
- 2024年房屋中介居間協(xié)議2篇
- 漯河醫(yī)學(xué)高等??茖W(xué)校《畫法幾何與土建制圖》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025年銅川貨運(yùn)從業(yè)資格證模擬考試下載什么軟件
- 2024年標(biāo)準(zhǔn)格式個(gè)人等額本息貸款合同版B版
- 成長賽道-模板參考
- 室外晾衣棚施工方案
- 兒童健康管理服務(wù)總結(jié)分析報(bào)告
- 殯葬行業(yè)的風(fēng)險(xiǎn)分析
- 下肢靜脈血栓個(gè)案查房
- 通信工程冬季施工安全培訓(xùn)
- 痛風(fēng)病科普講座課件
- 工作崗位風(fēng)險(xiǎn)評(píng)估報(bào)告
- 護(hù)理查房肺部感染心衰
- 拒執(zhí)罪申請(qǐng)書范本
- 《阿米巴經(jīng)營》讀書分享
評(píng)論
0/150
提交評(píng)論