2023-2024學(xué)年甘肅省蘭化一中數(shù)學(xué)高一下期末教學(xué)質(zhì)量檢測模擬試題含解析_第1頁
2023-2024學(xué)年甘肅省蘭化一中數(shù)學(xué)高一下期末教學(xué)質(zhì)量檢測模擬試題含解析_第2頁
2023-2024學(xué)年甘肅省蘭化一中數(shù)學(xué)高一下期末教學(xué)質(zhì)量檢測模擬試題含解析_第3頁
2023-2024學(xué)年甘肅省蘭化一中數(shù)學(xué)高一下期末教學(xué)質(zhì)量檢測模擬試題含解析_第4頁
2023-2024學(xué)年甘肅省蘭化一中數(shù)學(xué)高一下期末教學(xué)質(zhì)量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2023-2024學(xué)年甘肅省蘭化一中數(shù)學(xué)高一下期末教學(xué)質(zhì)量檢測模擬試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在等比數(shù)列中,若,則的值為()A. B. C. D.2.若函數(shù)則()A. B. C. D.3.已知函數(shù)(,,)的部分圖象如圖所示,則()A. B. C. D.4.已知下列各命題:①兩兩相交且不共點的三條直線確定一個平面:②若真線不平行于平面,則直線與平面有公共點:③若兩個平面垂直,則一個平面內(nèi)的已知直線必垂直于另一個平面的無數(shù)條直線:④若兩個二面角的兩個面分別對應(yīng)垂直,則這兩個二面角相等或互補.則其中正確的命題共有()個A. B. C. D.5.函數(shù)是()A.奇函數(shù) B.非奇非偶函數(shù) C.偶函數(shù) D.既是奇函數(shù)又是偶函數(shù)6.在中,角,,所對的邊分別為,,,則下列命題中正確命題的個數(shù)為()①若,則;②若,則為鈍角三角形;③若,則.A.1 B.2 C.3 D.07.()A. B. C. D.8.平行四邊形中,M為的中點,若.則=()A. B.2 C. D.9.某實驗單次成功的概率為0.8,記事件A為“在實驗條件相同的情況下,重復(fù)3次實驗,各次實驗互不影響,則3次實驗中至少成功2次”,現(xiàn)采用隨機模擬的方法估計事件4的概率:先由計算機給出0~9十個整數(shù)值的隨機數(shù),指定0,1表示單次實驗失敗,2,3,4,5,6,7,8,9表示單次實驗成功,以3個隨機數(shù)為組,代表3次實驗的結(jié)果經(jīng)隨機模擬產(chǎn)生了20組隨機數(shù),如下表:752029714985034437863694141469037623804601366959742761428261根據(jù)以上方法及數(shù)據(jù),估計事件A的概率為()A.0.384 B.0.65 C.0.9 D.0.90410.集合,則()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知雙曲線:的右頂點為,以為圓心,為半徑作圓,圓與雙曲線的一條漸近線于交、兩點,若,則的離心率為__________.12.已知三個頂點的坐標(biāo)分別為,若⊥,則的值是______.13.函數(shù)的單調(diào)增區(qū)間是________.14.已知平面向量,,滿足:,且,則的最小值為____.15.設(shè)公比為q(q>0)的等比數(shù)列{an}的前n項和為{Sn}.若,,則q=______________.16.如圖,已知六棱錐的底面是正六邊形,平面,,給出下列結(jié)論:①;②直線平面;③平面平面;④異面直線與所成角為;⑤直線與平面所成角的余弦值為.其中正確的有_______(把所有正確的序號都填上)三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知數(shù)列滿足,令(1)求證數(shù)列為等比數(shù)列,并求通項公式;(2)求數(shù)列的前n項和.18.在中,求的值.19.已知向量,,,設(shè)函數(shù).(1)求的最小正周期;(2)求在上的最大值和最小值.20.如圖,在中,,角的平分線交于點,設(shè),其中.(1)求;(2)若,求的長.21.高一某班以小組為單位在周末進(jìn)行了一次社會實踐活動,且每小組有5名同學(xué),活動結(jié)束后,對所有參加活動的同學(xué)進(jìn)行測評,其中A,B兩個小組所得分?jǐn)?shù)如下表:A組8677809488B組9183?7593其中B組一同學(xué)的分?jǐn)?shù)已被污損,看不清楚了,但知道B組學(xué)生的平均分比A組學(xué)生的平均分高出1分.(1)若從B組學(xué)生中隨機挑選1人,求其得分超過85分的概率;(2)從A組這5名學(xué)生中隨機抽取2名同學(xué),設(shè)其分?jǐn)?shù)分別為m,n,求的概率.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】

根據(jù)等比數(shù)列的性質(zhì):若,則.【詳解】等比數(shù)列中,,,故選B.【點睛】本題考查等比數(shù)列的通項公式和性質(zhì),此題也可用通項公式求解.2、B【解析】

首先根據(jù)題意得到,再計算即可.【詳解】……,.故選:B【點睛】本題主要考查分段函數(shù)值的求法,同時考查了指數(shù)冪的運算,屬于簡單題.3、D【解析】試題分析:由圖可知,,∴,又,∴,∴,又.∴.考點:由圖象確定函數(shù)解析式.4、B【解析】

①利用平面的基本性質(zhì)判斷.②利用直線與平面的位置關(guān)系判斷.③由面面垂直的性質(zhì)定理判斷.④通過舉反例來判斷.【詳解】①兩兩相交且不共點,形成三個不共線的點,確定一個平面,故正確.②若真線不平行于平面,則直線與平面相交或在平面內(nèi),所以有公共點,故正確.③若兩個平面垂直,則一個平面內(nèi),若垂直交線的直線則垂直另一個平面,垂直另一平面內(nèi)所有直線,若不垂直與交線,也與另一平面內(nèi)垂直交線的直線及其平行線垂直,也有無數(shù)條,故正確.④若兩個二面角的兩個面分別對應(yīng)垂直,則這兩個二面角關(guān)系不確定,如圖:在正方體ABCD-A1B1C1D1中,二面角D-AA1-F與二面角D1-DC-A的兩個半平面就是分別對應(yīng)垂直的,但是這兩個二面角既不相等,也不互補.故錯誤..故選:B【點睛】本題主要考查了點、線、面的位置關(guān)系,還考查了推理論證和理解辨析的能力,屬于基礎(chǔ)題.5、C【解析】

利用誘導(dǎo)公式將函數(shù)的解析式化簡,然后利用定義判斷出函數(shù)的奇偶性.【詳解】由誘導(dǎo)公式得,該函數(shù)的定義域為,關(guān)于原點對稱,且,因此,函數(shù)為偶函數(shù),故選C.【點睛】本題考查函數(shù)奇偶性的判斷,解題時要將函數(shù)解析式進(jìn)行簡化,然后利用奇偶性的定義進(jìn)行判斷,考查分析問題和解決問題的能力,屬于基礎(chǔ)題.6、C【解析】

根據(jù)正弦定理和大角對大邊判斷①正確;利用余弦定理得到為鈍角②正確;化簡利用余弦定理得到③正確.【詳解】①若,則;根據(jù),則即,即,正確②若,則為鈍角三角形;,為鈍角,正確③若,則即,正確故選C【點睛】本題考查了正弦定理和余弦定理,意在考查學(xué)生對于正弦定理和余弦定理的靈活運用.7、B【解析】

根據(jù)誘導(dǎo)公式和兩角和的余弦公式的逆用變形即可得解.【詳解】由題:故選:B【點睛】此題考查兩角和的余弦公式的逆用,關(guān)鍵在于熟記相關(guān)公式,準(zhǔn)確化簡求值.8、A【解析】

先求出,再根據(jù)得到解方程組即得解.【詳解】由題意得,又因為,所以,由題意得,所以解得所以,故選A.【點睛】本題主要考查平面向量的運算法則,意在考查學(xué)生對這些知識的理解掌握水平,屬于基礎(chǔ)題.9、C【解析】

由隨機模擬實驗結(jié)合圖表計算即可得解.【詳解】由隨機模擬實驗可得:“在實驗條件相同的情況下,重復(fù)3次實驗,各次實驗互不影響,則3次實驗中最多成功1次”共141,601兩組隨機數(shù),則“在實驗條件相同的情況下,重復(fù)3次實驗,各次實驗互不影響,則3次實驗中至少成功2次”共組隨機數(shù),即事件的概率為,故選.【點睛】本題考查了隨機模擬實驗及識圖能力,屬于中檔題.10、C【解析】

先求解不等式化簡集合A和B,再根據(jù)集合的交集運算求得結(jié)果即可.【詳解】因為集合,集合或,所以.故本題正確答案為C.【點睛】本題考查一元二次不等式,分式不等式的解法和集合的交集運算,注意認(rèn)真計算,仔細(xì)檢查,屬基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】如圖所示,由題意可得|OA|=a,|AN|=|AM|=b,∵∠MAN=60°,∴|AP|=b,∴|OP|=.設(shè)雙曲線C的一條漸近線y=x的傾斜角為θ,則tanθ=.又tanθ=,∴,解得a2=3b2,∴e=.答案:點睛:求雙曲線的離心率的值(或范圍)時,可將條件中提供的雙曲線的幾何關(guān)系轉(zhuǎn)化為關(guān)于雙曲線基本量的方程或不等式,再根據(jù)和轉(zhuǎn)化為關(guān)于離心率e的方程或不等式,通過解方程或不等式求得離心率的值(或取值范圍).12、【解析】

求出,再利用,求得.【詳解】,因為⊥,所以,解得:.【點睛】本題考查向量的坐標(biāo)表示、數(shù)量積運算,要注意向量坐標(biāo)與點坐標(biāo)的區(qū)別.13、,【解析】

先利用誘導(dǎo)公式化簡,即可由正弦函數(shù)的單調(diào)性求出。【詳解】因為,所以的單調(diào)增區(qū)間是,?!军c睛】本題主要考查誘導(dǎo)公式以及正弦函數(shù)的性質(zhì)——單調(diào)性的應(yīng)用。14、-1【解析】

,,,由經(jīng)過向量運算得,知點在以為圓心,1為半徑的圓上,這樣,只要最小,就可化簡.【詳解】如圖,,則,設(shè)是中點,則,∵,∴,即,,記,則點在以為圓心,1為半徑的圓上,記,,注意到,因此當(dāng)與反向時,最小,∴.∴最小值為-1.故答案為-1.【點睛】本題考查平面向量的數(shù)量積,解題關(guān)鍵是由已知得出點軌跡(讓表示的有向線段的起點都是原點)是圓,然后分析出只有最小時,才可能最小.從而得到解題方法.15、【解析】將,兩個式子全部轉(zhuǎn)化成用,q表示的式子.即,兩式作差得:,即:,解之得:(舍去)16、①③④⑤【解析】

設(shè)出幾何體的邊長,根據(jù)正六邊形的性質(zhì),線面垂直的判定定理,線面平行的判定定理,面面垂直的判定定理,異面直線所成角,線面角有關(guān)知識,對五個結(jié)論逐一分析,由此得出正確結(jié)論的序號.【詳解】設(shè)正六邊形長為,則.根據(jù)正六邊形的幾何性質(zhì)可知,由平面得,所以平面,所以,故①正確.由于,而,所以直線平面不正確,故②錯誤.易證得,所以平面,所以平面平面,故③正確.由于,所以是異面直線與所成角,在中,,故,也即異面直線與所成角為,故④正確.連接,則,由①證明過程可知平面,所以平面,所以是所求線面角,在三角形中,,由余弦定理得,故⑤正確.綜上所述,正確的序號為①③④⑤.【點睛】本小題主要考查線面垂直的判定,面面垂直的判定,考查線線角、線面角的求法,屬于中檔題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】

(1)由變形可得,即,于是可得數(shù)列為等比數(shù)列,進(jìn)而得到通項公式;(2)由(1)得,然后分為奇數(shù)、偶數(shù)兩種情況,將轉(zhuǎn)化為數(shù)列的求和問題解決.【詳解】(1)∵,∴,∵,∴.又,∴數(shù)列是首項為8,公比為3的等比數(shù)列,∴.(2)當(dāng)為正偶數(shù)時,.當(dāng)為正奇數(shù)時,.∴.【點睛】(1)證明數(shù)列為等比數(shù)列時,在運用定義證明的同時還要說明數(shù)列中不存在等于零的項,這一點容易忽視.(2)數(shù)列求和時要根據(jù)數(shù)列通項公式的特點,選擇合適的方法進(jìn)行求解,求解時要注意確定數(shù)列的項數(shù).18、【解析】

由即,解得:(因為舍去)或.19、(1)(2)時,取最小值;時,取最大值1.【解析】

試題分析:(1)根據(jù)向量數(shù)量積、二倍角公式及配角公式得,再根據(jù)正弦函數(shù)性質(zhì)得.(2)先根據(jù)得,,再根據(jù)正弦函數(shù)性質(zhì)得最大值和最小值.試題解析:(1),最小正周期為.(2)當(dāng)時,,由圖象可知時單調(diào)遞增,時單調(diào)遞減,所以當(dāng),即時,取最小值;當(dāng),即時,取最大值1.20、(1);(2)5.【解析】

(1)根據(jù)求出和的值,利用角平分線和二倍角公式求出,即可求出;(2)根據(jù)正弦定理求出,的關(guān)系,利用向量的夾角公式求出,可得,正弦定理可得答案【詳解】解:(1)由,且,,,,則;(2)由正弦定理,得,即,,又,,由上兩式解得,又由,得,解得【點睛】本題考查了二倍角公式和正弦定理的靈活運用和計算能力,是中檔題.21、(1)(2)【解析】

(1)先設(shè)在B組中看不清的那個同學(xué)的分?jǐn)?shù)為x,分別

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論