版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆新疆昌吉市高一數(shù)學(xué)第二學(xué)期期末教學(xué)質(zhì)量檢測模擬試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.的展開式中含的項的系數(shù)為()A.-1560 B.-600 C.600 D.15602.已知雙曲線的焦點與橢圓的焦點相同,則雙曲線的離心率為()A. B. C. D.23.若角的終邊經(jīng)過點,則()A. B. C. D.4.終邊在軸上的角的集合()A. B.C. D.5.將函數(shù)的圖象向左平移個長度單位后,所得到的圖象關(guān)于()對稱.A.軸 B.原點 C.直線 D.點6.若,,則方程有實數(shù)根的概率為()A. B. C. D.7.設(shè)直線l1:3x+2ay-5=0,l2:3a-1x-ay-2=0,若l1與A.-16 B.0或8.在投資生產(chǎn)產(chǎn)品時,每生產(chǎn)需要資金200萬,需場地,可獲得300萬;投資生產(chǎn)產(chǎn)品時,每生產(chǎn)需要資金300萬,需場地,可獲得200萬,現(xiàn)某單位可使用資金1400萬,場地,則投資這兩種產(chǎn)品,最大可獲利()A.1350萬 B.1475萬 C.1800萬 D.2100萬9.已知點,,若直線過原點,且、兩點到直線的距離相等,則直線的方程為()A.或 B.或C.或 D.或10.如圖,網(wǎng)格紙上小正方形的邊長為,粗線畫出的是某幾何體的三視圖,則此幾何體的體積為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.執(zhí)行如圖所示的程序框圖,則輸出的結(jié)果為__________.12.已知向量,,若與共線,則實數(shù)________.13.已知過兩點,的直線的傾斜角是,則______.14.一條河的兩岸平行,河的寬度為560m,一艘船從一岸出發(fā)到河對岸,已知船的靜水速度,水流速度,則行駛航程最短時,所用時間是__________(精確到).15.用數(shù)學(xué)歸納法證明不等式“(且)”的過程中,第一步:當(dāng)時,不等式左邊應(yīng)等于__________。16.已知,,那么的值是________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知,,求的值.18.如圖,已知四棱錐,底面是邊長為的菱形,,側(cè)面為正三角形,側(cè)面底面,為側(cè)棱的中點,為線段的中點(Ⅰ)求證:平面;(Ⅱ)求證:;(Ⅲ)求三棱錐的體積19.如圖,某快遞小哥從地出發(fā),沿小路以平均速度為20公里小時送快件到處,已知公里,,是等腰三角形,.(1)試問,快遞小哥能否在50分鐘內(nèi)將快件送到處?(2)快遞小哥出發(fā)15分鐘后,快遞公司發(fā)現(xiàn)快件有重大問題,由于通訊不暢,公司只能派車沿大路追趕,若汽車的平均速度為60公里小時,問,汽車能否先到達(dá)處?20.如圖,四棱柱的底面是菱形,平面,,,,點為的中點.(1)求證:直線平面;(2)求證:平面;(3)求直線與平面所成的角的正切值.21.在直三棱柱中,,,,分別是,的中點.(1)求證:平面;(2)求直線與平面所成角的正弦值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】的項可以由或的乘積得到,所以含的項的系數(shù)為,故選A.2、B【解析】根據(jù)橢圓可以知焦點為,離心率,故選B.3、B【解析】
根據(jù)任意角的三角函數(shù)的定義,可以直接求到本題答案.【詳解】因為點在角的終邊上,所以.故選:B【點睛】本題主要考查利用任意角的三角函數(shù)的定義求值.4、D【解析】
根據(jù)軸線角的定義即可求解.【詳解】A項,是終邊在軸正半軸的角的集合;B項,是終邊在軸的角的集合;C項,是終邊在軸正半軸的角的集合;D項,是終邊在軸的角的集合;綜上,D正確.故選:D【點睛】本題主要考查了軸線角的判斷,屬于基礎(chǔ)題.5、A【解析】
先利用輔助角公式將未變換后的函數(shù)解析式化簡,再根據(jù)圖象變換規(guī)律得出變換后的函數(shù)的解析式為,結(jié)合余弦函數(shù)的對稱性來進行判斷?!驹斀狻浚瘮?shù)的圖象向左平移個長度單位后得到,函數(shù)的圖象關(guān)于軸對稱,故選:A.【點睛】本題考查三角函數(shù)的圖象變換,以及三角函數(shù)的對稱性,在考查三角函數(shù)的基本性質(zhì)問題時,應(yīng)該將三角函數(shù)的解析式化為一般形式,并借助三角函數(shù)的圖象來理解。6、B【解析】方程有實數(shù)根,則:,即:,則:,如圖所示,由幾何概型計算公式可得,滿足題意的概率值為:.本題選擇B選項.7、B【解析】
通過兩條直線平行的關(guān)系,可建立關(guān)于a的方程,解方程求得結(jié)果。【詳解】l1//解得:a=0或-本題正確選項:B【點睛】本題考察直線位置關(guān)系問題。關(guān)鍵是通過兩直線平行,得到:A18、B【解析】
設(shè)生產(chǎn)產(chǎn)品x百噸,生產(chǎn)產(chǎn)品百噸,利潤為百萬元,先分析題意,找出相關(guān)量之間的不等關(guān)系,即滿足的約束條件,由約束條件畫出可行域;要求應(yīng)作怎樣的組合投資,可使獲利最大,即求可行域中的最優(yōu)解,在線性規(guī)劃的解答題中建議使用直線平移法求出最優(yōu)解,即將目標(biāo)函數(shù)看成是一條直線,分析目標(biāo)函數(shù)與直線截距的關(guān)系,進而求出最優(yōu)解.【詳解】設(shè)生產(chǎn)產(chǎn)品百噸,生產(chǎn)產(chǎn)品百噸,利潤為百萬元則約束條件為:,作出不等式組所表示的平面區(qū)域:目標(biāo)函數(shù)為.由解得.使目標(biāo)函數(shù)為化為要使得最大,即需要直線在軸的截距最大即可.由圖可知當(dāng)直線過點時截距最大.此時應(yīng)作生產(chǎn)產(chǎn)品3.25百噸,生產(chǎn)產(chǎn)品2.5百噸的組合投資,可使獲利最大.
故選:B.【點睛】在解決線性規(guī)劃的應(yīng)用題時,其步驟為:①分析題目中相關(guān)量的關(guān)系,列出不等式組,即約束條件?②由約束條件畫出可行域?③分析目標(biāo)函數(shù)Z與直線截距之間的關(guān)系?④使用平移直線法求出最優(yōu)解?⑤還原到現(xiàn)實問題中.屬于中檔題.9、A【解析】
分為斜率存在和不存在兩種情況,根據(jù)點到直線的距離公式得到答案.【詳解】當(dāng)斜率不存在時:直線過原點,驗證滿足條件.當(dāng)斜率存在時:直線過原點,設(shè)直線為:即故答案選A【點睛】本題考查了點到直線的距離公式,忽略斜率不存在的情況是容易犯的錯誤.10、B【解析】,,.選B.點睛:空間幾何體體積問題的常見類型及解題策略(1)若所給定的幾何體是可直接用公式求解的柱體、錐體或臺體,則可直接利用公式進行求解.(2)若所給定的幾何體的體積不能直接利用公式得出,則常用轉(zhuǎn)換法、分割法、補形法等方法進行求解.(3)若以三視圖的形式給出幾何體,則應(yīng)先根據(jù)三視圖得到幾何體的直觀圖,然后根據(jù)條件求解.二、填空題:本大題共6小題,每小題5分,共30分。11、1【解析】
由已知中的程序語句可知:該程序的功能是利用循環(huán)結(jié)構(gòu)計算S的值并輸出變量i的值,模擬程序的運行過程,分析循環(huán)中各變量值的變化情況,可得答案.【詳解】模擬程序的運行,可得
S=1,i=1
滿足條件S<40,執(zhí)行循環(huán)體,S=3,i=2
滿足條件S<40,執(zhí)行循環(huán)體,S=7,i=3
滿足條件S<40,執(zhí)行循環(huán)體,S=15,i=4
滿足條件S<40,執(zhí)行循環(huán)體,S=31,i=5
滿足條件S<40,執(zhí)行循環(huán)體,S=13,i=1
此時,不滿足條件S<40,退出循環(huán),輸出i的值為1.
故答案為:1.【點睛】本題主要考查的是程序框圖,屬于基礎(chǔ)題.在給出程序框圖求解輸出結(jié)果的試題中只要按照程序框圖規(guī)定的運算方法逐次計算,直到達(dá)到輸出條件即可.12、【解析】
根據(jù)平面向量的共線定理與坐標(biāo)表示,列方程求出x的值.【詳解】向量(3,﹣1),(x,2),若與共線,則3×2﹣(﹣1)?x=0,解得x=﹣1.故答案為﹣1.【點睛】本題考查了平面向量的共線定理與坐標(biāo)表示的應(yīng)用問題,是基礎(chǔ)題.13、【解析】
由兩點求斜率公式及斜率等于傾斜角的正切值列式求解.【詳解】解:由已知可得:,即,則.故答案為.【點睛】本題考查直線的斜率,考查直線傾斜角與斜率的關(guān)系,是基礎(chǔ)題.14、6【解析】
先確定船的方向,再求出船的速度和時間.【詳解】因為行程最短,所以船應(yīng)該朝上游的方向行駛,所以船的速度為km/h,所以所用時間是.故答案為6【點睛】本題主要考查平面向量的應(yīng)用,意在考查學(xué)生對該知識的理解掌握水平,屬于基礎(chǔ)題.15、【解析】
用數(shù)學(xué)歸納法證明不等式(且),第一步,即時,分母從3到6,列出式子,得到答案.【詳解】用數(shù)學(xué)歸納法證明不等式(且),第一步,時,左邊式子中每項的分母從3開始增大至6,所以應(yīng)是.即為答案.【點睛】本題考查數(shù)學(xué)歸納法的基本步驟,屬于簡單題.16、【解析】
首先根據(jù)題中條件求出角,然后代入即可.【詳解】由題知,,所以,故.故答案為:.【點睛】本題考查了特殊角的三角函數(shù)值,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、【解析】
∵,且,∴,則,∴===-.考點:本題考查了三角恒等變換18、(Ⅰ)見解析(Ⅱ)見解析(Ⅲ)【解析】
(Ⅰ)連接,交于點;根據(jù)三角形中位線可證得;由線面平行判定定理可證得結(jié)論;(Ⅱ)由等腰三角形三線合一可知;由面面垂直的性質(zhì)可知平面;根據(jù)線面垂直性質(zhì)可證得結(jié)論;(Ⅲ)利用體積橋的方式將所求三棱錐體積轉(zhuǎn)化為;根據(jù)已知長度和角度關(guān)系分別求得四邊形面積和高,代入得到結(jié)果.【詳解】(Ⅰ)證明:連接,交于點四邊形為菱形為中點又為中點平面,平面平面(Ⅱ)為正三角形,為中點平面平面,平面平面,平面平面,又平面(Ⅲ)為中點又,,由(Ⅱ)知,【點睛】本題考查立體幾何中線面平行、線線垂直關(guān)系的證明、三棱錐體積的求解問題;涉及到線面平行判定定理、面面垂直性質(zhì)定理和判定定理的應(yīng)用、體積橋的方式求解三棱錐體積等知識,屬于常考題型.19、(1)快遞小哥不能在50分鐘內(nèi)將快件送到處.(2)汽車能先到達(dá)處.【解析】試題分析:(1)由題意結(jié)合圖形,根據(jù)正弦定理可得,,求得的長,又,可求出快遞小哥從地到地的路程,再計算小哥到達(dá)地的時間,從而問題可得解;(2)由題意,可根據(jù)余弦定理分別算出與的長,計算汽車行馳的路程,從而求出汽車到達(dá)地所用的時間,計算其與步小哥所用時間相差是否有15分鐘,從而問題可得解.試題解析:(1)(公里),中,由,得(公里)于是,由知,快遞小哥不能在50分鐘內(nèi)將快件送到處.(2)在中,由,得(公里),在中,,由,得(公里),-由(分鐘)知,汽車能先到達(dá)處.點睛:此題主要考查了解三角形中正弦定理、余弦定理在實際生活中的應(yīng)用,以及關(guān)于路程問題的求解運算等方面的知識與技能,屬于中低檔題型,也是??碱}型.在此類問題中,總是正弦定理、余弦定理,以及相關(guān)聯(lián)的三角函數(shù)的知識,所以根據(jù)題目條件、圖形進行挖掘,找到與問題銜接處,從而尋找到問題的解決方案.20、(1)見解析;(2)見解析;(3)【解析】
(1)只需證明PO∥BD1,即可得BD1∥平面PAC;(2)只需證明AC⊥BD.DD1⊥AC.即可證明AC⊥平面BDD1B1(3)∠CPO就是直線CP與平面BDD1B1所成的角,在Rt△CPO中,tan∠CPO即可求解【詳解】(1)設(shè)和交于點,連結(jié),由于,分別是,的中點,故,∵平面,平面所以直線平面.(2)在四棱柱中,底面是菱形,則又平面,且平面,則,∵平面,平面,∴平面.(3)由(2)知平面.∴在平面內(nèi)的射影為∴是與平面所成的角因為,所以為正三角形∴,在中,.∴與平面所成的角
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 同步優(yōu)化設(shè)計2024年高中數(shù)學(xué)第一章直線與圓1.4兩條直線的平行與垂直課后篇鞏固提升含解析北師大版選擇性必修第一冊
- 專題11 課外閱讀(講義+試題) -2023年三升四語文暑假銜接課(統(tǒng)編版)
- 2024貸款購銷合同范本范文
- 2024養(yǎng)豬場轉(zhuǎn)讓合同(參考文本)
- 草藥基地合同范本(2篇)
- 2022年監(jiān)理合同(2篇)
- 關(guān)于試用期工作總結(jié)
- 頑固皮膚病康復(fù)經(jīng)驗分享
- 國際會展中心建設(shè)總承包合同
- 跨境電商快遞租賃合同
- 如何培養(yǎng)孩子的自信心課件
- 中醫(yī)藥膳學(xué)全套課件
- 頸脊髓損傷-匯總課件
- 齒輪故障診斷完美課課件
- 2023年中國鹽業(yè)集團有限公司校園招聘筆試題庫及答案解析
- 大班社會《特殊的車輛》課件
- 野生動物保護知識講座課件
- 早教托育園招商加盟商業(yè)計劃書
- 光色變奏-色彩基礎(chǔ)知識與應(yīng)用課件-高中美術(shù)人美版(2019)選修繪畫
- 前列腺癌的放化療護理
- 機場英語-Airport-English課件
評論
0/150
提交評論