2024屆吉林省汪清縣達標名校十校聯(lián)考最后數(shù)學試題含解析_第1頁
2024屆吉林省汪清縣達標名校十校聯(lián)考最后數(shù)學試題含解析_第2頁
2024屆吉林省汪清縣達標名校十校聯(lián)考最后數(shù)學試題含解析_第3頁
2024屆吉林省汪清縣達標名校十校聯(lián)考最后數(shù)學試題含解析_第4頁
2024屆吉林省汪清縣達標名校十校聯(lián)考最后數(shù)學試題含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2024屆吉林省汪清縣達標名校十校聯(lián)考最后數(shù)學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.“a是實數(shù),”這一事件是()A.不可能事件 B.不確定事件 C.隨機事件 D.必然事件2.如圖,A、B、C是⊙O上的三點,∠BAC=30°,則∠BOC的大小是()A.30° B.60° C.90° D.45°3.已知二次函數(shù)(為常數(shù)),當自變量的值滿足時,與其對應的函數(shù)值的最小值為4,則的值為()A.1或5 B.或3 C.或1 D.或54.如圖,AB∥CD,點E在線段BC上,CD=CE,若∠ABC=30°,則∠D為()A.85° B.75° C.60° D.30°5.某小組在“用頻率估計概率”的試驗中,統(tǒng)計了某種結果出現(xiàn)的頻率,繪制了如圖所示的折線圖,那么符合這一結果的試驗最有可能的是()A.在裝有1個紅球和2個白球(除顏色外完全相同)的不透明袋子里隨機摸出一個球是“白球”B.從一副撲克牌中任意抽取一張,這張牌是“紅色的”C.擲一枚質地均勻的硬幣,落地時結果是“正面朝上”D.擲一個質地均勻的正六面體骰子,落地時面朝上的點數(shù)是66.已知關于x的二次函數(shù)y=x2﹣2x﹣2,當a≤x≤a+2時,函數(shù)有最大值1,則a的值為()A.﹣1或1 B.1或﹣3 C.﹣1或3 D.3或﹣37.如圖,四邊形ABCD是平行四邊形,點E在BA的延長線上,點F在BC的延長線上,連接EF,分別交AD,CD于點G,H,則下列結論錯誤的是()A. B. C. D.8.下列幾何體是棱錐的是()A. B. C. D.9.下列對一元二次方程x2+x﹣3=0根的情況的判斷,正確的是()A.有兩個不相等實數(shù)根 B.有兩個相等實數(shù)根C.有且只有一個實數(shù)根 D.沒有實數(shù)根10.據(jù)調(diào)查,某班20為女同學所穿鞋子的尺碼如表所示,尺碼(碼)3435363738人數(shù)251021則鞋子尺碼的眾數(shù)和中位數(shù)分別是()A.35碼,35碼 B.35碼,36碼 C.36碼,35碼 D.36碼,36碼二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,O是坐標原點,菱形OABC的頂點A的坐標為(﹣3,﹣4),頂點C在x軸的負半軸上,函數(shù)y=(x<0)的圖象經(jīng)過菱形OABC中心E點,則k的值為_____.12.如圖,四邊形ABCD是菱形,∠BAD=60°,AB=6,對角線AC與BD相交于點O,點E在AC上,若OE=2,則CE的長為_______13.如圖,已知,要使,還需添加一個條件,則可以添加的條件是.(只寫一個即可,不需要添加輔助線)14.如圖所示,在四邊形ABCD中,AD⊥AB,∠C=110°,它的一個外角∠ADE=60°,則∠B的大小是_____.15.若有意義,則x的范圍是_____.16.因式分解:_______________________.三、解答題(共8題,共72分)17.(8分)如圖所示,在△ABC中,BO、CO是角平分線.∠ABC=50°,∠ACB=60°,求∠BOC的度數(shù),并說明理由.題(1)中,如將“∠ABC=50°,∠ACB=60°”改為“∠A=70°”,求∠BOC的度數(shù).若∠A=n°,求∠BOC的度數(shù).18.(8分)在數(shù)學活動課上,老師提出了一個問題:把一副三角尺如圖擺放,直角三角尺的兩條直角邊分別垂直或平行,60°角的頂點在另一個三角尺的斜邊上移動,在這個運動過程中,有哪些變量,能研究它們之間的關系嗎?小林選擇了其中一對變量,根據(jù)學習函數(shù)的經(jīng)驗,對它們之間的關系進行了探究.下面是小林的探究過程,請補充完整:(1)畫出幾何圖形,明確條件和探究對象;如圖2,在Rt△ABC中,∠C=90°,AC=BC=6cm,D是線段AB上一動點,射線DE⊥BC于點E,∠EDF=60°,射線DF與射線AC交于點F.設B,E兩點間的距離為xcm,E,F(xiàn)兩點間的距離為ycm.(2)通過取點、畫圖、測量,得到了x與y的幾組值,如下表:x/cm0123456y/cm6.95.34.03.34.56(說明:補全表格時相關數(shù)據(jù)保留一位小數(shù))(3)建立平面直角坐標系,描出以補全后的表中各對對應值為坐標的點,畫出該函數(shù)的圖象;(4)結合畫出的函數(shù)圖象,解決問題:當△DEF為等邊三角形時,BE的長度約為cm.19.(8分)在□ABCD,過點D作DE⊥AB于點E,點F在邊CD上,DF=BE,連接AF,BF.求證:四邊形BFDE是矩形;若CF=3,BF=4,DF=5,求證:AF平分∠DAB.20.(8分)先化簡,再求值:,其中x=.21.(8分)已知:如圖,在半徑是4的⊙O中,AB、CD是兩條直徑,M是OB的中點,CM的延長線交⊙O于點E,且EM>MC,連接DE,DE=.(1)求證:△AMC∽△EMB;(2)求EM的長;(3)求sin∠EOB的值.22.(10分)甲班有45人,乙班有39人.現(xiàn)在需要從甲、乙班各抽調(diào)一些同學去參加歌詠比賽.如果從甲班抽調(diào)的人數(shù)比乙班多1人,那么甲班剩余人數(shù)恰好是乙班剩余人數(shù)的2倍.請問從甲、乙兩班各抽調(diào)了多少參加歌詠比賽?23.(12分)如圖,在△ABC中,D為AC上一點,且CD=CB,以BC為直徑作☉O,交BD于點E,連接CE,過D作DFAB于點F,∠BCD=2∠ABD.(1)求證:AB是☉O的切線;(2)若∠A=60°,DF=,求☉O的直徑BC的長.24.如圖,△ABC中,∠A=90°,AB=AC=4,D是BC邊上一點,將點D繞點A逆時針旋轉60°得到點E,連接CE.(1)當點E在BC邊上時,畫出圖形并求出∠BAD的度數(shù);(2)當△CDE為等腰三角形時,求∠BAD的度數(shù);(3)在點D的運動過程中,求CE的最小值.(參考數(shù)值:sin75°=,cos75°=,tan75°=)

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】是實數(shù),||一定大于等于0,是必然事件,故選D.2、B【解析】【分析】欲求∠BOC,又已知一圓周角∠BAC,可利用圓周角與圓心角的關系求解.【詳解】∵∠BAC=30°,∴∠BOC=2∠BAC=60°(同弧所對的圓周角是圓心角的一半),故選B.【點睛】本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.3、D【解析】

由解析式可知該函數(shù)在時取得最小值0,拋物線開口向上,當時,y隨x的增大而增大;當時,y隨x的增大而減小;根據(jù)時,函數(shù)的最小值為4可分如下三種情況:①若,時,y取得最小值4;②若-1<h<3時,當x=h時,y取得最小值為0,不是4;③若,當x=3時,y取得最小值4,分別列出關于h的方程求解即可.【詳解】解:∵當x>h時,y隨x的增大而增大,當時,y隨x的增大而減小,并且拋物線開口向上,

∴①若,當時,y取得最小值4,

可得:4,

解得或(舍去);

②若-1<h<3時,當x=h時,y取得最小值為0,不是4,

∴此種情況不符合題意,舍去;

③若-1≤x≤3<h,當x=3時,y取得最小值4,

可得:,

解得:h=5或h=1(舍).

綜上所述,h的值為-3或5,

故選:D.【點睛】本題主要考查二次函數(shù)的性質和最值,根據(jù)二次函數(shù)的性質和最值分類討論是解題的關鍵.4、B【解析】分析:先由AB∥CD,得∠C=∠ABC=30°,CD=CE,得∠D=∠CED,再根據(jù)三角形內(nèi)角和定理得,∠C+∠D+∠CED=180°,即30°+2∠D=180°,從而求出∠D.詳解:∵AB∥CD,∴∠C=∠ABC=30°,又∵CD=CE,∴∠D=∠CED,∵∠C+∠D+∠CED=180°,即30°+2∠D=180°,∴∠D=75°.故選B.點睛:此題考查的是平行線的性質及三角形內(nèi)角和定理,解題的關鍵是先根據(jù)平行線的性質求出∠C,再由CD=CE得出∠D=∠CED,由三角形內(nèi)角和定理求出∠D.5、D【解析】

根據(jù)統(tǒng)計圖可知,試驗結果在0.16附近波動,即其概率P≈0.16,計算四個選項的概率,約為0.16者即為正確答案.【詳解】根據(jù)圖中信息,某種結果出現(xiàn)的頻率約為0.16,在裝有1個紅球和2個白球(除顏色外完全相同)的不透明袋子里隨機摸出一個球是“白球”的概率為≈0.67>0.16,故A選項不符合題意,從一副撲克牌中任意抽取一張,這張牌是“紅色的”概率為≈0.48>0.16,故B選項不符合題意,擲一枚質地均勻的硬幣,落地時結果是“正面朝上”的概率是=0.5>0.16,故C選項不符合題意,擲一個質地均勻的正六面體骰子,落地時面朝上的點數(shù)是6的概率是≈0.16,故D選項符合題意,故選D.【點睛】本題考查了利用頻率估計概率,大量反復試驗下頻率穩(wěn)定值即概率.用到的知識點為:頻率=所求情況數(shù)與總情況數(shù)之比.熟練掌握概率公式是解題關鍵.6、A【解析】分析:詳解:∵當a≤x≤a+2時,函數(shù)有最大值1,∴1=x2-2x-2,解得:,即-1≤x≤3,∴a=-1或a+2=-1,∴a=-1或1,故選A.點睛:本題考查了求二次函數(shù)的最大(小)值的方法,注意:只有當自變量x在整個取值范圍內(nèi),函數(shù)值y才在頂點處取最值,而當自變量取值范圍只有一部分時,必須結合二次函數(shù)的增減性及對稱軸判斷何處取最大值,何處取最小值.7、C【解析】試題解析:∵四邊形ABCD是平行四邊形,故選C.8、D【解析】分析:根據(jù)棱錐的概念判斷即可.A是三棱柱,錯誤;B是圓柱,錯誤;C是圓錐,錯誤;D是四棱錐,正確.故選D.點睛:本題考查了立體圖形的識別,關鍵是根據(jù)棱錐的概念判斷.9、A【解析】【分析】根據(jù)方程的系數(shù)結合根的判別式,即可得出△=13>0,進而即可得出方程x2+x﹣3=0有兩個不相等的實數(shù)根.【詳解】∵a=1,b=1,c=﹣3,∴△=b2﹣4ac=12﹣4×(1)×(﹣3)=13>0,∴方程x2+x﹣3=0有兩個不相等的實數(shù)根,故選A.【點睛】本題考查了根的判別式,一元二次方程根的情況與判別式△的關系:(1)△>0?方程有兩個不相等的實數(shù)根;(2)△=0?方程有兩個相等的實數(shù)根;(3)△<0?方程沒有實數(shù)根.10、D【解析】

眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),注意眾數(shù)可以不止一個;找中位數(shù)要把數(shù)據(jù)按從小到大的順序排列,位于最中間的一個數(shù)(或兩個數(shù)的平均數(shù))為中位數(shù).【詳解】數(shù)據(jù)36出現(xiàn)了10次,次數(shù)最多,所以眾數(shù)為36,一共有20個數(shù)據(jù),位置處于中間的數(shù)是:36,36,所以中位數(shù)是(36+36)÷2=36.故選D.【點睛】考查中位數(shù)與眾數(shù),掌握眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),注意眾數(shù)可以不止一個;找中位數(shù)要把數(shù)據(jù)按從小到大的順序排列,位于最中間的一個數(shù)(或兩個數(shù)的平均數(shù))為中位數(shù)是解題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、8【解析】

根據(jù)反比例函數(shù)的性質結合點的坐標利用勾股定理解答.【詳解】解:菱形OABC的頂點A的坐標為(-3,-4),OA=OC=則點B的橫坐標為-5-3=-8,點B的坐標為(-8,-4),點C的坐標為(-5,0)則點E的坐標為(-4,-2),將點E的坐標帶入y=(x<0)中,得k=8.給答案為:8.【點睛】此題重點考察學生對反比例函數(shù)性質的理解,掌握坐標軸點的求法和菱形性質是解題的關鍵.12、5或【解析】分析:由菱形的性質證出△ABD是等邊三角形,得出BD=AB=6,由勾股定理得出,即可得出答案.詳解:∵四邊形ABCD是菱形,∴AB=AD=6,AC⊥BD,OB=OD,OA=OC,∵∴△ABD是等邊三角形,∴BD=AB=6,∴∴∴∵點E在AC上,∴當E在點O左邊時當點E在點O右邊時∴或;故答案為或.點睛:考查菱形的性質,注意分類討論思想在數(shù)學中的應用,不要漏解.13、可添∠ABD=∠CBD或AD=CD.【解析】

由AB=BC結合圖形可知這兩個三角形有兩組邊對應相等,添加一組邊利用SSS證明全等,也可以添加一對夾角相等,利用SAS證明全等,據(jù)此即可得答案.【詳解】.可添∠ABD=∠CBD或AD=CD,①∠ABD=∠CBD,在△ABD和△CBD中,∵,∴△ABD≌△CBD(SAS);②AD=CD,在△ABD和△CBD中,∵,∴△ABD≌△CBD(SSS),故答案為∠ABD=∠CBD或AD=CD.【點睛】本題考查了三角形全等的判定,結合圖形與已知條件靈活應用全等三角形的判定方法是解題的關鍵.熟記全等三角形的判定方法有:SSS,SAS,ASA,AAS.14、40°【解析】【分析】根據(jù)外角的概念求出∠ADC的度數(shù),再根據(jù)垂直的定義、四邊形的內(nèi)角和等于360°進行求解即可得.【詳解】∵∠ADE=60°,∴∠ADC=120°,∵AD⊥AB,∴∠DAB=90°,∴∠B=360°﹣∠C﹣∠ADC﹣∠A=40°,故答案為40°.【點睛】本題考查了多邊形的內(nèi)角和外角,掌握四邊形的內(nèi)角和等于360°、外角的概念是解題的關鍵.15、x≤1.【解析】

根據(jù)二次根式有意義的條件、分式有意義的條件列出不等式,解不等式即可.【詳解】依題意得:1﹣x≥0且x﹣3≠0,解得:x≤1.故答案是:x≤1.【點睛】本題主要考查了二次根式和分式有意義的條件,關鍵是掌握二次根式中的被開方數(shù)必須是非負數(shù),分式有意義的條件是分母不等于零.16、【解析】

先提公因式,再用平方差公式分解.【詳解】解:【點睛】本題考查因式分解,掌握因式分解方法是關鍵.三、解答題(共8題,共72分)17、(1)125°;(2)125°;(3)∠BOC=90°+n°.【解析】

如圖,由BO、CO是角平分線得∠ABC=2∠1,∠ACB=2∠2,再利用三角形內(nèi)角和得到∠ABC+∠ACB+∠A=180°,則2∠1+2∠2+∠A=180°,接著再根據(jù)三角形內(nèi)角和得到∠1+∠2+∠BOC=180°,利用等式的性質進行變換可得∠BOC=90°+∠A,然后根據(jù)此結論分別解決(1)、(2)、(3).【詳解】如圖,∵BO、CO是角平分線,∴∠ABC=2∠1,∠ACB=2∠2,∵∠ABC+∠ACB+∠A=180°,∴2∠1+2∠2+∠A=180°,∵∠1+∠2+∠BOC=180°,∴2∠1+2∠2+2∠BOC=360°,∴2∠BOC﹣∠A=180°,∴∠BOC=90°+∠A,(1)∵∠ABC=50°,∠ACB=60°,∴∠A=180°﹣50°﹣60°=70°,∴∠BOC=90°+×70°=125°;(2)∠BOC=90°+∠A=125°;(3)∠BOC=90°+n°.【點睛】本題考查了三角形內(nèi)角和定理:三角形內(nèi)角和是180°.主要用在求三角形中角的度數(shù):①直接根據(jù)兩已知角求第三個角;②依據(jù)三角形中角的關系,用代數(shù)方法求三個角;③在直角三角形中,已知一銳角可利用兩銳角互余求另一銳角.18、(1)見解析;(1)3.5;(3)見解析;(4)3.1【解析】

根據(jù)題意作圖測量即可.【詳解】(1)取點、畫圖、測量,得到數(shù)據(jù)為3.5故答案為:3.5(3)由數(shù)據(jù)得(4)當△DEF為等邊三角形是,EF=DE,由∠B=45°,射線DE⊥BC于點E,則BE=EF.即y=x所以,當(1)中圖象與直線y=x相交時,交點橫坐標即為BE的長,由作圖、測量可知x約為3.1.【點睛】本題為動點問題的函數(shù)圖象探究題,解得關鍵是按照題意畫圖測量,并將條件轉化成函數(shù)圖象研究.19、(1)見解析(2)見解析【解析】試題分析:(1)根據(jù)平行四邊形的性質,可得AB與CD的關系,根據(jù)平行四邊形的判定,可得BFDE是平行四邊形,再根據(jù)矩形的判定,可得答案;(2)根據(jù)平行線的性質,可得∠DFA=∠FAB,根據(jù)等腰三角形的判定與性質,可得∠DAF=∠DFA,根據(jù)角平分線的判定,可得答案.試題分析:(1)證明:∵四邊形ABCD是平行四邊形,∴AB∥CD.∵BE∥DF,BE=DF,∴四邊形BFDE是平行四邊形.∵DE⊥AB,∴∠DEB=90°,∴四邊形BFDE是矩形;(2)∵四邊形ABCD是平行四邊形,∴AB∥DC,∴∠DFA=∠FAB.在Rt△BCF中,由勾股定理,得BC===5,∴AD=BC=DF=5,∴∠DAF=∠DFA,∴∠DAF=∠FAB,即AF平分∠DAB.【點睛】本題考查了平行四邊形的性質,利用了平行四邊形的性質,矩形的判定,等腰三角形的判定與性質,利用等腰三角形的判定與性質得出∠DAF=∠DFA是解題關鍵.20、1+【解析】

先把小括號內(nèi)的通分,按照分式的減法和分式除法法則進行化簡,再把字母的值代入運算即可.【詳解】解:原式當時,原式=【點睛】考查分式的混合運算,掌握運算順序是解題的關鍵.21、(1)證明見解析;(2)EM=4;(3)sin∠EOB=.【解析】

(1)連接A、C,E、B點,那么只需要求出△AMC和△EMB相似,即可求出結論,根據(jù)圓周角定理可推出它們的對應角相等,即可得△AMC∽△EMB;

(2)根據(jù)圓周角定理,結合勾股定理,可以推出EC的長度,根據(jù)已知條件推出AM、BM的長度,然后結合(1)的結論,很容易就可求出EM的長度;

(3)過點E作EF⊥AB,垂足為點F,通過作輔助線,解直角三角形,結合已知條件和(1)(2)所求的值,可推出Rt△EOF各邊的長度,根據(jù)銳角三角函數(shù)的定義,便可求得sin∠EOB的值.【詳解】(1)證明:連接AC、EB,如圖1,∵∠A=∠BEC,∠B=∠ACM,∴△AMC∽△EMB;(2)解:∵DC是⊙O的直徑,∴∠DEC=90°,∴DE2+EC2=DC2,∵DE=,CD=8,且EC為正數(shù),∴EC=7,∵M為OB的中點,∴BM=2,AM=6,∵AM?BM=EM?CM=EM(EC﹣EM)=EM(7﹣EM)=12,且EM>MC,∴EM=4;(3)解:過點E作EF⊥AB,垂足為點F,如圖2,∵OE=4,EM=4,∴OE=EM,∴OF=FM=1,∴EF=,∴sin∠EOB=.【點睛】本題考查了圓心角、弧、弦、弦心距的關系與相似三角形的判定與性質,解題的關鍵是熟練的掌握圓心角、弧、弦、弦心距的關系與相似三角形的判定與性質.22、從甲班抽調(diào)了35人,從乙班抽調(diào)了1人【解析】分析:首先設從甲班抽調(diào)了x人,那么從乙班抽調(diào)了(x﹣1)人,根據(jù)題意列出一元一次方程,從而得出答案.詳解:設從甲班抽調(diào)了x人,那么從乙班抽調(diào)了(x﹣1)人,由題意得,45﹣x=2[39﹣(x﹣1)],解得:x=35,則x﹣1=35﹣1=1.答:從甲班抽調(diào)了35人,從乙班抽調(diào)了1人.點睛:本題主要考查的是一元一次方程的應用,屬于基礎題型.理解題目的含義,找出等量關系是解題的關鍵.23、(1)證明過程見解析;(2)【解析】

(1)根據(jù)CB=CD得出∠CBD=∠CDB,然后結合∠BCD=2∠ABD得出∠ABD=∠BCE,從而得出∠CBD+∠ABD=∠CBD+∠BCE=90°,然后得出切線;(2)根據(jù)Rt△AFD和Rt△BFD的性質得出AF和DF的長度,然后根據(jù)△ADF和△ACB相似得出相似比,從而得出BC的長度.【詳解】(1)∵CB=CD∴∠CBD=∠CDB又∵∠CEB=90°∴∠CBD+∠BCE=∠CDE+∠DCE∴∠BCE=∠DCE且∠BCD=2∠ABD∴∠ABD=∠BCE∴∠CBD+∠ABD=∠CBD+∠BCE=90°∴CB⊥AB垂足為B又∵CB為直徑∴AB是⊙O的切線.(2)∵∠A=60°,DF=∴在Rt△AFD中得出AF=1在Rt△BFD中得出DF=3∵∠ADF=∠ACB∠A=∠A∴△ADF∽△ACB∴即解得:CB=考點:(1)圓的切線的判定;(2)三角函數(shù);(3)三角形相似的判定24、(1)∠BAD=15°;(2)∠BAC=45°或∠BAD=60°;(3)CE=.【解析】

(1)如圖1中,當點E在BC上時.只要證明△BAD≌△CAE,即可推出∠BAD=∠CAE=(90°-60°)=15°;(2)分兩種情形求解①如圖2中,當BD=DC時,易知AD=CD=DE,此時△DEC是等腰三角形

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論