版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
海南省五指山中學(xué)2024年高一下數(shù)學(xué)期末聯(lián)考試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.的值等于()A. B.- C. D.-2.在△ABC中,sinA:sinB:sinC=4:3:2,則cosA的值是()A. B. C. D.3.若圓錐的高擴(kuò)大為原來的3倍,底面半徑縮短為原來的12A.縮小為原來的34 B.縮小為原來的C.?dāng)U大為原來的2倍 D.不變4.在ΔABC中,a,b,c分別為A,B,C的對(duì)邊,如果a,b,c成等差數(shù)列,B=30°,ΔABC的面積為32,那么b=A.1+32 B.1+3 C.5.如圖,正方體ABCD-A1B1C1D1的棱長為2,E是棱AB的中點(diǎn),F(xiàn)是側(cè)面AA1D1D內(nèi)一點(diǎn),若EF∥平面BB1D1D,則EF長度的范圍為()A. B. C. D.6.已知函數(shù)是連續(xù)的偶函數(shù),且時(shí),是單調(diào)函數(shù),則滿足的所有之積為()A. B. C. D.7.若關(guān)于的方程有且只有兩個(gè)不同的實(shí)數(shù)根,則實(shí)數(shù)的取值范圍是()A. B. C. D.8.已知2弧度的圓心角所對(duì)的弧長為2,則這個(gè)圓心角所對(duì)的弦長是()A. B. C. D.9.把函數(shù)的圖象經(jīng)過變化而得到的圖象,這個(gè)變化是()A.向左平移個(gè)單位 B.向右平移個(gè)單位C.向左平移個(gè)單位 D.向右平移個(gè)單位10.在等比數(shù)列中,若,則()A.3 B. C.9 D.13二、填空題:本大題共6小題,每小題5分,共30分。11.一組數(shù)據(jù)2,4,5,,7,9的眾數(shù)是2,則這組數(shù)據(jù)的中位數(shù)是_________.12.____________.13.若2弧度的圓心角所對(duì)的弧長為4cm,則這個(gè)圓心角所夾的扇形的面積是______.14.在200m高的山頂上,測得山下一塔頂與塔底的俯角分別是30°,60°,則塔高為15.為等比數(shù)列,若,則_______.16.函數(shù)的最小正周期是______.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.一個(gè)工廠在某年里連續(xù)10個(gè)月每月產(chǎn)品的總成本y(萬元)與該月產(chǎn)量x(萬件)之間有如下一組數(shù)據(jù):x1.081.121.191.281.361.481.591.681.801.87y2.252.372.402.552.642.752.923.033.143.26(1)通過畫散點(diǎn)圖,發(fā)現(xiàn)可用線性回歸模型擬合y與x的關(guān)系,請(qǐng)用相關(guān)系數(shù)加以說明;(2)①建立月總成本y與月產(chǎn)量x之間的回歸方程;②通過建立的y關(guān)于x的回歸方程,估計(jì)某月產(chǎn)量為1.98萬件時(shí),此時(shí)產(chǎn)品的總成本為多少萬元?(均精確到0.001)附注:①參考數(shù)據(jù):=14.45,=27.31,=0.850,=1.042,=1.1.②參考公式:相關(guān)系數(shù):r=.回歸方程=x+中斜率和截距的最小二乘估計(jì)公式分別為:=,=-18.據(jù)說偉大的阿基米德逝世后,敵軍將領(lǐng)馬塞拉斯給他建了一塊墓碑,在墓碑上刻了一個(gè)如圖所示的圖案,圖案中球的直徑、圓柱底面的直徑和圓柱的高相等,圓錐的頂點(diǎn)為圓柱上底面的圓心,圓錐的底面是圓柱的下底面.(1)試計(jì)算出圖案中球與圓柱的體積比;(2)假設(shè)球半徑.試計(jì)算出圖案中圓錐的體積和表面積.19.已知分別是的三個(gè)內(nèi)角所對(duì)的邊.(1)若的面積,求的值;(2)若,且,試判斷的形狀.20.如圖,四棱錐的底面為平行四邊形,為中點(diǎn).(1)求證:平面;(2)求證:平面.21.已知數(shù)列滿足,.(1)若,求證:數(shù)列為等比數(shù)列.(2)若,求.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、C【解析】
利用誘導(dǎo)公式把化簡成.【詳解】【點(diǎn)睛】本題考查誘導(dǎo)公式的應(yīng)用,即把任意角的三角函數(shù)轉(zhuǎn)化成銳角三角函數(shù),考查基本運(yùn)算求解能力.2、A【解析】
由正弦定理可得,再結(jié)合余弦定理求解即可.【詳解】解:因?yàn)樵凇鰽BC中,sinA:sinB:sinC=4:3:2,由正弦定理可得,不妨令,由余弦定理可得,故選:A.【點(diǎn)睛】本題考查了正弦定理及余弦定理,重點(diǎn)考查了運(yùn)算能力,屬基礎(chǔ)題.3、A【解析】
設(shè)原來的圓錐底面半徑為r,高為h,可得出變化后的圓錐的底面半徑為12r,高為【詳解】設(shè)原來的圓錐底面半徑為r,高為h,該圓錐的體積為V=1變化后的圓錐底面半徑為12r,高為該圓錐的體積為V'=1故選:A.【點(diǎn)睛】本題考查圓錐體積的計(jì)算,考查變化后的圓錐體積的變化,解題關(guān)鍵就是圓錐體積公式的應(yīng)用,考查計(jì)算能力,屬于中等題.4、B【解析】試題分析:由余弦定理得b2==14ac=32?ac=6,因?yàn)閍??,??考點(diǎn):余弦定理;三角形的面積公式.5、C【解析】
過作,交于點(diǎn),交于,根據(jù)線面垂直關(guān)系和勾股定理可知;由平面可證得面面平行關(guān)系,利用面面平行性質(zhì)可證得為中點(diǎn),從而得到最小值為重合,最大值為重合,計(jì)算可得結(jié)果.【詳解】過作,交于點(diǎn),交于,則底面平面,平面,平面平面,又平面平面又平面平面,平面為中點(diǎn)為中點(diǎn),則為中點(diǎn)即在線段上,,則線段長度的取值范圍為:本題正確選項(xiàng):【點(diǎn)睛】本題考查立體幾何中線段長度取值范圍的求解,關(guān)鍵是能夠確定動(dòng)點(diǎn)的具體位置,從而找到臨界狀態(tài);本題涉及到立體幾何中線面平行的性質(zhì)、面面平行的判定與性質(zhì)等定理的應(yīng)用.6、D【解析】
由y=f(x+2)為偶函數(shù)分析可得f(x)關(guān)于直線x=2對(duì)稱,進(jìn)而分析可得函數(shù)f(x)在(2,+∞)和(﹣∞,2)上都是單調(diào)函數(shù),據(jù)此可得若f(x)=f(1),則有x=1或4﹣x=1,變形為二次方程,結(jié)合根與系數(shù)的關(guān)系分析可得滿足f(x)=f(1)的所有x之積,即可得答案.【詳解】根據(jù)題意,函數(shù)y=f(x+2)為偶函數(shù),則函數(shù)f(x)關(guān)于直線x=2對(duì)稱,又由當(dāng)x>2時(shí),函數(shù)y=f(x)是單調(diào)函數(shù),則其在(﹣∞,2)上也是單調(diào)函數(shù),若f(x)=f(1),則有x=1或4﹣x=1,當(dāng)x=1時(shí),變形可得x2+3x﹣3=0,有2個(gè)根,且兩根之積為﹣3,當(dāng)4﹣x=1時(shí),變形可得x2+x﹣13=0,有2個(gè)根,且兩根之積為﹣13,則滿足f(x)=f(1)的所有x之積為(﹣3)×(﹣13)=39;故選:D.【點(diǎn)睛】本題考查抽象函數(shù)的應(yīng)用,涉及函數(shù)的對(duì)稱性與單調(diào)性的綜合應(yīng)用,屬于綜合題.7、B【解析】
方程化為,可轉(zhuǎn)化為半圓與直線有兩個(gè)不同交點(diǎn),作圖后易得.【詳解】由得由題意半圓與直線有兩個(gè)不同交點(diǎn),直線過定點(diǎn),作出半圓與直線,如圖,當(dāng)直線過時(shí),,,當(dāng)直線與半圓相切(位置)時(shí),由,解得.所以的取值范圍是.故選:B.【點(diǎn)睛】本題考查方程根的個(gè)數(shù)問題,把問題轉(zhuǎn)化為直線與半圓有兩個(gè)交點(diǎn)后利用數(shù)形結(jié)合思想可以方便求解.8、D【解析】
由弧長公式求出圓半徑,再在直角三角形中求解.【詳解】,如圖,設(shè)是中點(diǎn),則,,,∴.故選D.【點(diǎn)睛】本題考查扇形弧長公式,在求弦長時(shí),常在直角三角形中求解.9、B【解析】
試題分析:,與比較可知:只需將向右平移個(gè)單位即可考點(diǎn):三角函數(shù)化簡與平移10、A【解析】
根據(jù)等比數(shù)列性質(zhì)即可得解.【詳解】在等比數(shù)列中,,,所以,所以,.故選:A【點(diǎn)睛】此題考查等比數(shù)列的性質(zhì),根據(jù)性質(zhì)求數(shù)列中的項(xiàng)的關(guān)系,關(guān)鍵在于熟練掌握相關(guān)性質(zhì),準(zhǔn)確計(jì)算.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
根據(jù)眾數(shù)的定義求出的值,再根據(jù)中位數(shù)的定義進(jìn)行求解即可.【詳解】因?yàn)橐唤M數(shù)據(jù)2,4,5,,7,9的眾數(shù)是2,所以,這一組數(shù)據(jù)從小到大排列為:2,2,4,5,7,9,因此這一組數(shù)據(jù)的中位數(shù)為:.故答案為:【點(diǎn)睛】本題考查了眾數(shù)和中位數(shù)的定義,屬于基礎(chǔ)題.12、【解析】
在分式的分子和分母中同時(shí)除以,然后利用常見數(shù)列的極限可計(jì)算出所求極限值.【詳解】由題意得.故答案為:.【點(diǎn)睛】本題考查數(shù)列極限的計(jì)算,熟悉一些常見數(shù)列的極限是解題的關(guān)鍵,考查計(jì)算能力,屬于基礎(chǔ)題.13、【解析】
先求出扇形的半徑,再求這個(gè)圓心角所夾的扇形的面積.【詳解】設(shè)扇形的半徑為R,由題得.所以扇形的面積為.故答案為:【點(diǎn)睛】本題主要考查扇形的半徑和面積的計(jì)算,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.14、【解析】
試題分析:根據(jù)題意,設(shè)塔高為x,則可知,a表示的為塔與山之間的距離,可以解得塔高為.考點(diǎn):解三角形的運(yùn)用點(diǎn)評(píng):主要是考查了解三角形中的余弦定理和正弦定理的運(yùn)用,屬于中檔題.15、【解析】
將這兩式中的量全部用表示出來,正好有兩個(gè)方程,兩個(gè)未知數(shù),解方程組即可求出?!驹斀狻肯喈?dāng)于,相當(dāng)于,上面兩式相除得代入就得,【點(diǎn)睛】基本量法是解決數(shù)列計(jì)算題最重要的方法,即將條件全部用首項(xiàng)和公比表示,列方程,解方程即可求得。16、【解析】
由二倍角的余弦函數(shù)公式化簡解析式可得,根據(jù)三角函數(shù)的周期性及其求法即可得解.【詳解】.由周期公式可得:.故答案為【點(diǎn)睛】本題主要考查了二倍角的余弦函數(shù)公式的應(yīng)用,考查了三角函數(shù)的周期性及其求法,屬于基本知識(shí)的考查.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)①;②3.385萬元.【解析】
(1)由已知條件利用公式,求得的值,再與比較大小即可得結(jié)果;(2)根據(jù)所給的數(shù)據(jù),做出變量的平均數(shù),根據(jù)樣本中心點(diǎn)一定在線性回歸方程上,求出的值,寫出線性回歸方程;將代入所求線性回歸方程求出對(duì)應(yīng)的的值即可.【詳解】(1)由已知條件得:,這說明與正相關(guān),且相關(guān)性很強(qiáng).(2)①由已知求得,所以所求回歸直線方程為.②當(dāng)時(shí),(萬元),此時(shí)產(chǎn)品的總成本為3.385萬元.【點(diǎn)睛】本題主要考查線性回歸方程的求解與應(yīng)用,屬于中檔題.求回歸直線方程的步驟:①依據(jù)樣本數(shù)據(jù)確定兩個(gè)變量具有線性相關(guān)關(guān)系;②計(jì)算的值;③計(jì)算回歸系數(shù);④寫出回歸直線方程為;回歸直線過樣本點(diǎn)中心是一條重要性質(zhì),利用線性回歸方程可以估計(jì)總體,幫助我們分析兩個(gè)變量的變化趨勢(shì).18、(1);(2)圓錐體積,表面積【解析】
(1)由球的半徑可知圓柱底面半徑和高,代入球和圓柱的體積公式求得體積,作比得到結(jié)果;(2)由球的半徑可得圓錐底面半徑和高,從而可求解出圓錐母線長,代入圓錐體積和表面積公式可求得結(jié)果.【詳解】(1)設(shè)球的半徑為,則圓柱底面半徑為,高為球的體積;圓柱的體積球與圓柱的體積比為:(2)由題意可知:圓錐底面半徑為,高為圓錐的母線長:圓錐體積:圓錐表面積:【點(diǎn)睛】本題考查空間幾何體的表面積和體積求解問題,考查學(xué)生對(duì)于體積和表面積公式的掌握,屬于基礎(chǔ)題.19、(1);(2)等腰直角三角形.【解析】試題分析:(1)解三角形問題,一般利用正余弦定理進(jìn)行邊角轉(zhuǎn)化.首先根據(jù)面積公式解出b邊,得,再由由余弦定理得:,所以,(2)判斷三角形形狀,利用邊的關(guān)系比較直觀.因?yàn)椋杂捎嘞叶ɡ淼茫?,所以,在中,,所以,所以是等腰直角三角?解:(1),2分,得3分由余弦定理得:,5分所以6分(2)由余弦定理得:,所以9分在中,,所以11分所以是等腰直角三角形;12分考點(diǎn):正余弦定理20、(1)證明見解析;(2)證明見解析.【解析】
(1)通過證明得線面平行;(2)連接交于,連接,通過證明得線面平行.【詳解】(1)由題:四棱錐的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 安全會(huì)議匯報(bào)課件
- 腰椎骨質(zhì)增生的健康宣教
- 中藥對(duì)改善精神分裂癥的研究
- 《財(cái)政學(xué)增值稅》課件
- 2024財(cái)務(wù)部門年終工作總結(jié)(30篇)
- 吉林省白城市實(shí)驗(yàn)高級(jí)中學(xué)2025屆高三上學(xué)期1月期政治含答案
- 2024年物業(yè)管理服務(wù)協(xié)議
- 2024年甲乙關(guān)于安全員崗位晉升條款的合同
- 2024年跨境電商平臺(tái)建設(shè)合作合同
- 2024年銷售與購買合同中文版2篇
- 委托居間合同通用版
- 城投公司轉(zhuǎn)型發(fā)展之路課件
- 自來水管道工程施工組織設(shè)計(jì)(完整常用版)
- 物流公司安全生產(chǎn)責(zé)任制度
- 四年級(jí)上冊(cè)道法知識(shí)點(diǎn)匯總
- 鷸蚌相爭 完整版課件
- 鋼結(jié)構(gòu)安裝旁站監(jiān)理記錄表(參考表)多篇
- 大氣污染物綜合排放準(zhǔn)(2022年-2023年)
- 國家開放大學(xué)電大本科《古代小說戲曲專題》2023-2024期末試題及答案(試卷代號(hào):1340)
- 2019年最新部編版四年級(jí)語文上冊(cè)第七單元達(dá)標(biāo)檢測卷含答案(新版)
- 2018中國美業(yè)發(fā)展經(jīng)濟(jì)共享峰會(huì)方案-41P
評(píng)論
0/150
提交評(píng)論