2024屆上海市實(shí)驗(yàn)校十校聯(lián)考最后數(shù)學(xué)試題含解析_第1頁
2024屆上海市實(shí)驗(yàn)校十校聯(lián)考最后數(shù)學(xué)試題含解析_第2頁
2024屆上海市實(shí)驗(yàn)校十校聯(lián)考最后數(shù)學(xué)試題含解析_第3頁
2024屆上海市實(shí)驗(yàn)校十校聯(lián)考最后數(shù)學(xué)試題含解析_第4頁
2024屆上海市實(shí)驗(yàn)校十校聯(lián)考最后數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2024屆上海市實(shí)驗(yàn)校十校聯(lián)考最后數(shù)學(xué)試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.我國古代數(shù)學(xué)著作《九章算術(shù)》中,將底面是直角三角形,且側(cè)棱與底面垂直的三棱柱稱為“塹堵”某“塹堵”的三視圖如圖所示(網(wǎng)格圖中每個(gè)小正方形的邊長均為1),則該“塹堵”的側(cè)面積為()A.16+16 B.16+8 C.24+16 D.4+42.如圖,△ABC內(nèi)接于⊙O,BC為直徑,AB=8,AC=6,D是弧AB的中點(diǎn),CD與AB的交點(diǎn)為E,則CE:DE等于()A.3:1 B.4:1 C.5:2 D.7:23.計(jì)算(-ab2)3÷(-ab)2的結(jié)果是()A.a(chǎn)b4B.-ab4C.a(chǎn)b3D.-ab34.如圖,正六邊形ABCDEF內(nèi)接于,M為EF的中點(diǎn),連接DM,若的半徑為2,則MD的長度為A. B. C.2 D.15.如圖,在矩形ABCD中,連接BD,點(diǎn)O是BD的中點(diǎn),若點(diǎn)M在AD邊上,連接MO并延長交BC邊于點(diǎn)M’,連接MB,DM’則圖中的全等三角形共有()A.3對 B.4對 C.5對 D.6對6.下列運(yùn)算正確的是()A.a(chǎn)﹣3a=2a B.(ab2)0=ab2 C.= D.×=97.如圖,A,B兩點(diǎn)分別位于一個(gè)池塘的兩端,小聰想用繩子測量A,B間的距離,但繩子不夠長,一位同學(xué)幫他想了一個(gè)主意:先在地上取一個(gè)可以直接到達(dá)A,B的點(diǎn)C,找到AC,BC的中點(diǎn)D,E,并且測出DE的長為10m,則A,B間的距離為()A.15m B.25m C.30m D.20m8.如圖,點(diǎn)C是直線AB,DE之間的一點(diǎn),∠ACD=90°,下列條件能使得AB∥DE的是()A.∠α+∠β=180° B.∠β﹣∠α=90° C.∠β=3∠α D.∠α+∠β=90°9.已知關(guān)于x的不等式ax<b的解為x>-2,則下列關(guān)于x的不等式中,解為x<2的是()A.a(chǎn)x+2<-b+2 B.–ax-1<b-1 C.a(chǎn)x>b D.10.太原市出租車的收費(fèi)標(biāo)準(zhǔn)是:白天起步價(jià)8元(即行駛距離不超過3km都需付8元車費(fèi)),超過3km以后,每增加1km,加收1.6元(不足1km按1km計(jì)),某人從甲地到乙地經(jīng)過的路程是xkm,出租車費(fèi)為16元,那么x的最大值是()A.11 B.8 C.7 D.5二、填空題(共7小題,每小題3分,滿分21分)11.一艘輪船在小島A的北偏東60°方向距小島80海里的B處,沿正西方向航行3小時(shí)后到達(dá)小島的北偏西45°的C處,則該船行駛的速度為____________海里/時(shí).12.將一張長方形紙片折疊成如圖所示的形狀,則∠ABC=_________.13.如圖,已知正方形ABCD中,∠MAN=45°,連接BD與AM,AN分別交于E,F(xiàn)點(diǎn),則下列結(jié)論正確的有_____.①M(fèi)N=BM+DN②△CMN的周長等于正方形ABCD的邊長的兩倍;③EF1=BE1+DF1;④點(diǎn)A到MN的距離等于正方形的邊長⑤△AEN、△AFM都為等腰直角三角形.⑥S△AMN=1S△AEF⑦S正方形ABCD:S△AMN=1AB:MN⑧設(shè)AB=a,MN=b,則≥1﹣1.14.如圖,拋物線交軸于,兩點(diǎn),交軸于點(diǎn),點(diǎn)關(guān)于拋物線的對稱軸的對稱點(diǎn)為,點(diǎn),分別在軸和軸上,則四邊形周長的最小值為__________.15.方程3x(x-1)=2(x-1)的根是16.我們知道,四邊形具有不穩(wěn)定性.如圖,在平面直角坐標(biāo)系中,邊長為2的正方形ABCD的邊AB在x軸上,AB的中點(diǎn)是坐標(biāo)原點(diǎn)O,固定點(diǎn)A,B,把正方形沿箭頭方向推,使點(diǎn)D落在y軸正半軸上點(diǎn)D'處,則點(diǎn)C的對應(yīng)點(diǎn)C'的坐標(biāo)為_____.17.化簡__________.三、解答題(共7小題,滿分69分)18.(10分)高考英語聽力測試期間,需要杜絕考點(diǎn)周圍的噪音.如圖,點(diǎn)A是某市一高考考點(diǎn),在位于A考點(diǎn)南偏西15°方向距離125米的點(diǎn)處有一消防隊(duì).在聽力考試期間,消防隊(duì)突然接到報(bào)警電話,告知在位于C點(diǎn)北偏東75°方向的F點(diǎn)處突發(fā)火災(zāi),消防隊(duì)必須立即趕往救火.已知消防車的警報(bào)聲傳播半徑為100米,若消防車的警報(bào)聲對聽力測試造成影響,則消防車必須改道行駛.試問:消防車是否需要改道行駛?說明理由.(取1.732)19.(5分)某商場同時(shí)購進(jìn)甲、乙兩種商品共200件,其進(jìn)價(jià)和售價(jià)如表,商品名稱甲乙進(jìn)價(jià)(元/件)80100售價(jià)(元/件)160240設(shè)其中甲種商品購進(jìn)x件,該商場售完這200件商品的總利潤為y元.(1)求y與x的函數(shù)關(guān)系式;(2)該商品計(jì)劃最多投入18000元用于購買這兩種商品,則至少要購進(jìn)多少件甲商品?若售完這些商品,則商場可獲得的最大利潤是多少元?(3)在(2)的基礎(chǔ)上,實(shí)際進(jìn)貨時(shí),生產(chǎn)廠家對甲種商品的出廠價(jià)下調(diào)a元(50<a<70)出售,且限定商場最多購進(jìn)120件,若商場保持同種商品的售價(jià)不變,請你根據(jù)以上信息及(2)中的條件,設(shè)計(jì)出使該商場獲得最大利潤的進(jìn)貨方案.20.(8分)如圖,水渠邊有一棵大木瓜樹,樹干DO(不計(jì)粗細(xì))上有兩個(gè)木瓜A、B(不計(jì)大?。?,樹干垂直于地面,量得AB=2米,在水渠的對面與O處于同一水平面的C處測得木瓜A的仰角為45°、木瓜B的仰角為30°.求C處到樹干DO的距離CO.(結(jié)果精確到1米)(參考數(shù)據(jù):,)21.(10分)如圖,在的矩形方格紙中,每個(gè)小正方形的邊長均為,線段的兩個(gè)端點(diǎn)均在小正方形的頂點(diǎn)上.在圖中畫出以線段為底邊的等腰,其面積為,點(diǎn)在小正方形的頂點(diǎn)上;在圖中面出以線段為一邊的,其面積為,點(diǎn)和點(diǎn)均在小正方形的頂點(diǎn)上;連接,并直接寫出線段的長.22.(10分)如圖,在Rt△ABC中,∠C=90°,O、D分別為AB、AC上的點(diǎn),經(jīng)過A、D兩點(diǎn)的⊙O分別交于AB、AC于點(diǎn)E、F,且BC與⊙O相切于點(diǎn)D.(1)求證:DF=(2)當(dāng)AC=2,CD=1時(shí),求⊙O的面積.23.(12分)在“雙十二”期間,兩個(gè)超市開展促銷活動(dòng),活動(dòng)方式如下:超市:購物金額打9折后,若超過2000元再優(yōu)惠300元;超市:購物金額打8折.某學(xué)校計(jì)劃購買某品牌的籃球做獎(jiǎng)品,該品牌的籃球在兩個(gè)超市的標(biāo)價(jià)相同,根據(jù)商場的活動(dòng)方式:若一次性付款4200元購買這種籃球,則在商場購買的數(shù)量比在商場購買的數(shù)量多5個(gè),請求出這種籃球的標(biāo)價(jià);學(xué)校計(jì)劃購買100個(gè)籃球,請你設(shè)計(jì)一個(gè)購買方案,使所需的費(fèi)用最少.(直接寫出方案)24.(14分)定義:若某拋物線上有兩點(diǎn)A、B關(guān)于原點(diǎn)對稱,則稱該拋物線為“完美拋物線”.已知二次函數(shù)y=ax2-2mx+c(a,m,c均為常數(shù)且ac≠0)是“完美拋物線”:(1)試判斷ac的符號;(2)若c=-1,該二次函數(shù)圖象與y軸交于點(diǎn)C,且S△ABC=1.①求a的值;②當(dāng)該二次函數(shù)圖象與端點(diǎn)為M(-1,1)、N(3,4)的線段有且只有一個(gè)交點(diǎn)時(shí),求m的取值范圍.

參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、A【解析】

分析出此三棱柱的立體圖像即可得出答案.【詳解】由三視圖可知主視圖為一個(gè)側(cè)面,另外兩個(gè)側(cè)面全等,是長×高=×4=,所以側(cè)面積之和為×2+4×4=16+16,所以答案選擇A項(xiàng).【點(diǎn)睛】本題考查了由三視圖求側(cè)面積,畫出該圖的立體圖形是解決本題的關(guān)鍵.2、A【解析】

利用垂徑定理的推論得出DO⊥AB,AF=BF,進(jìn)而得出DF的長和△DEF∽△CEA,再利用相似三角形的性質(zhì)求出即可.【詳解】連接DO,交AB于點(diǎn)F,∵D是的中點(diǎn),∴DO⊥AB,AF=BF,∵AB=8,∴AF=BF=4,∴FO是△ABC的中位線,AC∥DO,∵BC為直徑,AB=8,AC=6,∴BC=10,F(xiàn)O=AC=1,∴DO=5,∴DF=5-1=2,∵AC∥DO,∴△DEF∽△CEA,∴,∴==1.故選:A.【點(diǎn)睛】此題主要考查了垂徑定理的推論以及相似三角形的判定與性質(zhì),根據(jù)已知得出△DEF∽△CEA是解題關(guān)鍵.3、B【解析】根據(jù)積的乘方的運(yùn)算法則,先分別計(jì)算積的乘方,然后再根據(jù)單項(xiàng)式除法法則進(jìn)行計(jì)算即可得,(-ab2)3÷(-ab)2=-a3b6÷a2b2=-ab4,故選B.4、A【解析】

連接OM、OD、OF,由正六邊形的性質(zhì)和已知條件得出OM⊥OD,OM⊥EF,∠MFO=60°,由三角函數(shù)求出OM,再由勾股定理求出MD即可.【詳解】連接OM、OD、OF,∵正六邊形ABCDEF內(nèi)接于⊙O,M為EF的中點(diǎn),∴OM⊥OD,OM⊥EF,∠MFO=60°,∴∠MOD=∠OMF=90°,∴OM=OF?sin∠MFO=2×=,∴MD=,故選A.【點(diǎn)睛】本題考查了正多邊形和圓、正六邊形的性質(zhì)、三角函數(shù)、勾股定理;熟練掌握正六邊形的性質(zhì),由三角函數(shù)求出OM是解決問題的關(guān)鍵.5、D【解析】

根據(jù)矩形的對邊平行且相等及其對稱性,即可寫出圖中的全等三角形的對數(shù).【詳解】圖中圖中的全等三角形有△ABM≌△CDM’,△ABD≌△CDB,△OBM≌△ODM’,△OBM’≌△ODM,△M’BM≌△MDM’,△DBM≌△BDM’,故選D.【點(diǎn)睛】此題主要考查矩形的性質(zhì)及全等三角形的判定,解題的關(guān)鍵是熟知矩形的對稱性.6、D【解析】

直接利用合并同類項(xiàng)法則以及二次根式的性質(zhì)、二次根式乘法、零指數(shù)冪的性質(zhì)分別化簡得出答案.【詳解】解:A、a﹣3a=﹣2a,故此選項(xiàng)錯(cuò)誤;B、(ab2)0=1,故此選項(xiàng)錯(cuò)誤;C、故此選項(xiàng)錯(cuò)誤;D、×=9,正確.故選D.【點(diǎn)睛】此題主要考查了合并同類項(xiàng)以及二次根式的性質(zhì)、二次根式乘法、零指數(shù)冪的性質(zhì),正確把握相關(guān)性質(zhì)是解題關(guān)鍵.7、D【解析】

根據(jù)三角形的中位線定理即可得到結(jié)果.【詳解】解:由題意得AB=2DE=20cm,故選D.【點(diǎn)睛】本題考查的是三角形的中位線,解答本題的關(guān)鍵是熟練掌握三角形的中位線定理:三角形的中位線平行于第三邊,并且等于第三邊的一半.8、B【解析】

延長AC交DE于點(diǎn)F,根據(jù)所給條件如果能推出∠α=∠1,則能使得AB∥DE,否則不能使得AB∥DE;【詳解】延長AC交DE于點(diǎn)F.A.∵∠α+∠β=180°,∠β=∠1+90°,∴∠α=90°-∠1,即∠α≠∠1,∴不能使得AB∥DE;B.∵∠β﹣∠α=90°,∠β=∠1+90°,∴∠α=∠1,∴能使得AB∥DE;C.∵∠β=3∠α,∠β=∠1+90°,∴3∠α=90°+∠1,即∠α≠∠1,∴不能使得AB∥DE;D.∵∠α+∠β=90°,∠β=∠1+90°,∴∠α=-∠1,即∠α≠∠1,∴不能使得AB∥DE;故選B.【點(diǎn)睛】本題考查了平行線的判定方法:①兩同位角相等,兩直線平行;

②內(nèi)錯(cuò)角相等,兩直線平行;③同旁內(nèi)角互補(bǔ),兩直線平行;④平行于同一直線的兩條直線互相平行;同一平面內(nèi),垂直于同一直線的兩條直線互相平行.9、B【解析】∵關(guān)于x的不等式ax<b的解為x>-2,∴a<0,且,即,∴(1)解不等式ax+2<-b+2可得:ax<-b,,即x>2;(2)解不等式–ax-1<b-1可得:-ax<b,,即x<2;(3)解不等式ax>b可得:,即x<-2;(4)解不等式可得:,即;∴解集為x<2的是B選項(xiàng)中的不等式.故選B.10、B【解析】

根據(jù)等量關(guān)系,即(經(jīng)過的路程﹣3)×1.6+起步價(jià)2元≤1.列出不等式求解.【詳解】可設(shè)此人從甲地到乙地經(jīng)過的路程為xkm,根據(jù)題意可知:(x﹣3)×1.6+2≤1,解得:x≤2.即此人從甲地到乙地經(jīng)過的路程最多為2km.故選B.【點(diǎn)睛】考查了一元一次方程的應(yīng)用.關(guān)鍵是掌握正確理解題意,找出題目中的數(shù)量關(guān)系.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】

設(shè)該船行駛的速度為x海里/時(shí),由已知可得BC=3x,AQ⊥BC,∠BAQ=60°,∠CAQ=45°,AB=80海里,在直角三角形ABQ中求出AQ、BQ,再在直角三角形AQC中求出CQ,得出BC=40+40=3x,解方程即可.【詳解】如圖所示:該船行駛的速度為x海里/時(shí),3小時(shí)后到達(dá)小島的北偏西45°的C處,由題意得:AB=80海里,BC=3x海里,在直角三角形ABQ中,∠BAQ=60°,∴∠B=90°?60°=30°,∴AQ=AB=40,BQ=AQ=40,在直角三角形AQC中,∠CAQ=45°,∴CQ=AQ=40,∴BC=40+40=3x,解得:x=.即該船行駛的速度為海里/時(shí);故答案為:.【點(diǎn)睛】本題考查的是解直角三角形,熟練掌握方向角是解題的關(guān)鍵.12、73°【解析】試題解析:∵∠CBD=34°,∴∠CBE=180°-∠CBD=146°,∴∠ABC=∠ABE=∠CBE=73°.13、①②③④⑤⑥⑦.【解析】

將△ABM繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),使AB與AD重合,得到△ADH.證明△MAN≌△HAN,得到MN=NH,根據(jù)三角形周長公式計(jì)算判斷①;判斷出BM=DN時(shí),MN最小,即可判斷出⑧;根據(jù)全等三角形的性質(zhì)判斷②④;將△ADF繞點(diǎn)A順時(shí)針性質(zhì)90°得到△ABH,連接HE.證明△EAH≌△EAF,得到∠HBE=90°,根據(jù)勾股定理計(jì)算判斷③;根據(jù)等腰直角三角形的判定定理判斷⑤;根據(jù)等腰直角三角形的性質(zhì)、三角形的面積公式計(jì)算,判斷⑥,根據(jù)點(diǎn)A到MN的距離等于正方形ABCD的邊長、三角形的面積公式計(jì)算,判斷⑦.【詳解】將△ABM繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),使AB與AD重合,得到△ADH.則∠DAH=∠BAM,∵四邊形ABCD是正方形,∴∠BAD=90°,∵∠MAN=45°,∴∠BAN+∠DAN=45°,∴∠NAH=45°,在△MAN和△HAN中,,∴△MAN≌△HAN,∴MN=NH=BM+DN,①正確;∵BM+DN≥1,(當(dāng)且僅當(dāng)BM=DN時(shí),取等號)∴BM=DN時(shí),MN最小,∴BM=b,∵DH=BM=b,∴DH=DN,∵AD⊥HN,∴∠DAH=∠HAN=11.5°,在DA上取一點(diǎn)G,使DG=DH=b,∴∠DGH=45°,HG=DH=b,∵∠DGH=45°,∠DAH=11.5°,∴∠AHG=∠HAD,∴AG=HG=b,∴AB=AD=AG+DG=b+b=b=a,∴,∴,當(dāng)點(diǎn)M和點(diǎn)B重合時(shí),點(diǎn)N和點(diǎn)C重合,此時(shí),MN最大=AB,即:,∴≤≤1,⑧錯(cuò)誤;∵M(jìn)N=NH=BM+DN∴△CMN的周長=CM+CN+MN=CM+BM+CN+DN=CB+CD,∴△CMN的周長等于正方形ABCD的邊長的兩倍,②結(jié)論正確;∵△MAN≌△HAN,∴點(diǎn)A到MN的距離等于正方形ABCD的邊長AD,④結(jié)論正確;如圖1,將△ADF繞點(diǎn)A順時(shí)針性質(zhì)90°得到△ABH,連接HE.∵∠DAF+∠BAE=90°-∠EAF=45°,∠DAF=∠BAE,∴∠EAH=∠EAF=45°,∵EA=EA,AH=AD,∴△EAH≌△EAF,∴EF=HE,∵∠ABH=∠ADF=45°=∠ABD,∴∠HBE=90°,在Rt△BHE中,HE1=BH1+BE1,∵BH=DF,EF=HE,∵EF1=BE1+DF1,③結(jié)論正確;∵四邊形ABCD是正方形,∴∠ADC=90°,∠BDC=∠ADB=45°,∵∠MAN=45°,∴∠EAN=∠EDN,∴A、E、N、D四點(diǎn)共圓,∴∠ADN+∠AEN=180°,∴∠AEN=90°∴△AEN是等腰直角三角形,同理△AFM是等腰直角三角形;⑤結(jié)論正確;∵△AEN是等腰直角三角形,同理△AFM是等腰直角三角形,∴AM=AF,AN=AE,如圖3,過點(diǎn)M作MP⊥AN于P,在Rt△APM中,∠MAN=45°,∴MP=AMsin45°,∵S△AMN=AN?MP=AM?AN?sin45°,S△AEF=AE?AF?sin45°,∴S△AMN:S△AEF=1,∴S△AMN=1S△AEF,⑥正確;∵點(diǎn)A到MN的距離等于正方形ABCD的邊長,∴S正方形ABCD:S△AMN==1AB:MN,⑦結(jié)論正確.即:正確的有①②③④⑤⑥⑦,故答案為①②③④⑤⑥⑦.【點(diǎn)睛】此題是四邊形綜合題,主要考查了正方形的性質(zhì),全等三角形的判定和性質(zhì),等腰直角三角形的判定和性質(zhì),解本題的關(guān)鍵是構(gòu)造全等三角形.14、【解析】

根據(jù)拋物線解析式求得點(diǎn)D(1,4)、點(diǎn)E(2,3),作點(diǎn)D關(guān)于y軸的對稱點(diǎn)D′(﹣1,4)、作點(diǎn)E關(guān)于x軸的對稱點(diǎn)E′(2,﹣3),從而得到四邊形EDFG的周長=DE+DF+FG+GE=DE+D′F+FG+GE′,當(dāng)點(diǎn)D′、F、G、E′四點(diǎn)共線時(shí),周長最短,據(jù)此根據(jù)勾股定理可得答案.【詳解】如圖,在y=﹣x2+2x+3中,當(dāng)x=0時(shí),y=3,即點(diǎn)C(0,3),∵y=﹣x2+2x+3=﹣(x-1)2+4,∴對稱軸為x=1,頂點(diǎn)D(1,4),則點(diǎn)C關(guān)于對稱軸的對稱點(diǎn)E的坐標(biāo)為(2,3),作點(diǎn)D關(guān)于y軸的對稱點(diǎn)D′(﹣1,4),作點(diǎn)E關(guān)于x軸的對稱點(diǎn)E′(2,﹣3),連結(jié)D′、E′,D′E′與x軸的交點(diǎn)G、與y軸的交點(diǎn)F即為使四邊形EDFG的周長最小的點(diǎn),四邊形EDFG的周長=DE+DF+FG+GE=DE+D′F+FG+GE′=DE+D′E′==∴四邊形EDFG周長的最小值是.【點(diǎn)睛】本題主要考查拋物線的性質(zhì)以及兩點(diǎn)間的距離公式,解題的關(guān)鍵是熟練掌握拋物線的性質(zhì),利用數(shù)形結(jié)合得出答案.15、x1=1,x2=-.【解析】試題解析:3x(x-1)=2(x-1)3x(x-1)-2(x-1)=0(3x-2)(x-1)=03x-2=0,x-1=0解得:x1=1,x2=-.考點(diǎn):解一元二次方程---因式分解法.16、(2,)【解析】過C作CH于H,由題意得2AO=AD’,所以∠D’AO=60°,AO=1,AD’=2,勾股定理知OD’=,BH=AO所以C’(2,).故答案為(2,).17、【解析】

根據(jù)分式的運(yùn)算法則先算括號里面,再作乘法亦可利用乘法對加法的分配律求解.【詳解】解:法一、=(-)==2-m.

故答案為:2-m.

法二、原式===1-m+1

=2-m.

故答案為:2-m.【點(diǎn)睛】本題考查分式的加減和乘法,解決本題的關(guān)鍵是熟練運(yùn)用運(yùn)算法則或運(yùn)算律.三、解答題(共7小題,滿分69分)18、不需要改道行駛【解析】

解:過點(diǎn)A作AH⊥CF交CF于點(diǎn)H,由圖可知,∵∠ACH=75°-15°=60°,∴.∵AH>100米,∴消防車不需要改道行駛.過點(diǎn)A作AH⊥CF交CF于點(diǎn)H,應(yīng)用三角函數(shù)求出AH的長,大于100米,不需要改道行駛,不大于100米,需要改道行駛.19、(1)y=﹣60x+28000;(2)若售完這些商品,則商場可獲得的最大利潤是22000元;(3)商場應(yīng)購進(jìn)甲商品120件,乙商品80件,獲利最大【解析】分析:(1)根據(jù)總利潤=(甲的售價(jià)-甲的進(jìn)價(jià))×購進(jìn)甲的數(shù)量+(乙的售價(jià)-乙的進(jìn)價(jià))×購進(jìn)乙的數(shù)量代入列關(guān)系式,并化簡即可;(2)根據(jù)總成本≤18000列不等式即可求出x的取值,再根據(jù)函數(shù)的增減性確定其最值問題;(3)把50<a<70分三種情況討論:一次項(xiàng)x的系數(shù)大于0、等于0、小于0,根據(jù)函數(shù)的增減性得出結(jié)論.詳解:(1)根據(jù)題意得:y=(160﹣80)x+(240﹣100)(200﹣x),=﹣60x+28000,則y與x的函數(shù)關(guān)系式為:y=﹣60x+28000;(2)80x+100(200﹣x)≤18000,解得:x≥100,∴至少要購進(jìn)100件甲商品,y=﹣60x+28000,∵﹣60<0,∴y隨x的增大而減小,∴當(dāng)x=100時(shí),y有最大值,y大=﹣60×100+28000=22000,∴若售完這些商品,則商場可獲得的最大利潤是22000元;(3)y=(160﹣80+a)x+(240﹣100)(200﹣x)(100≤x≤120),y=(a﹣60)x+28000,①當(dāng)50<a<60時(shí),a﹣60<0,y隨x的增大而減小,∴當(dāng)x=100時(shí),y有最大利潤,即商場應(yīng)購進(jìn)甲商品100件,乙商品100件,獲利最大,②當(dāng)a=60時(shí),a﹣60=0,y=28000,即商場應(yīng)購進(jìn)甲商品的數(shù)量滿足100≤x≤120的整數(shù)件時(shí),獲利最大,③當(dāng)60<a<70時(shí),a﹣60>0,y隨x的增大而增大,∴當(dāng)x=120時(shí),y有最大利潤,即商場應(yīng)購進(jìn)甲商品120件,乙商品80件,獲利最大.點(diǎn)睛:本題是一次函數(shù)和一元一次不等式的綜合應(yīng)用,屬于銷售利潤問題,在此類題中,要明確售價(jià)、進(jìn)價(jià)、利潤的關(guān)系式:單件利潤=售價(jià)-進(jìn)價(jià),總利潤=單個(gè)利潤×數(shù)量;認(rèn)真讀題,弄清題中的每一個(gè)條件;對于最值問題,可利用一次函數(shù)的增減性來解決:形如y=kx+b中,當(dāng)k>0時(shí),y隨x的增大而增大;當(dāng)k<0時(shí),y隨x的增大而減?。?0、解:設(shè)OC=x,在Rt△AOC中,∵∠ACO=45°,∴OA=OC=x.在Rt△BOC中,∵∠BCO=30°,∴.∵AB=OA﹣OB=,解得.∴OC=5米.答:C處到樹干DO的距離CO為5米.【解析】解直角三角形的應(yīng)用(仰角俯角問題),銳角三角函數(shù)定義,特殊角的三角函數(shù)值.【分析】設(shè)OC=x,在Rt△AOC中,由于∠ACO=45°,故OA=x,在Rt△BOC中,由于∠BCO=30°,故,再根據(jù)AB=OA-OB=2即可得出結(jié)論.21、(1)見解析;(2)見解析;(3)見解析,.【解析】

(1)直接利用網(wǎng)格結(jié)合勾股定理得出符合題意的答案;(2)直接利用網(wǎng)格結(jié)合平行四邊形的性質(zhì)以及勾股定理得出符合題意的答案;(3)連接CE,根據(jù)勾股定理求出CE的長寫出即可.【詳解】解:(1)如圖所示;(2)如圖所示;(3)如圖所示;CE=.【點(diǎn)睛】本題主要考查了等腰三角形的性質(zhì)、平行四邊形的性質(zhì)、勾股定理,正確應(yīng)用勾股定理是解題的關(guān)鍵.22、(1)證明見解析;(2)2516【解析】

(1)連接OD,由BC為圓O的切線,得到OD垂直于BC,再由AC垂直于BC,得到OD與AC平行,利用兩直線平行得到一對內(nèi)錯(cuò)角相等,再由OA=OD,利用等邊對等角得到一對角相等,等量代換得到AD為角平分線,利用相等的圓周角所對的弧相等即可得證;

(2)連接ED,在直角三角形ACD中,由AC與CD的長,利用勾股定理求出AD的長,由(1)得出的兩個(gè)圓周角相等,及一對直角相等得到三角形ACD與三角形ADE相似,由相似得比例求出AE的長,進(jìn)而求出圓的半徑,即可求出圓的面積.【詳解】證明:連接OD,∵BC為圓O的切線,∴OD⊥CB,∵AC⊥CB,∴OD∥AC,∴∠CAD=∠ODA,∵OA=OD,∴∠OAD=∠ODA,∴∠CAD=∠OAD,則DF=(2)解:連接ED,在Rt△ACD中,AC=2,CD=1,根據(jù)勾股定理得:AD=5,∵∠CAD=∠OAD,∠ACD=∠ADE=90°,∴△ACD∽△ADE,∴ADAE=AC∴AE=52,即圓的半徑為5則圓的面積為25π16【點(diǎn)睛】此題考查了切線的性質(zhì),圓周角定理,相似三角形的判定與性質(zhì),以及勾股定理,熟練掌握相關(guān)性質(zhì)是解本題的關(guān)鍵.23、(1)這種籃球的標(biāo)價(jià)為每個(gè)50元;(2)見解析【解析】

(1)設(shè)這種籃球的標(biāo)價(jià)為每個(gè)x元,根據(jù)題意可知在B超市可買籃球個(gè),在A超市可買籃球個(gè),根據(jù)在B商場比在A商場多買5個(gè)列方程進(jìn)行求解即可;(2)分情況,單獨(dú)在A超市買100個(gè)、單獨(dú)在B超市買100個(gè)、兩家超市共買100個(gè)進(jìn)行討論即可得.【詳解】(1)設(shè)這種籃球的標(biāo)價(jià)為每個(gè)x元,依題意,得,解得:x=50,經(jīng)檢驗(yàn):x=50是原方程的解,且符合題意,答:這種籃球的標(biāo)價(jià)為每個(gè)50元;(2)購買100個(gè)籃球,最少的費(fèi)用為3850元,單獨(dú)在A超市一次買100個(gè),則需要費(fèi)用:100×50×0.9-300=4200元,在A超市分兩次購買,每次各買50個(gè),則需要費(fèi)用:2(50×50×0.9-300)=3900元,單獨(dú)在B超市購買:100×50×0.8=4000元,在A、B兩個(gè)超市共買100個(gè),根據(jù)A超市的方案可知在A超市一次購買:=44,即購買45個(gè)時(shí)花費(fèi)最小,為45×50×0.9-300=1725元,兩次購買,每次各買45個(gè)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論