版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
河南廣東聯(lián)考2023-2024學(xué)年高一下數(shù)學(xué)期末復(fù)習(xí)檢測(cè)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書(shū)寫(xiě),字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.某船從處向東偏北方向航行千米后到達(dá)處,然后朝西偏南的方向航行6千米到達(dá)處,則處與處之間的距離為()A.千米 B.千米 C.3千米 D.6千米2.為了治療某種疾病,研制了一種新藥,為確定該藥的療效,生物實(shí)驗(yàn)室有只小動(dòng)物,其中有3只注射過(guò)該新藥,若從這只小動(dòng)物中隨機(jī)取出只檢測(cè),則恰有只注射過(guò)該新藥的概率為()A. B. C. D.3.把函數(shù),圖象上所有的點(diǎn)向右平行移動(dòng)個(gè)單位長(zhǎng)度,橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,所得圖象對(duì)應(yīng)的函數(shù)為()A. B.C. D.4.已知直線傾斜角的范圍是,則此直線的斜率的取值范圍是()A. B.C. D.5.從裝有2個(gè)白球和2個(gè)黑球的口袋內(nèi)任取兩個(gè)球,那么互斥而不對(duì)立的事件是A.至少有一個(gè)黑球與都是黑球 B.至少有一個(gè)黑球與至少有一個(gè)白球C.恰好有一個(gè)黑球與恰好有兩個(gè)黑球 D.至少有一個(gè)黑球與都是白球6.二進(jìn)制是計(jì)算機(jī)技術(shù)中廣泛采用的一種數(shù)制。二進(jìn)制數(shù)據(jù)是用0和1兩個(gè)數(shù)碼來(lái)表示的數(shù)。它的基數(shù)為2,進(jìn)位規(guī)則是“逢二進(jìn)一”,借位規(guī)則“借一當(dāng)二”。當(dāng)前的計(jì)算機(jī)系統(tǒng)使用的基本上是二進(jìn)制系統(tǒng),計(jì)算機(jī)中的二進(jìn)制則是一個(gè)非常微小的開(kāi)關(guān),用1來(lái)表示“開(kāi)”,用0來(lái)表示“關(guān)”。如圖所示,把十進(jìn)制數(shù)1010化為二進(jìn)制數(shù)(1010)2,十進(jìn)制數(shù)9910化為二進(jìn)制數(shù)11000112,把二進(jìn)制數(shù)(10110A.932 B.931 C.107.若向量滿足:與的夾角為,且,則的最小值是()A.1 B. C. D.28.生活中有這樣一個(gè)實(shí)際問(wèn)題:如果一杯糖水不夠甜,可以選擇加糖的方式,使得糖水變得更甜.若,則下列數(shù)學(xué)模型中最能刻畫(huà)“糖水變得更甜”的是()A. B.C. D.9.如圖,正方形的邊長(zhǎng)為a,以A,C為圓心,正方形邊長(zhǎng)為半徑分別作圓,在正方形內(nèi)隨機(jī)取一點(diǎn),則此點(diǎn)取自陰影部分的概率是()A.2-π2 B.2-π310.宋元時(shí)期數(shù)學(xué)名著《算學(xué)啟蒙》中有關(guān)于“松竹并生”的問(wèn)題:松長(zhǎng)五尺,竹長(zhǎng)兩尺,松日自半,竹日自倍,松竹何日而長(zhǎng)等.如圖是源于其思想的一個(gè)程序框圖,若輸入的a,b分別為5,2,則輸出的()A.5 B.4 C.3 D.9二、填空題:本大題共6小題,每小題5分,共30分。11.抽樣調(diào)查某地區(qū)名教師的年齡和學(xué)歷狀況,情況如下餅圖:則估計(jì)該地區(qū)歲以下具有研究生學(xué)歷的教師百分比為_(kāi)______.12.已知函數(shù)在時(shí)取得最小值,則________.13.當(dāng)時(shí),的最大值為_(kāi)_________.14.設(shè)是公比為的等比數(shù)列,,令,若數(shù)列有連續(xù)四項(xiàng)在集合中,則=.15.已知向量,且,則_______.16.?dāng)?shù)列滿足,設(shè)為數(shù)列的前項(xiàng)和,則__________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.設(shè)數(shù)列的前項(xiàng)和為,對(duì)于,,其中是常數(shù).(1)試討論:數(shù)列在什么條件下為等比數(shù)列,請(qǐng)說(shuō)明理由;(2)設(shè),且對(duì)任意的,有意義,數(shù)列的前項(xiàng)和為.若,求的最大值.18.在如圖所示的幾何體中,D是AC的中點(diǎn),EF∥DB.(Ⅰ)已知AB=BC,AE=EC.求證:AC⊥FB;(Ⅱ)已知G,H分別是EC和FB的中點(diǎn).求證:GH∥平面ABC.19.已知函數(shù)為奇函數(shù).(1)求實(shí)數(shù)的值并證明函數(shù)的單調(diào)性;(2)解關(guān)于不等式:.20.已知函數(shù).(1)求函數(shù)的單調(diào)遞增區(qū)間;(2)在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且,,求△ABC的面積的最大值.21.年北京市進(jìn)行人口抽樣調(diào)查,隨機(jī)抽取了某區(qū)居民人,記錄他們的年齡,將數(shù)據(jù)分成組:,,,…,并整理得到如下頻率分布直方圖:(Ⅰ)從該區(qū)中隨機(jī)抽取一人,估計(jì)其年齡不小于的概率;(Ⅱ)估計(jì)該區(qū)居民年齡的中位數(shù)(精確到);(Ⅲ)假設(shè)同組中的每個(gè)數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代替,估計(jì)該區(qū)居民的平均年齡.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、B【解析】
通過(guò)余弦定理可得答案.【詳解】設(shè)處與處之間的距離為千米,由余弦定理可得,則.【點(diǎn)睛】本題主要考查余弦定理的實(shí)際應(yīng)用,難度不大.2、B【解析】
將只注射過(guò)新藥和未注射過(guò)新藥的小動(dòng)物分別編號(hào),列出所有的基本事件,并確定事件“恰有只注射過(guò)該新藥”所包含的基本事件的數(shù)目,然后利用古典概型的概率計(jì)算公式可該事件的概率.【詳解】將只注射過(guò)新藥的小動(dòng)物編號(hào)為、、,只未注射新藥的小動(dòng)物編號(hào)為、、,記事件恰有只注射過(guò)該新藥,所有的基本事件有:、、、、、、、、、、、、、、,共個(gè),其中事件所包含的基本事件個(gè)數(shù)為個(gè),由古典概型的概率公式得,故選B.【點(diǎn)睛】本題考查古典概型的概率公式,列舉基本事件是解題的關(guān)鍵,一般在列舉基本事件有枚舉法和數(shù)狀圖法,列舉時(shí)應(yīng)注意不重不漏,考查計(jì)算能力,屬于中等題.3、C【解析】
利用二倍角的余弦公式以及輔助角公式將函數(shù)化為的形式,然后再利用三角函數(shù)的圖像變換即可求解.【詳解】函數(shù),函數(shù)圖象上所有的點(diǎn)向右平行移動(dòng)個(gè)單位長(zhǎng)度可得,在將橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,可得.故選:C【點(diǎn)睛】本題考查了二倍角的余弦公式、輔助角公式以及三角函數(shù)的圖像平移伸縮變換,需熟記公式,屬于基礎(chǔ)題.4、B【解析】
根據(jù)直線的斜率等于傾斜角的正切值求解即可.【詳解】因?yàn)橹本€傾斜角的范圍是,又直線的斜率,.故或.故.故選:B【點(diǎn)睛】本題主要考查了直線斜率與傾斜角的關(guān)系,屬于基礎(chǔ)題.5、C【解析】
列舉每個(gè)事件所包含的基本事件,結(jié)合互斥事件和對(duì)立事件的定義,依次驗(yàn)證即可【詳解】對(duì)于A:事件:“至少有一個(gè)黑球”與事件:“都是黑球”可以同時(shí)發(fā)生,如:兩個(gè)都是黑球,∴這兩個(gè)事件不是互斥事件,∴A不正確對(duì)于B:事件:“至少有一個(gè)黑球”與事件:“至少有一個(gè)白球”可以同時(shí)發(fā)生,如:一個(gè)白球一個(gè)黑球,∴B不正確對(duì)于C:事件:“恰好有一個(gè)黑球”與事件:“恰有兩個(gè)黑球”不能同時(shí)發(fā)生,但從口袋中任取兩個(gè)球時(shí)還有可能是兩個(gè)都是白球,∴兩個(gè)事件是互斥事件但不是對(duì)立事件,∴C正確對(duì)于D:事件:“至少有一個(gè)黑球”與“都是白球”不能同時(shí)發(fā)生,但一定會(huì)有一個(gè)發(fā)生,∴這兩個(gè)事件是對(duì)立事件,∴D不正確故選C.【點(diǎn)睛】本題考查互斥事件與對(duì)立事件.首先要求理解互斥事件和對(duì)立事件的定義,理解互斥事件與對(duì)立事件的聯(lián)系與區(qū)別.同時(shí)要能夠準(zhǔn)確列舉某一事件所包含的基本事件.屬簡(jiǎn)單題6、D【解析】
利用古典概型的概率公式求解.【詳解】二進(jìn)制的后五位的排列總數(shù)為25二進(jìn)制的后五位恰好有三個(gè)“1”的個(gè)數(shù)為C5由古典概型的概率公式得P=10故選:D【點(diǎn)睛】本題主要考查排列組合的應(yīng)用,考查古典概型的概率的計(jì)算,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平,屬于基礎(chǔ)題.7、D【解析】
設(shè)作圖,由可知點(diǎn)在以線段為直徑的圓上,由圖可知,,代入所求不等式利用圓的特征化簡(jiǎn)即可.【詳解】如圖,設(shè),取線段的中點(diǎn)為,連接OE交圓于點(diǎn)D,因?yàn)榧?,所以點(diǎn)在以線段為直徑的圓上(E為圓心),且,于是.故選:D【點(diǎn)睛】本題考查向量的線性運(yùn)算,垂直向量的數(shù)量積表示,幾何圖形在向量運(yùn)算中的應(yīng)用,屬于中檔題.8、B【解析】
由題意可得糖水甜可用濃度體現(xiàn),設(shè)糖的量為,糖水的量設(shè)為,添加糖的量為,對(duì)照選項(xiàng),即可得到結(jié)論.【詳解】由題意,若,設(shè)糖的量為,糖水的量設(shè)為,添加糖的量為,選項(xiàng)A,C不能說(shuō)明糖水變得更甜,糖水甜可用濃度體現(xiàn),而,能體現(xiàn)糖水變甜;選項(xiàng)D等價(jià)于,不成立,故選:B.【點(diǎn)睛】本題主要考查了不等式在實(shí)際生活中的運(yùn)用,考查不等式的等價(jià)變形,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.9、D【解析】
將陰影部分拆分成兩個(gè)小弓形,從而可求解出陰影部分面積,根據(jù)幾何概型求得所求概率.【詳解】如圖所示:陰影部分可拆分為兩個(gè)小弓形則陰影部分面積:S正方形面積:S=∴所求概率P=本題正確選項(xiàng):D【點(diǎn)睛】本題考查利用幾何概型求解概率問(wèn)題,屬于基礎(chǔ)題.10、B【解析】
由已知中的程序框圖可知:該程序的功能是利用循環(huán)結(jié)構(gòu)計(jì)算并輸出,分析循環(huán)中各變量的變化情況,可得答案.【詳解】當(dāng)時(shí),,,滿足進(jìn)行循環(huán)的條件;當(dāng)時(shí),,,滿足進(jìn)行循環(huán)的條件;當(dāng)時(shí),,,滿足進(jìn)行循環(huán)的條件;當(dāng)時(shí),,,不滿足進(jìn)行循環(huán)的條件;故選:B【點(diǎn)睛】本題主要考查程序框圖,解題的關(guān)鍵是讀懂流程圖各個(gè)變量的變化情況,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
根據(jù)餅狀圖中的歲以下本科學(xué)歷人數(shù)和占比可求得歲以下教師總?cè)藬?shù),從而可得其中的具有研究生學(xué)歷的教師人數(shù),進(jìn)而得到所求的百分比.【詳解】由歲以下本科學(xué)歷人數(shù)和占比可知,歲以下教師總?cè)藬?shù)為:人歲以下有研究生學(xué)歷的教師人數(shù)為:人歲以下有研究生學(xué)歷的教師的百分比為:本題正確結(jié)果:【點(diǎn)睛】本題考查利用餅狀圖計(jì)算總體中的數(shù)據(jù)分布和頻率分布的問(wèn)題,屬于基礎(chǔ)題.12、【解析】試題分析:因?yàn)椋?,?dāng)且僅當(dāng)即,由題意,解得考點(diǎn):基本不等式13、-3.【解析】
將函數(shù)的表達(dá)式改寫(xiě)為:利用均值不等式得到答案.【詳解】當(dāng)時(shí),故答案為-3【點(diǎn)睛】本題考查了均值不等式,利用一正二定三相等將函數(shù)變形是解題的關(guān)鍵.14、【解析】
考查等價(jià)轉(zhuǎn)化能力和分析問(wèn)題的能力,等比數(shù)列的通項(xiàng),有連續(xù)四項(xiàng)在集合,四項(xiàng)成等比數(shù)列,公比為,=-9.15、【解析】
先由向量共線,求出,再由向量模的坐標(biāo)表示,即可得出結(jié)果.【詳解】因?yàn)?,且,所以,解得,所以,因?故答案為【點(diǎn)睛】本題主要考查求向量的模,熟記向量共線的坐標(biāo)表示,以及向量模的坐標(biāo)表示即可,屬于基礎(chǔ)題型.16、【解析】
先利用裂項(xiàng)求和法將數(shù)列的通項(xiàng)化簡(jiǎn),并求出,由此可得出的值.【詳解】,.,因此,,故答案為:.【點(diǎn)睛】本題考查裂項(xiàng)法求和,要理解裂項(xiàng)求和法對(duì)數(shù)列通項(xiàng)結(jié)構(gòu)的要求,并熟悉裂項(xiàng)法求和的基本步驟,考查計(jì)算能力,屬于中等題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)當(dāng),且時(shí),數(shù)列一定為等比數(shù)列.理由見(jiàn)解析;(2)【解析】
(1)利用等比數(shù)列的定義證明數(shù)列為等比數(shù)列.(2)利用(1)的結(jié)論,進(jìn)一步求出數(shù)列的和及最大值.【詳解】解:(1)對(duì)于,,,①.②①減②得,即,,.當(dāng),且時(shí),數(shù)列一定為等比數(shù)列.(2)由(1)得,,由,得,即(或)由可解得.所以,.【點(diǎn)睛】本題考查的知識(shí)要點(diǎn):數(shù)列的通項(xiàng)公式的求法及應(yīng)用,疊加法在求數(shù)列的通項(xiàng)公式中的應(yīng)用,主要考查學(xué)生的運(yùn)算能力和轉(zhuǎn)化能力,屬于基礎(chǔ)題型.18、(Ⅰ)證明:見(jiàn)解析;(Ⅱ)見(jiàn)解析.【解析】試題分析:(Ⅰ)根據(jù),知與確定一個(gè)平面,連接,得到,,從而平面,證得.(Ⅱ)設(shè)的中點(diǎn)為,連,在,中,由三角形中位線定理可得線線平行,證得平面平面,進(jìn)一步得到平面.試題解析:(Ⅰ)證明:因,所以與確定平面.連接,因?yàn)闉榈闹悬c(diǎn),所以,同理可得.又,所以平面,因?yàn)槠矫?,所?(Ⅱ)設(shè)的中點(diǎn)為,連.在中,因?yàn)槭堑闹悬c(diǎn),所以,又,所以.在中,因?yàn)槭堑闹悬c(diǎn),所以,又,所以平面平面,因?yàn)槠矫妫云矫?【考點(diǎn)】平行關(guān)系,垂直關(guān)系【名師點(diǎn)睛】本題主要考查直線與直線垂直、直線與平面平行.此類題目是立體幾何中的基本問(wèn)題.解答本題,關(guān)鍵在于能利用已知的直線與直線、直線與平面、平面與平面的位置關(guān)系,通過(guò)嚴(yán)密推理,給出規(guī)范的證明.本題能較好地考查考生的空間想象能力、邏輯推理能力及轉(zhuǎn)化與化歸思想等.19、(1)2,證明見(jiàn)解析(2)【解析】
(1)由函數(shù)為奇函數(shù),得,化簡(jiǎn)得,所以,.再轉(zhuǎn)化函數(shù)為,由定義法證明單調(diào)性.(2)將可化為,構(gòu)造函數(shù),再由在上是單調(diào)遞增函數(shù)求解.【詳解】(1)根據(jù)題意,因?yàn)楹瘮?shù)為奇函數(shù),所以,即,即,即,化簡(jiǎn)得,所以.所以,證明:任取且,則因?yàn)?,所以,,,,所以∴,所以在上單調(diào)遞增;(2)可化為,設(shè)函數(shù),由(1)可知,在上也是單調(diào)遞增,所以,即,解得.【點(diǎn)睛】本題主要考查了函數(shù)的單調(diào)性和奇偶性的應(yīng)用,還考查了運(yùn)算求解的能力,屬于中檔題.20、(1),(2)【解析】
(1)利用二倍角公式、輔助角公式進(jìn)行化簡(jiǎn),,然后根據(jù)單調(diào)區(qū)間對(duì)應(yīng)的的公式求解單調(diào)區(qū)間;(2)根據(jù)計(jì)算出的值,再利用余弦定理計(jì)算出的最大值則可求面積的最大值,注意不等式取等號(hào)條件.【詳解】解:(1)∴函數(shù)的單調(diào)遞增區(qū)間為,(2)由(1)知得(舍)或∴有余弦定理得即∴當(dāng)且僅當(dāng)時(shí)取等號(hào)∴【點(diǎn)睛】(1)輔助角公式:;(2)三角形中,已知一邊及其對(duì)應(yīng)角時(shí),若要求解面積最大值,在未給定三角形形狀時(shí),可選用余弦定理求解更方便,若是給定三角形
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 含子女撫養(yǎng)的離婚協(xié)議書(shū)模板
- 企業(yè)運(yùn)營(yíng)管理咨詢協(xié)議樣本
- 2024工程挖掘機(jī)租賃合同標(biāo)準(zhǔn)范文
- 新住宅按揭貸款合同樣本
- 2024錄制合同模板
- 2024廣告刊登協(xié)議范本
- 動(dòng)物醫(yī)院聘用合同2024年
- 省級(jí)代理合作協(xié)議書(shū)的注意事項(xiàng)
- 我國(guó)自學(xué)考試網(wǎng)上輔導(dǎo)協(xié)議書(shū)樣本大全
- 2023年高考地理第一次模擬考試卷-(河北A卷)(全解全析)
- 福建省泉州市2024-2025學(xué)年高一上學(xué)期11月期中物理試題(無(wú)答案)
- 為犯罪嫌疑人提供法律咨詢委托協(xié)議范例
- 內(nèi)蒙古包頭市昆都侖區(qū)第九中學(xué)2024-2025學(xué)年八年級(jí)上學(xué)期期中考試道德與法治試題(含答案)
- 軟件平臺(tái)施工組織方案
- 經(jīng)濟(jì)師中級(jí)考試《經(jīng)濟(jì)基礎(chǔ)知識(shí)》歷年真題卷及答案解析
- 2024 smart汽車(chē)品牌用戶社區(qū)運(yùn)營(yíng)全案
- 國(guó)家開(kāi)放大學(xué)??啤稇?yīng)用寫(xiě)作(漢語(yǔ))》一平臺(tái)在線形考(形考任務(wù)一至七)試題及答案
- 登革熱診療方案(2024年版)解讀
- 期中 (試題) -2024-2025學(xué)年人教精通版英語(yǔ)六年級(jí)上冊(cè)
- 期刊編輯的學(xué)術(shù)期刊論文寫(xiě)作指導(dǎo)考核試卷
- 教科版小學(xué)科學(xué)五年級(jí)上冊(cè)教案(全冊(cè))
評(píng)論
0/150
提交評(píng)論