版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
江蘇省無錫市江陰市2023-2024學年高一數(shù)學第二學期期末檢測模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知直線,,若,則()A.2 B. C. D.12.已知等比數(shù)列的前n項和為,若,,,則()A. B. C. D.3.已知函數(shù),則下列結(jié)論不正確的是()A.是的一個周期 B.C.的值域為R D.的圖象關于點對稱4.若是的重心,,,分別是角的對邊,若,則角()A. B. C. D.5.在等比數(shù)列中,則()A.81 B. C. D.2436.若樣本數(shù)據(jù),,…,的方差為2,則數(shù)據(jù),,…,的方差為()A.4 B.8 C.16 D.327.下列命題正確的是()A.若,則 B.若,則C.若,,則 D.若,,則8.已知點,,直線的方程為,且與線段相交,則直線的斜率的取值范圍為()A. B. C. D.9.已知圓的圓心為(-2,1),其一條直徑的兩個端點恰好在兩坐標軸上,則這個圓的方程是()A. B.C. D.10.不等式的解集是A.或 B.或C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.下列命題:①函數(shù)的最小正周期是;②在直角坐標系中,點,將向量繞點逆時針旋轉(zhuǎn)得到向量,則點的坐標是;③在同一直角坐標系中,函數(shù)的圖象和函數(shù)的圖象有兩個公共點;④函數(shù)在上是增函數(shù).其中,正確的命題是________(填正確命題的序號).12.已知,若,則______.13.若三角形ABC的三個角A,B,C成等差數(shù)列,a,b,c分別為角A,B,C的對邊,三角形ABC的面積,則b的最小值是________.14.已知數(shù)列是等比數(shù)列,公比為,且,,則_________.15.已知,,且,若恒成立,則實數(shù)的取值范圍是____.16.若,則________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.2019年是中華人民共和國成立70周年,某校黨支部舉辦了一場“我和我的祖國”知識競賽,滿分100分,回收40份答卷,成績均落在區(qū)間內(nèi),將成績繪制成如下的頻率分布直方圖.(1)估計知識競賽成績的中位數(shù)和平均數(shù);(2)從,分數(shù)段中,按分層抽樣隨機抽取5份答卷,再從對應的黨員中選出3位黨員參加縣級交流會,求選出的3位黨員中有2位成績來自于分數(shù)段的概率.18.已知.(1)設,求滿足的實數(shù)的值;(2)若為上的奇函數(shù),試求函數(shù)的反函數(shù).19.已知平面向量,,,其中,(1)若為單位向量,且,求的坐標;(2)若且與垂直,求向量,夾角的余弦值.20.在中,內(nèi)角A,B,C的對邊分別為a,b,c,且滿足.(1)求內(nèi)角B的大??;(2)設,,的最大值為5,求k的值.21.如圖,在三棱柱中,各個側(cè)面均是邊長為的正方形,為線段的中點.(1)求證:直線平面;(2)求直線與平面所成角的余弦值;(3)設為線段上任意一點,在內(nèi)的平面區(qū)域(包括邊界)是否存在點,使,并說明理由.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】
當為,為,若,則,由此求解即可【詳解】由題,因為,所以,即,故選:D【點睛】本題考查已知直線垂直求參數(shù)問題,屬于基礎題2、D【解析】
根據(jù)等比數(shù)列前n項和的性質(zhì)可知、、成等比數(shù)列,即可得關于的等式,化簡即可得解.【詳解】等比數(shù)列的前n項和為,若,,根據(jù)等比數(shù)列前n項和性質(zhì)可知,、、滿足:化簡可得故選:D【點睛】本題考查了等比數(shù)列前n項和的性質(zhì)及簡單應用,屬于基礎題.3、B【解析】
利用正切函數(shù)的圖像和性質(zhì)對每一個選項逐一分析得解.【詳解】A.的最小正周期為,所以是的一個周期,所以該選項正確;B.所以該選項是錯誤的;C.的值域為R,所以該選項是正確的;D.的圖象關于點對稱,所以該選項是正確的.故選B【點睛】本題主要考查正切函數(shù)的圖像和性質(zhì),意在考查學生對該知識的理解掌握水平,屬于基礎題.4、D【解析】試題分析:由于是的重心,,,代入得,整理得,,因此,故答案為D.考點:1、平面向量基本定理;2、余弦定理的應用.5、A【解析】解:因為等比數(shù)列中,則,選A6、B【解析】
根據(jù),則即可求解.【詳解】因為樣本數(shù)據(jù),,…,的方差為2,所以,,…,的方差為,故選B.【點睛】本題主要考查了方差的概念及求法,屬于容易題.7、C【解析】
對每一個選項進行判斷,選出正確的答案.【詳解】A.若,則,取不成立B.若,則,取不成立C.若,,則,正確D.若,,則,取不成立故答案選C【點睛】本題考查了不等式的性質(zhì),找出反例是解題的關鍵.8、A【解析】
直線過定點,利用直線的斜率公式分別計算出直線,和的斜率,根據(jù)斜率的單調(diào)性即可求斜率的取值范圍.【詳解】解:直線整理為即可知道直線過定點,作出直線和點對應的圖象如圖:,,,,,要使直線與線段相交,則直線的斜率滿足或,或即直線的斜率的取值范圍是,故選.【點睛】本題考查直線斜率的求法,利用數(shù)形結(jié)合確定直線斜率的取值范圍,屬于基礎題.9、C【解析】設直徑的兩個端點分別A(a,2)、B(2,b),圓心C為點(-1,1),由中點坐標公式得解得a=-4,b=1.∴半徑r=∴圓的方程是:(x+1)1+(y-1)1=5,即x1+y1+4x-1y=2.故選C.10、C【解析】
把原不等式化簡為,即可求解不等式的解集.【詳解】由不等式即,即,得,則不等式的解集為,故選C.【點睛】本題主要考查了一元二次不等式的求解,其中把不等式對應的一元二次方程能夠因式分解,即能夠轉(zhuǎn)化為幾個代數(shù)式的乘積形式是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、①②④【解析】
由余弦函數(shù)的周期公式可判斷①;由任意角的三角函數(shù)定義可判斷②;由余弦函數(shù)和一次函數(shù)的圖象可判斷③;由誘導公式和余弦函數(shù)的單調(diào)性可判斷④.【詳解】函數(shù)y=cos(﹣2x)即y=cos2x的最小正周期是π,故①正確;在直角坐標系xOy中,點P(a,b),將向量繞點O逆時針旋轉(zhuǎn)90°得到向量,設a=rcosα,b=rsinα,可得rcos(90°+α)=﹣rsinα=﹣b,rsin(90°+α)=rcosα=a,則點Q的坐標是(﹣b,a),故②正確;在同一直角坐標系中,函數(shù)y=cosx的圖象和函數(shù)y=x的圖象有一個公共點,故③錯誤;函數(shù)y=sin(x)即y=﹣cosx在[0,π]上是增函數(shù),故④正確.故答案為①②④.【點睛】本題考查余弦函數(shù)的圖象和性質(zhì),主要是周期性和單調(diào)性,考查數(shù)形結(jié)合思想和化簡運算能力,屬于基礎題.12、【解析】
由條件利用正切函數(shù)的單調(diào)性直接求出的值.【詳解】解:函數(shù)在上單調(diào)遞增,且,若,則,故答案為:.【點睛】本題主要考查正切函數(shù)的單調(diào)性,根據(jù)三角函數(shù)的值求角,屬于基礎題.13、【解析】
先求出,再根據(jù)面積得到,再利用余弦定理和基本不等式得解.【詳解】由題得,所以.由余弦定理得,當且僅當時取等.所以b的最小值是.故答案為:【點睛】本題主要考查余弦定理解三角形,考查基本不等式求最值,意在考查學生對這些知識的理解掌握水平.14、.【解析】
先利用等比中項的性質(zhì)計算出的值,然后由可求出的值.【詳解】由等比中項的性質(zhì)可得,得,所以,,,故答案為.【點睛】本題考查等比數(shù)列公比的計算,充分利用等比中項和等比數(shù)列相關性質(zhì)的應用,可簡化計算,屬于中等題.15、(-4,2)【解析】試題分析:因為當且僅當時取等號,所以考點:基本不等式求最值16、【解析】
觀察式子特征,直接寫出,即可求出。【詳解】觀察的式子特征,明確各項關系,以及首末兩項,即可寫出,所以,相比,增加了后兩項,少了第一項,故?!军c睛】本題主要考查學生的數(shù)學抽象能力,正確弄清式子特征是解題關鍵。三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)中位數(shù)為80.平均數(shù)為(2)【解析】
(1)由頻率分布直方圖可知,利用中位數(shù)和平均數(shù)的計算公式,即可求解.(2)由頻率分布直方圖可知,分別求得,分數(shù)段中答卷數(shù),利用列舉法求得基本事件的總數(shù),利用古典概型的概率計算公式,即可求解.【詳解】(1)由頻率分布直方圖可知,前3個小矩形的面積和為,后2個小矩形的面積和為,所以估計中位數(shù)為80.估計平均數(shù)為.(2)由頻率分布直方圖可知,分數(shù)段中答卷數(shù)分別為12,8,抽取比例為,所以,分數(shù)段中抽取的答卷數(shù)分別為3,2.記中對應的3為黨員為,,,中對應的2為黨員為,.則從中選出對應的3位黨員,共有不同的選法總數(shù)10種:,,,,,,,,,.易知有2位來自于分數(shù)段的有3種,故所求概率為.【點睛】本題主要考查了頻率分布直方圖的應用,以及古典概型及其概率的計算,其中解答中熟記頻率直方圖中中位數(shù)和平均數(shù)的計算方法,以及準確利用列舉法求得基本事件的總數(shù)是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.18、(1);(2).【解析】
(1)把代入函數(shù)解析式,代入方程即可求解.(2)由函數(shù)奇偶性得,然后求得的解析式,分段求解反函數(shù)即可.【詳解】(1)當時,,由,得,即,解得.(2)為上的奇函數(shù),,則.,由,,得,;由,,得,.函數(shù)的反函數(shù)為.【點睛】本題主要考查了函數(shù)的解析式及求法,考查了反函數(shù)的求法,屬于中檔題.19、(1)或;(2).【解析】
(1)設,根據(jù)和列出關于的方程求解即可.(2)根據(jù)垂直數(shù)量積為0,代入的模長,求解得.再根據(jù)夾角公式求解即可.【詳解】(1)設,由和可得:∴或,∴或(2)∵,即,又,,∴,∴向量,夾角的余弦值【點睛】本題主要考查了向量平行的性質(zhì)與單位向量的求解.同時也考查了根據(jù)數(shù)量積與模長求解向量夾角的方法等.屬于中檔題.20、(1),(2)【解析】
解:(1)(3分)又在中,,所以,則………(5分)(2),.………………(8分)又,所以,所以.所以當時,的最大值為.………(10分)………(12分)21、(1)見解析(2)(3)存在點,使,詳見解析【解析】
(1)設與的交點為,證明進而
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 城鎮(zhèn)用地交易合同范例
- 保利委托拍賣合同范例
- 二壩拆遷合同模板
- 農(nóng)民工求職合同范例
- 勞務公司兼職合同模板
- 凡爾賽新車銷售合同范例
- 制作合同范例簡易
- 外派人員合同范例
- 企業(yè)收購項目合同模板
- 借電纜合同范例
- 2023年七年級科技制作教案全冊
- 走進非遺-山東民間美術(shù)智慧樹知到答案2024年山東第二醫(yī)科大學
- 一年級上冊校本課程教案
- 新能源汽車構(gòu)造 課件 2-3 拆裝動力電池總成
- 傳承農(nóng)耕文化,深化勞動教育三篇模板05.24
- 消防員職業(yè)調(diào)查報告
- ISO14064-1 2018溫室氣體第1部組織層面上溫室氣體排放與清除量化及報告規(guī)范
- 便利店帶煙證轉(zhuǎn)讓合同范本
- DZ∕T 0227-2010 地質(zhì)巖心鉆探規(guī)程(正式版)
- 2024年遼寧醫(yī)藥職業(yè)學院單招職業(yè)適應性測試題庫必考題
- 2024中國郵政集團限公司云南省分公司招聘158人公開引進高層次人才和急需緊缺人才筆試參考題庫(共500題)答案詳解版
評論
0/150
提交評論