2024屆天津市靜海縣第一中學、楊村一中、寶坻一中等六校數(shù)學高一下期末質量跟蹤監(jiān)視試題含解析_第1頁
2024屆天津市靜海縣第一中學、楊村一中、寶坻一中等六校數(shù)學高一下期末質量跟蹤監(jiān)視試題含解析_第2頁
2024屆天津市靜??h第一中學、楊村一中、寶坻一中等六校數(shù)學高一下期末質量跟蹤監(jiān)視試題含解析_第3頁
2024屆天津市靜海縣第一中學、楊村一中、寶坻一中等六校數(shù)學高一下期末質量跟蹤監(jiān)視試題含解析_第4頁
2024屆天津市靜??h第一中學、楊村一中、寶坻一中等六校數(shù)學高一下期末質量跟蹤監(jiān)視試題含解析_第5頁
已閱讀5頁,還剩9頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆天津市靜海縣第一中學、楊村一中、寶坻一中等六校數(shù)學高一下期末質量跟蹤監(jiān)視試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.圓的半徑為()A.1 B.2 C.3 D.42.已知向量,,若,則()A. B. C. D.3.在某種新型材料的研制中,實驗人員獲得了下列一組實驗數(shù)據(jù):現(xiàn)準備用下列四個函數(shù)中的一個近似地表示這些數(shù)據(jù)的規(guī)律,其中最接近的一個是()345.156.1264.04187.51218.01A. B. C. D.4.已知平面向量,,若與同向,則實數(shù)的值是()A. B. C. D.5.已知變量與負相關,且由觀測數(shù)據(jù)算得樣本平均數(shù),則由該觀測數(shù)據(jù)算得的線性回歸方程可能是A. B.C. D.6.設全集,集合,則()A. B. C. D.7.若,,且,則與的夾角是()A. B. C. D.8.已知是兩條不同的直線,是三個不同的平面,則下列命題正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,則9.已知平面向量,,,,在下列命題中:①存在唯一的實數(shù),使得;②為單位向量,且,則;③;④與共線,與共線,則與共線;⑤若且,則.正確命題的序號是()A.①④⑤ B.②③④ C.①⑤ D.②③10.已知中,,,若,則的坐標為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知向量,,若向量與垂直,則__________.12.若是等比數(shù)列,,,且公比為整數(shù),則______.13.在等比數(shù)列中,,,則_____.14.設實數(shù)滿足,則的最小值為_____15.方程在區(qū)間內解的個數(shù)是________16.已知a,b,x均為正數(shù),且a>b,則____(填“>”、“<”或“=”).三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.求過點且與圓相切的直線方程.18.已知數(shù)列滿足:.(1)證明數(shù)列是等比數(shù)列,并求數(shù)列的通項;(2)求數(shù)列的前項和.19.2019年,我國施行個人所得稅專項附加扣除辦法,涉及子女教育、繼續(xù)教育、大病醫(yī)療、住房貸款利息或者住房租金、贍養(yǎng)老人等六項專項附加扣除.某單位老、中、青員工分別有人,現(xiàn)采用分層抽樣的方法,從該單位上述員工中抽取人調查專項附加扣除的享受情況.(Ⅰ)應從老、中、青員工中分別抽取多少人?(Ⅱ)抽取的25人中,享受至少兩項專項附加扣除的員工有6人,分別記為.享受情況如下表,其中“”表示享受,“×”表示不享受.現(xiàn)從這6人中隨機抽取2人接受采訪.員工項目ABCDEF子女教育○○×○×○繼續(xù)教育××○×○○大病醫(yī)療×××○××住房貸款利息○○××○○住房租金××○×××贍養(yǎng)老人○○×××○(i)試用所給字母列舉出所有可能的抽取結果;(ii)設為事件“抽取的2人享受的專項附加扣除至少有一項相同”,求事件發(fā)生的概率.20.在△ABC中,中線長AM=2.(1)若=-2,求證:++=0;(2)若P為中線AM上的一個動點,求·(+)的最小值.21.在四棱錐中,底面是平行四邊形,平面,點,分別為,的中點,且,,.(1)證明:平面;(2)求直線與平面所成角的余弦值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】

將圓的一般方程化為標準方程,確定所求.【詳解】因為圓,所以,所以,故選A.【點睛】本題考查圓的標準方程與一般方程互化,圓的標準方程通過展開化為一般方程,圓的一般方程通過配方化為標準方程,屬于簡單題.2、D【解析】

由共線向量的坐標表示可得出關于實數(shù)的方程,解出即可.【詳解】向量,,且,,解得.故選:D.【點睛】本題考查利用共線向量的坐標表示求參數(shù)的值,解題時要熟悉共線向量坐標之間的關系,考查計算能力,屬于基礎題.3、A【解析】

由表中的數(shù)據(jù)分析得:自變量基本上是等速增加,相應的函數(shù)值增加的速度越來越快,結合基本初等函數(shù)的單調性,即可得出答案.【詳解】對于A:函數(shù)在是單調遞增,且函數(shù)值增加速度越來越快,將自變量代入,相應的函數(shù)值,比較接近,符合題意,所以正確;對于B:函數(shù)值隨著自變量增加是等速的,不合題意;對于C:函數(shù)值隨著自變量的增加比線性函數(shù)還緩慢,不合題意;選項D:函數(shù)值隨著自變量增加反而減少,不合題意.故選:A.【點睛】本題考查函數(shù)模型的選擇和應用問題,解題的關鍵是掌握各種基本初等函數(shù),如一次函數(shù),二次函數(shù),指數(shù)函數(shù),對數(shù)函數(shù)的圖像與性質,屬于基礎題.4、D【解析】

通過同向向量的性質即可得到答案.【詳解】與同向,,解得或(舍去),故選D.【點睛】本題主要考查平行向量的坐標運算,但注意同向,難度較小.5、D【解析】

由于變量與負相關,得回歸直線的斜率為負數(shù),再由回歸直線經(jīng)過樣本點的中心,得到可能的回歸直線方程.【詳解】由于變量與負相關,排除A,B,把代入直線得:成立,所以在直線上,故選D.【點睛】本題考查回歸直線斜率的正負、回歸直線過樣本點中心,考查基本數(shù)據(jù)處理能力.6、B【解析】

先求出,由此能求出.【詳解】∵全集,集合,∴,∴.故選B.【點睛】本題主要考查集合、并集、補集的運算等基本知識,體現(xiàn)運算能力、邏輯推理等數(shù)學核心素養(yǎng).7、B【解析】

根據(jù)相互垂直的向量數(shù)量積為零,求出與的夾角.【詳解】由題有,即,故,因為,所以.故選:B.【點睛】本題考查了向量的數(shù)量積運算,向量夾角的求解,屬于基礎題.8、D【解析】

根據(jù)空間線、面的位置關系有關定理,對四個選項逐一分析排除,由此得出正確選項.【詳解】對于A選項,直線有可能在平面內,故A選項錯誤.對于B選項,兩個平面有可能相交,平行于它們的交線,故B選項錯誤.對于C選項,可能平行,故C選項錯誤.根據(jù)線面垂直的性質定理可知D選項正確.故選D.【點睛】本小題主要考查空間線、面位置關系的判斷,屬于基礎題.9、D【解析】

分別根據(jù)向量的平行、模、數(shù)量積即可解決。【詳解】當為零向量時不滿足,①錯;當為零向量時④錯,對于⑤:兩個向量相乘,等于模相乘再乘以夾角的余弦值,與有可能夾角不一樣或者的模不一樣,兩個向量相等要保證方向、模都相同才可以,因此選擇D【點睛】本題主要考查了向量的共線,零向量。屬于基礎題。10、A【解析】

根據(jù),,可得;由可得M為BC中點,即可求得的坐標,進而利用即可求解.【詳解】因為,所以因為,即M為BC中點所以所以所以選A【點睛】本題考查了向量的減法運算和線性運算,向量的坐標運算,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】,所以,解得.12、512【解析】

由題設條件知和是方程的兩個實數(shù)根,解方程并由公比q為整數(shù),知,,由此能夠求出公比,從而得到.【詳解】是等比數(shù)列,

,,

,,

和是方程的兩個實數(shù)根,

解方程,

得,,

公比q為整數(shù),

,,

,解得,

.故答案為:512【點睛】本題考查等比數(shù)列的通項公式的求法,利用了等比數(shù)列下標和的性質,是基礎題.解題時要認真審題,仔細解答,注意合理地進行等價轉化.13、1【解析】

由等比數(shù)列的性質可得,結合通項公式可得公比q,從而可得首項.【詳解】根據(jù)題意,等比數(shù)列中,其公比為,,則,解可得,又由,則有,則,則;故答案為:1.【點睛】本題考查等比數(shù)列的通項公式以及等比數(shù)列性質(其中m+n=p+q)的應用,也可以利用等比數(shù)列的基本量來解決.14、1.【解析】

由約束條件作出可行域,化目標函數(shù)為直線方程的斜截式,數(shù)形結合得到最優(yōu)解,把最優(yōu)解的坐標代入目標函數(shù)得答案.【詳解】解:由實數(shù)滿足作出可行域如圖,

由圖形可知:.

令,化為,

由圖可知,當直線過點時,直線在軸上的截距最小,有最小值為1.

故答案為:1.【點睛】本題考查簡單的線性規(guī)劃,考查了數(shù)形結合的解題思想方法,是中檔題.15、4.【解析】分析:通過二倍角公式化簡得到,進而推斷或,進而求得結果.詳解:,所以或,因為,所以或或或,故解的個數(shù)是4.點睛:該題考查的是有關方程解的個數(shù)問題,在解題的過程中,涉及到的知識點有正弦的倍角公式,方程的求解問題,注意一定不要兩邊除以,最后求得結果.16、<【解析】

直接利用作差比較法解答.【詳解】由題得,因為a>0,x+a>0,b-a<0,x>0,所以所以.故答案為<【點睛】本題主要考查作差比較法,意在考查學生對這些知識的理解掌握水平和分析推理能力.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、直線方程為或【解析】

當直線的斜率不存在時,直線方程為,滿足題意,當直線的斜率存在時,設出直線的方程,由圓心到直線的距離等于半徑,可解出的值,從而求出方程?!驹斀狻慨斨本€的斜率不存在時,直線方程為,經(jīng)檢驗,滿足題意.當直線的斜率存在時,設直線方程為,即,圓心到直線的距離等于半徑,即,可解得.即直線為.綜上,所求直線方程為或.【點睛】本題考查了圓的切線的求法,考查了直線的方程,考查了點到直線的距離公式,屬于基礎題。18、(1)見證明;(2)【解析】

(1)由變形得,即,從而可證得結論成立,進而可求出通項公式;(2)由(1)及條件可求出,然后根據(jù)分組求和法可得.【詳解】(1)證明:因為,所以.因為所以所以.又,所以是首項為,公比為2的等比數(shù)列,所以.(2)解:由(1)可得,所以.【點睛】證明數(shù)列為等比數(shù)列時,在得到后,不要忘了說明數(shù)列中沒有零項這一步驟.另外,對于數(shù)列的求和問題,解題時要根據(jù)通項公式的特點選擇合適的方法進行求解,屬于基礎題.19、(I)6人,9人,10人;(II)(i)見解析;(ii).【解析】

(I)根據(jù)題中所給的老、中、青員工人數(shù),求得人數(shù)比,利用分層抽樣要求每個個體被抽到的概率是相等的,結合樣本容量求得結果;(II)(I)根據(jù)6人中隨機抽取2人,將所有的結果一一列出;(ii)根據(jù)題意,找出滿足條件的基本事件,利用公式求得概率.【詳解】(I)由已知,老、中、青員工人數(shù)之比為,由于采取分層抽樣的方法從中抽取25位員工,因此應從老、中、青員工中分別抽取6人,9人,10人.(II)(i)從已知的6人中隨機抽取2人的所有可能結果為,,,,共15種;(ii)由表格知,符合題意的所有可能結果為,,,,共11種,所以,事件M發(fā)生的概率.【點睛】本小題主要考查隨機抽樣、用列舉法計算隨機事件所含的基本事件數(shù)、古典概型即其概率計算公式等基本知識,考查運用概率知識解決簡單實際問題的能力.20、(1)見解析;(2)最小值-2.【解析】

試題分析:(1)∵M是BC的中點,∴=(+).代入=-2,得=--,即++=0(2)若P為中線AM上的一個動點,若AM=2,我們易將·(+),轉化為-2||||=2(x-1)2-2的形式,然后根據(jù)二次函數(shù)在定區(qū)間上的最值的求法,得到答案.試題解析:(1)證明:∵M是BC的中點,∴=(+)代入=-2,得=--,即++=0(2)設||=x,則||=2-x(0≤x≤2)∵M是BC的中點,∴+=2∴·(+)=2·=-2||||=-2x(2-x)=2(x2-2x)=2(x-1)2-2,當x=1時,取最小值-2考點:平面向量數(shù)量積的運算.【詳解】請在此輸入詳解!21、(1)見解析(2)【解析】

(1)取中點,連接,,構造平行四邊形,由線線平行得到線面平行;(2)根據(jù)線面角的定義作出線面角,在直角三角形中求

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論