云南省楚雄州2024屆高一數(shù)學(xué)第二學(xué)期期末預(yù)測(cè)試題含解析_第1頁(yè)
云南省楚雄州2024屆高一數(shù)學(xué)第二學(xué)期期末預(yù)測(cè)試題含解析_第2頁(yè)
云南省楚雄州2024屆高一數(shù)學(xué)第二學(xué)期期末預(yù)測(cè)試題含解析_第3頁(yè)
云南省楚雄州2024屆高一數(shù)學(xué)第二學(xué)期期末預(yù)測(cè)試題含解析_第4頁(yè)
云南省楚雄州2024屆高一數(shù)學(xué)第二學(xué)期期末預(yù)測(cè)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩12頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

云南省楚雄州2024屆高一數(shù)學(xué)第二學(xué)期期末預(yù)測(cè)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知兩點(diǎn),若點(diǎn)是圓上的動(dòng)點(diǎn),則面積的最大值為()A.13 B.3 C. D.2.如圖,網(wǎng)格紙的各小格都是正方形,粗實(shí)線畫出的事一個(gè)幾何體的三視圖,則這個(gè)幾何體是()A.三棱錐 B.三棱柱 C.四棱錐 D.四棱柱3.已知是圓上的三點(diǎn),()A. B. C. D.4.直線的傾斜角為()A. B. C. D.5.在中,,,,點(diǎn)P是內(nèi)(包括邊界)的一動(dòng)點(diǎn),且(),則的最大值為()A.6 B. C. D.66.設(shè)l是直線,,是兩個(gè)不同的平面,下列命題正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,則7.在中,已知角的對(duì)邊分別為,若,,,,且,則的最小角的正切值為()A. B. C. D.8.若,且,恒成立,則實(shí)數(shù)的取值范圍是()A. B.C. D.9.在等差數(shù)列an中,a1+a2A.2n B.2n+1 C.2n-1 D.2n+210.已知,向量,則向量()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.魯班鎖是中國(guó)傳統(tǒng)的智力玩具,起源于古代漢族建筑中首創(chuàng)的榫卯結(jié)構(gòu),這種三維的拼插器具內(nèi)部的凹凸部分(即榫卯結(jié)構(gòu))嚙合,十分巧妙,外觀看是嚴(yán)絲合縫的十字立方體,其上下、左右、前后完全對(duì)稱.從外表上看,六根等長(zhǎng)的正四棱柱體分成三組,經(jīng)榫卯起來(lái),如圖3,若正四棱柱體的高為,底面正方形的邊長(zhǎng)為,現(xiàn)將該魯班鎖放進(jìn)一個(gè)球形容器內(nèi),則該球形容器的表面積的最小值為__________.(容器壁的厚度忽略不計(jì))12.設(shè)數(shù)列的前項(xiàng)和為滿足:,則_________.13.已知為等差數(shù)列,,,,則______.14.有一個(gè)底面半徑為2,高為2的圓柱,點(diǎn),分別為這個(gè)圓柱上底面和下底面的圓心,在這個(gè)圓柱內(nèi)隨機(jī)取一點(diǎn)P,則點(diǎn)P到點(diǎn)或的距離不大于1的概率是________.15.在空間直角坐標(biāo)系中,點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)的坐標(biāo)為__________.16.若數(shù)列滿足,,,則______.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.對(duì)于三個(gè)實(shí)數(shù)、、,若成立,則稱、具有“性質(zhì)”.(1)試問(wèn):①,0是否具有“性質(zhì)2”;②(),0是否具有“性質(zhì)4”;(2)若存在及,使得成立,且,1具有“性質(zhì)2”,求實(shí)數(shù)的取值范圍;(3)設(shè),,,為2019個(gè)互不相同的實(shí)數(shù),點(diǎn)()均不在函數(shù)的圖象上,是否存在,且,使得、具有“性質(zhì)2018”,請(qǐng)說(shuō)明理由.18.已知以點(diǎn)(a∈R,且a≠0)為圓心的圓過(guò)坐標(biāo)原點(diǎn)O,且與x軸交于點(diǎn)A,與y軸交于點(diǎn)B.(1)求△OAB的面積;(2)設(shè)直線l:y=﹣2x+4與圓C交于點(diǎn)P、Q,若|OP|=|OQ|,求圓心C到直線l的距離.19.已知函數(shù),設(shè)其最小值為(1)求;(2)若,求a以及此時(shí)的最大值.20.已知向量.(1)若,且,求實(shí)數(shù)的值;(2)若,且與的夾角為,求實(shí)數(shù)的值.21.如圖,是菱形,對(duì)角線與的交點(diǎn)為,四邊形為梯形,,.(1)若,求證:平面;(2)求證:平面平面;(3)若,求直線與平面所成角的余弦值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、C【解析】

先求出直線方程,然后計(jì)算出圓心到直線的距離,根據(jù)面積的最大時(shí),以及高最大的條件,可得結(jié)果.【詳解】由,利用直線的截距式所以直線方程為:即由圓,即所以圓心為,半徑為則圓心到直線的距離為要使面積的最大,則圓上的點(diǎn)到最大距離為所以面積的最大值為故選:C【點(diǎn)睛】本題考查圓與直線的幾何關(guān)系以及點(diǎn)到直線的距離,屬基礎(chǔ)題.2、B【解析】試題分析:由三視圖中的正視圖可知,由一個(gè)面為直角三角形,左視圖和俯視圖可知其它的面為長(zhǎng)方形.綜合可判斷為三棱柱.考點(diǎn):由三視圖還原幾何體.3、C【解析】

先由等式,得出,并計(jì)算出,以及與的夾角為,然后利用平面向量數(shù)量積的定義可計(jì)算出的值.【詳解】由于是圓上的三點(diǎn),,則,,故選C.【點(diǎn)睛】本題考查平面向量的數(shù)量積的計(jì)算,解題的關(guān)鍵就是要確定向量的模和夾角,考查計(jì)算能力,屬于中等題.4、C【解析】

求出直線的斜率,然后求解直線的傾斜角.【詳解】由題意知,直線的斜率為,所以直線的傾斜角為.故選:C.【點(diǎn)睛】本題考查直線的斜率與傾斜角的求法,屬于基礎(chǔ)題.5、B【解析】

利用余弦定理和勾股定理可證得;取,作,根據(jù)平面向量平行四邊形法則可知點(diǎn)軌跡為線段,由此可確定,利用勾股定理可求得結(jié)果.【詳解】由余弦定理得:如圖,取,作,交于在內(nèi)(包含邊界)點(diǎn)軌跡為線段當(dāng)與重合時(shí),最大,即故選:【點(diǎn)睛】本題考查向量模長(zhǎng)最值的求解問(wèn)題,涉及到余弦定理解三角形的應(yīng)用;解題關(guān)鍵是能夠根據(jù)平面向量線性運(yùn)算確定動(dòng)點(diǎn)軌跡,根據(jù)軌跡確定最值點(diǎn).6、D【解析】

利用空間線線、線面、面面的位置關(guān)系對(duì)選項(xiàng)進(jìn)行逐一判斷,即可得到答案.【詳解】A.若,,則與可能平行,也可能相交,所以不正確.B.若,,則與可能的位置關(guān)系有相交、平行或,所以不正確.C.若,,則可能,所以不正確.D.若,,由線面平行的性質(zhì)過(guò)的平面與相交于,則,又.

所以,所以有,所以正確.故選:D【點(diǎn)睛】本題考查面面平行、垂直的判斷,線面平行和垂直的判斷,屬于基礎(chǔ)題.7、D【解析】

根據(jù)大角對(duì)大邊判斷最小角為,利用正弦定理得到,代入余弦定理計(jì)算得到,最后得到.【詳解】根據(jù)大角對(duì)大邊判斷最小角為根據(jù)正弦定理知:根據(jù)余弦定理:化簡(jiǎn)得:故答案選D【點(diǎn)睛】本題考查了正弦定理,余弦定理,意在考查學(xué)生的計(jì)算能力.8、A【解析】

將代數(shù)式與相乘,展開式利用基本不等式求出的最小值,將問(wèn)題轉(zhuǎn)化為解不等式,解出即可.【詳解】由基本不等式得,當(dāng)且僅當(dāng),即當(dāng)時(shí),等號(hào)成立,所以,的最小值為.由題意可得,即,解得.因此,實(shí)數(shù)的取值范圍是,故選A.【點(diǎn)睛】本題考查基本不等式的應(yīng)用,考查不等式恒成立問(wèn)題以及一元二次不等式的解法,對(duì)于不等式恒成立問(wèn)題,常轉(zhuǎn)化為最值來(lái)處理,考查計(jì)算能力,屬于中等題.9、C【解析】

直接利用等差數(shù)列公式解方程組得到答案.【詳解】aaa1故答案選C【點(diǎn)睛】本題考查了等差數(shù)列的通項(xiàng)公式,屬于基礎(chǔ)題型.10、A【解析】

由向量減法法則計(jì)算.【詳解】.故選A.【點(diǎn)睛】本題考查向量的減法法則,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】表面積最小的球形容器可以看成長(zhǎng)、寬、高分別為1、2、6的長(zhǎng)方體的外接球.設(shè)其半徑為R,,所以該球形容器的表面積的最小值為.【點(diǎn)睛】將表面積最小的球形容器,看成其中兩個(gè)正四棱柱的外接球,求其半徑,進(jìn)而求體積.12、【解析】

利用,求得關(guān)于的遞推關(guān)系式,利用配湊法證得是等比數(shù)列,由此求得數(shù)列的通項(xiàng)公式,進(jìn)而求得的表達(dá)式,從而求得的值.【詳解】當(dāng)時(shí),.由于,而,故,故答案為:.【點(diǎn)睛】本小題主要考查配湊法求數(shù)列的通項(xiàng)公式,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.13、【解析】

由等差數(shù)列的前項(xiàng)和公式,代入計(jì)算即可.【詳解】已知為等差數(shù)列,且,,所以,解得或(舍)故答案為【點(diǎn)睛】本題考查了等差數(shù)列前項(xiàng)和公式的應(yīng)用,屬于基礎(chǔ)題.14、【解析】

本題利用幾何概型求解.先根據(jù)到點(diǎn)的距離等于1的點(diǎn)構(gòu)成圖象特征,求出其體積,最后利用體積比即可得點(diǎn)到點(diǎn),的距離不大于1的概率;【詳解】解:由題意可知,點(diǎn)P到點(diǎn)或的距離都不大于1的點(diǎn)組成的集合分別以、為球心,1為半徑的兩個(gè)半球,其體積為,又該圓柱的體積為,則所求概率為.故答案為:【點(diǎn)睛】本題主要考查幾何概型、圓柱和球的體積等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查空間想象力、化歸與轉(zhuǎn)化思想.關(guān)鍵是明確滿足題意的測(cè)度為體積比.15、【解析】

空間直角坐標(biāo)系中,關(guān)于原點(diǎn)對(duì)稱,每個(gè)坐標(biāo)變?yōu)樵瓉?lái)的相反數(shù).【詳解】空間直角坐標(biāo)系中,關(guān)于原點(diǎn)對(duì)稱,每個(gè)坐標(biāo)變?yōu)樵瓉?lái)的相反數(shù).點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)的坐標(biāo)為故答案為:【點(diǎn)睛】本題考查了空間直角坐標(biāo)系關(guān)于原點(diǎn)對(duì)稱,屬于簡(jiǎn)單題.16、【解析】

由,化簡(jiǎn)得,則為等差數(shù)列,結(jié)合已知條件得.【詳解】由,化簡(jiǎn)得,且,,得,所以是以為首項(xiàng),以為公差的等差數(shù)列,所以,即故答案為:【點(diǎn)睛】本題考查了數(shù)列的遞推式,考查了判斷數(shù)列是等差數(shù)列的方法,屬于中檔題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)①具有“性質(zhì)2”,②不具有“性質(zhì)4”;(2);(3)存在.【解析】

(1)①根據(jù)題意需要判斷的真假即可②根據(jù)題意判斷是否成立即可得出結(jié)論;(2)根據(jù)具有性質(zhì)2可求出的范圍,由存在性問(wèn)題成立轉(zhuǎn)化為,根據(jù)函數(shù)的性質(zhì)求最值即可求解.【詳解】(1)①因?yàn)?,成?所以,故,0具有“性質(zhì)2”②因?yàn)?,設(shè),則設(shè),對(duì)稱軸為,所以函數(shù)在上單調(diào)遞減,當(dāng)時(shí),,所以當(dāng)時(shí),不恒成立,即不成立,故(),0不具有“性質(zhì)4”.(2)因?yàn)椋?具有“性質(zhì)2”所以化簡(jiǎn)得解得或.因?yàn)榇嬖诩埃沟贸闪?,所以存在及使即?令,則,當(dāng)時(shí),,所以在上是增函數(shù),所以時(shí),,當(dāng)時(shí),,故時(shí),因?yàn)樵谏蠁握{(diào)遞減,在上單調(diào)遞增,所以,故只需滿足即可,解得.(3)假設(shè)具有“性質(zhì)2018”,則,即證明在任意2019個(gè)互不相同的實(shí)數(shù)中,一定存在兩個(gè)實(shí)數(shù),滿足:.證明:由,令,由萬(wàn)能公式知,將等分成2018個(gè)小區(qū)間,則這2019個(gè)數(shù)必然有兩個(gè)數(shù)落在同一個(gè)區(qū)間,令其為:,即,也就是說(shuō),在,,,這2019個(gè)數(shù)中,一定有兩個(gè)數(shù)滿足,即一定存在兩個(gè)實(shí)數(shù),滿足,從而得證.【點(diǎn)睛】本題主要考查了不等式的證明,根據(jù)存在性問(wèn)題求參數(shù)的取值范圍,三角函數(shù)的單調(diào)性,萬(wàn)能公式,考查了創(chuàng)新能力,屬于難題.18、(1)4(2)【解析】

(1)求得圓的半徑,設(shè)出圓的標(biāo)準(zhǔn)方程,由此求得兩點(diǎn)坐標(biāo),進(jìn)而求得三角形的面積.(2)根據(jù),判斷出,由直線的斜率求得直線的斜率,以此列方程求得,根據(jù)直線和圓相交,圓心到直線的距離小于半徑,確定,同時(shí)得到圓心到直線的距離.【詳解】(1)根據(jù)題意,以點(diǎn)(a∈R,且a≠0)為圓心的圓過(guò)坐標(biāo)原點(diǎn)O,設(shè)圓C的半徑為r,則r2=a2,圓C的方程為(x﹣a)2+(y)2=a2,令x=0可得:y=0或,則B(0,),令y=0可得:x=0或2a,則A(2a,0),△OAB的面積S|2a|×||=4;(2)根據(jù)題意,直線l:y=﹣2x+4與圓C交于點(diǎn)P、Q,則|CP|=|CQ|,又由|OP|=|OQ|,則直線OC與PQ垂直,又由直線l即PQ的方程為y=﹣2x+4,則KOC,解可得a=±2,當(dāng)a=2時(shí),圓心C的坐標(biāo)為(2,1),圓心到直線l的距離d,r,r>d,此時(shí)直線l與圓相交,符合題意;當(dāng)a=2時(shí),圓心C的坐標(biāo)為(﹣2,﹣1),圓心到直線l的距離d,r,r<d,此時(shí)直線l與圓相離,不符合題意;故圓心C到直線l的距離d.【點(diǎn)睛】本小題主要考查圓的標(biāo)準(zhǔn)方程,考查直線和圓的位置關(guān)系,考查兩條直線的位置關(guān)系,考查運(yùn)算求解能力,屬于中檔題.19、(1)(2),【解析】

(1)利用同角三角函數(shù)間的基本關(guān)系化簡(jiǎn)函數(shù)解析式后,分三種情況、和討論,根據(jù)二次函數(shù)求最小值的方法求出的最小值的值即可;(2)把代入到第一問(wèn)的的第二和第三個(gè)解析式中,求出的值,代入中得到的解析式,利用配方可得的最大值.【詳解】(1)由題意,函數(shù)∵,∴,若,即,則當(dāng)時(shí),取得最小值,.若,即,則當(dāng)時(shí),取得最小值,.若即,則當(dāng)時(shí),取得最小值,,∴.(2)由(1)及題意,得當(dāng)時(shí),令,解得或(舍去);當(dāng)時(shí),令,解得(舍去),綜上,,此時(shí),則時(shí),取得最大值.【點(diǎn)睛】本題主要考查了利用二次函數(shù)的方法求三角函數(shù)的最值,要求熟練掌握余弦函數(shù)圖象與性質(zhì),其中解答中合理轉(zhuǎn)化為二次函數(shù)的圖象與性質(zhì)進(jìn)行求解是解答的關(guān)鍵,著重考查了轉(zhuǎn)化思想,以及推理與運(yùn)算能力,屬于中檔試題.20、(1);(2).【解析】

(1)根據(jù)平面向量加法和數(shù)乘的坐標(biāo)表示公式、數(shù)量積的坐標(biāo)表示公式,結(jié)合兩個(gè)互相垂直的平面向量數(shù)量積為零,進(jìn)行求解即可;(2)利用平面向量夾角公式進(jìn)行求解即可.【詳解】(1)當(dāng)時(shí),.因?yàn)?,所以;?)當(dāng)時(shí),所以有,因?yàn)榕c的夾角為,所以有.【點(diǎn)睛】本題考查了平面向量運(yùn)算的坐標(biāo)表示公式,考查了平面向量夾角公式,考查了數(shù)學(xué)運(yùn)算能力.21、(1)證明見解析;(2)證明見解析;(3)【解析】

(1)取的中點(diǎn),連接,,從而

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。