![2021-2022學年河南省鄭州一中學汝州實驗中學中考數(shù)學考前最后一卷含解析_第1頁](http://file4.renrendoc.com/view2/M01/16/23/wKhkFmZT3euAUnSRAAINQiyQybw312.jpg)
![2021-2022學年河南省鄭州一中學汝州實驗中學中考數(shù)學考前最后一卷含解析_第2頁](http://file4.renrendoc.com/view2/M01/16/23/wKhkFmZT3euAUnSRAAINQiyQybw3122.jpg)
![2021-2022學年河南省鄭州一中學汝州實驗中學中考數(shù)學考前最后一卷含解析_第3頁](http://file4.renrendoc.com/view2/M01/16/23/wKhkFmZT3euAUnSRAAINQiyQybw3123.jpg)
![2021-2022學年河南省鄭州一中學汝州實驗中學中考數(shù)學考前最后一卷含解析_第4頁](http://file4.renrendoc.com/view2/M01/16/23/wKhkFmZT3euAUnSRAAINQiyQybw3124.jpg)
![2021-2022學年河南省鄭州一中學汝州實驗中學中考數(shù)學考前最后一卷含解析_第5頁](http://file4.renrendoc.com/view2/M01/16/23/wKhkFmZT3euAUnSRAAINQiyQybw3125.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2021-2022學年河南省鄭州一中學汝州實驗中學中考數(shù)學考前最后一卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.古希臘著名的畢達哥拉斯學派把1,3,6,10…這樣的數(shù)稱為“三角形數(shù)”,而把1,4,9,16…這樣的數(shù)稱為“正方形數(shù)”.從圖中可以發(fā)現(xiàn),任何一個大于1的“正方形數(shù)”都可以看作兩個相鄰“三角形數(shù)”之和.下列等式中,符合這一規(guī)律的是()A.13=3+10 B.25=9+16 C.36=15+21 D.49=18+312.已知一組數(shù)據(jù)1、2、3、x、5,它們的平均數(shù)是3,則這一組數(shù)據(jù)的方差為()A.1 B.2 C.3 D.43.如圖,已知AB是⊙O的直徑,弦CD⊥AB于E,連接BC、BD、AC,下列結(jié)論中不一定正確的是()A.∠ACB=90° B.OE=BE C.BD=BC D.4.甲、乙兩人沿相同的路線由A地到B地勻速前進,A、B兩地間的路程為40km.他們前進的路程為s(km),甲出發(fā)后的時間為t(h),甲、乙前進的路程與時間的函數(shù)圖象如圖所示.根據(jù)圖象信息,下列說法不正確的是()A.甲的速度是10km/h B.乙的速度是20km/hC.乙出發(fā)h后與甲相遇 D.甲比乙晚到B地2h5.如圖,等腰三角形ABC底邊BC的長為4cm,面積為12cm2,腰AB的垂直平分線EF交AB于點E,交AC于點F,若D為BC邊上的中點,M為線段EF上一點,則△BDM的周長最小值為()A.5cm B.6cm C.8cm D.10cm6.在實數(shù),,,中,其中最小的實數(shù)是()A. B. C. D.7.在一個不透明的袋子里裝有兩個黃球和一個白球,它們除顏色外都相同,隨機從中摸出一個球,記下顏色后放回袋子中,充分搖勻后,再隨機摸出一個球.兩次都摸到黃球的概率是()A. B. C. D.8.如圖,平行四邊形ABCD中,E為BC邊上一點,以AE為邊作正方形AEFG,若,,則的度數(shù)是A. B. C. D.9.一次函數(shù)的圖象上有點和點,且,下列敘述正確的是A.若該函數(shù)圖象交y軸于正半軸,則B.該函數(shù)圖象必經(jīng)過點C.無論m為何值,該函數(shù)圖象一定過第四象限D(zhuǎn).該函數(shù)圖象向上平移一個單位后,會與x軸正半軸有交點10.如圖,AB∥CD,AD與BC相交于點O,若∠A=50°10′,∠COD=100°,則∠C等于()A.30°10′ B.29°10′ C.29°50′ D.50°10′二、填空題(共7小題,每小題3分,滿分21分)11.已知扇形的弧長為,圓心角為45°,則扇形半徑為_____.12.為響應“書香成都”建設的號召,在全校形成良好的人文閱讀風尚,成都市某中學隨機調(diào)查了部分學生平均每天的閱讀時間,統(tǒng)計結(jié)果如圖所示,則在本次調(diào)查中,閱讀時間的中位數(shù)是________小時.13.在直角坐標系中,坐標軸上到點P(﹣3,﹣4)的距離等于5的點的坐標是.14.若方程x2+(m2﹣1)x+1+m=0的兩根互為相反數(shù),則m=______15.若式子有意義,則x的取值范圍是.16.如圖,在Rt△ABC中,∠ACB=90°,D是AB的中點,過D點作AB的垂線交AC于點E,BC=6,sinA=,則DE=_____.17.關于x的一元二次方程x2+4x﹣k=0有實數(shù)根,則k的取值范圍是__________.三、解答題(共7小題,滿分69分)18.(10分)如圖,已知拋物線y=ax2﹣2ax+b與x軸交于A、B(3,0)兩點,與y軸交于點C,且OC=3OA,設拋物線的頂點為D.(1)求拋物線的解析式;(2)在拋物線對稱軸的右側(cè)的拋物線上是否存在點P,使得△PDC是等腰三角形?若存在,求出符合條件的點P的坐標;若不存在,請說明理由;(3)若平行于x軸的直線與該拋物線交于M、N兩點(其中點M在點N的右側(cè)),在x軸上是否存在點Q,使△MNQ為等腰直角三角形?若存在,請求出點Q的坐標;若不存在,請說明理由.19.(5分)為了解某中學學生課余生活情況,對喜愛看課外書、體育活動、看電視、社會實踐四個方面的人數(shù)進行調(diào)查統(tǒng)計.現(xiàn)從該校隨機抽取名學生作為樣本,采用問卷調(diào)查的方法收集數(shù)據(jù)(參與問卷調(diào)查的每名學生只能選擇其中一項).并根據(jù)調(diào)查得到的數(shù)據(jù)繪制成了如圖所示的兩幅不完整的統(tǒng)計圖.由圖中提供的信息,解答下列問題:求n的值;若該校學生共有1200人,試估計該校喜愛看電視的學生人數(shù);若調(diào)查到喜愛體育活動的4名學生中有3名男生和1名女生,現(xiàn)從這4名學生中任意抽取2名學生,求恰好抽到2名男生的概率.20.(8分)如圖,△ABC中,∠C=90°,AC=BC,∠ABC的平分線BD交AC于點D,DE⊥AB于點E.(1)依題意補全圖形;(2)猜想AE與CD的數(shù)量關系,并證明.21.(10分)計算:(-)-2–2()+22.(10分)如圖,二次函數(shù)的圖象與x軸交于A、B兩點,與y軸交于點C,已知點A(﹣4,0).求拋物線與直線AC的函數(shù)解析式;若點D(m,n)是拋物線在第二象限的部分上的一動點,四邊形OCDA的面積為S,求S關于m的函數(shù)關系式;若點E為拋物線上任意一點,點F為x軸上任意一點,當以A、C、E、F為頂點的四邊形是平行四邊形時,請求出滿足條件的所有點E的坐標.23.(12分)如圖山坡上有一根旗桿AB,旗桿底部B點到山腳C點的距離BC為米,斜坡BC的坡度i=1:.小明在山腳的平地F處測量旗桿的高,點C到測角儀EF的水平距離CF=1米,從E處測得旗桿頂部A的仰角為45°,旗桿底部B的仰角為20°.(1)求坡角∠BCD;(2)求旗桿AB的高度.(參考數(shù)值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)24.(14分)如圖,在直角坐標系中,矩形OABC的頂點O與坐標原點重合,A、C分別在坐標軸上,點B的坐標為(4,2),直線交AB,BC分別于點M,N,反比例函數(shù)的圖象經(jīng)過點M,N.(1)求反比例函數(shù)的解析式;(2)若點P在y軸上,且△OPM的面積與四邊形BMON的面積相等,求點P的坐標.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】
本題考查探究、歸納的數(shù)學思想方法.題中明確指出:任何一個大于1的“正方形數(shù)”都可以看作兩個相鄰“三角形數(shù)”之和.由于“正方形數(shù)”為兩個“三角形數(shù)”之和,正方形數(shù)可以用代數(shù)式表示為:(n+1)2,兩個三角形數(shù)分別表示為n(n+1)和(n+1)(n+2),所以由正方形數(shù)可以推得n的值,然后求得三角形數(shù)的值.【詳解】∵A中13不是“正方形數(shù)”;選項B、D中等式右側(cè)并不是兩個相鄰“三角形數(shù)”之和.故選:C.【點睛】此題是一道找規(guī)律的題目,這類題型在中考中經(jīng)常出現(xiàn).對于找規(guī)律的題目首先應找出哪些部分發(fā)生了變化,是按照什么規(guī)律變化的.2、B【解析】
先由平均數(shù)是3可得x的值,再結(jié)合方差公式計算.【詳解】∵數(shù)據(jù)1、2、3、x、5的平均數(shù)是3,∴=3,解得:x=4,則數(shù)據(jù)為1、2、3、4、5,∴方差為×[(1-3)2+(2-3)2+(3-3)2+(4-3)2+(5-3)2]=2,故選B.【點睛】本題主要考查算術(shù)平均數(shù)和方差,解題的關鍵是熟練掌握平均數(shù)和方差的定義.3、B【解析】
根據(jù)垂徑定理及圓周角定理進行解答即可.【詳解】∵AB是⊙O的直徑,∴∠ACB=90°,故A正確;∵點E不一定是OB的中點,∴OE與BE的關系不能確定,故B錯誤;∵AB⊥CD,AB是⊙O的直徑,∴,∴BD=BC,故C正確;∴,故D正確.故選B.【點睛】本題考查的是垂徑定理,熟知平分弦的直徑平分這條弦,并且平分弦所對的兩條弧是解答此題的關鍵.4、B【解析】由圖可知,甲用4小時走完全程40km,可得速度為10km/h;乙比甲晚出發(fā)一小時,用1小時走完全程,可得速度為40km/h.故選B5、C【解析】
連接AD,由于△ABC是等腰三角形,點D是BC邊的中點,故AD⊥BC,再根據(jù)三角形的面積公式求出AD的長,再根據(jù)EF是線段AB的垂直平分線可知,點B關于直線EF的對稱點為點A,故AD的長為BM+MD的最小值,由此即可得出結(jié)論.【詳解】如圖,連接AD.∵△ABC是等腰三角形,點D是BC邊的中點,∴AD⊥BC,∴S△ABC=BC?AD=×4×AD=12,解得:AD=6(cm).∵EF是線段AB的垂直平分線,∴點B關于直線EF的對稱點為點A,∴AD的長為BM+MD的最小值,∴△BDM的周長最短=(BM+MD)+BD=AD+BC=6+×4=6+2=8(cm).故選C.【點睛】本題考查的是軸對稱﹣最短路線問題,熟知等腰三角形三線合一的性質(zhì)是解答此題的關鍵.6、B【解析】
由正數(shù)大于一切負數(shù),負數(shù)小于0,正數(shù)大于0,兩個負數(shù)絕對值大的反而小,把這四個數(shù)從小到大排列,即可求解.【詳解】解:∵0,-2,1,中,-2<0<1<,
∴其中最小的實數(shù)為-2;
故選:B.【點睛】本題考查了實數(shù)的大小比較,關鍵是掌握:正數(shù)大于0,負數(shù)小于0,正數(shù)大于一切負數(shù),兩個負數(shù)絕對值大的反而?。?、A【解析】
首先根據(jù)題意畫出樹狀圖,由樹狀圖求得所有等可能的結(jié)果與兩次都摸到黃球的情況,然后利用概率公式求解即可求得答案.注意此題屬于放回實驗.【詳解】畫樹狀圖如下:由樹狀圖可知,共有9種等可能結(jié)果,其中兩次都摸到黃球的有4種結(jié)果,∴兩次都摸到黃球的概率為,故選A.【點睛】此題考查的是用列表法或樹狀圖法求概率的知識.注意畫樹狀圖與列表法可以不重復不遺漏的列出所有可能的結(jié)果,列表法適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;解題時要注意此題是放回實驗還是不放回實驗.8、A【解析】分析:首先求出∠AEB,再利用三角形內(nèi)角和定理求出∠B,最后利用平行四邊形的性質(zhì)得∠D=∠B即可解決問題.詳解:∵四邊形ABCD是正方形,∴∠AEF=90°,∵∠CEF=15°,∴∠AEB=180°-90°-15°=75°,∵∠B=180°-∠BAE-∠AEB=180°-40°-75°=65°,∵四邊形ABCD是平行四邊形,∴∠D=∠B=65°故選A.點睛:本題考查正方形的性質(zhì)、平行四邊形的性質(zhì)、三角形內(nèi)角和定理等知識,解題的關鍵是靈活運用所學知識解決問題,學會用轉(zhuǎn)化的思想思考問題,屬于中考??碱}型.9、B【解析】
利用一次函數(shù)的性質(zhì)逐一進行判斷后即可得到正確的結(jié)論.【詳解】解:一次函數(shù)的圖象與y軸的交點在y軸的正半軸上,則,,若,則,故A錯誤;
把代入得,,則該函數(shù)圖象必經(jīng)過點,故B正確;
當時,,,函數(shù)圖象過一二三象限,不過第四象限,故C錯誤;
函數(shù)圖象向上平移一個單位后,函數(shù)變?yōu)?,所以當時,,故函數(shù)圖象向上平移一個單位后,會與x軸負半軸有交點,故D錯誤,
故選B.【點睛】本題考查了一次函數(shù)圖象上點的坐標特征、一次函數(shù)圖象與幾何變換,解題的關鍵是熟練掌握一次函數(shù)的性質(zhì),靈活應用這些知識解決問題,屬于中考??碱}型.10、C【解析】
根據(jù)平行線性質(zhì)求出∠D,根據(jù)三角形的內(nèi)角和定理得出∠C=180°-∠D-∠COD,代入求出即可.【詳解】∵AB∥CD,∴∠D=∠A=50°10′,∵∠COD=100°,∴∠C=180°-∠D-∠COD=29°50′.故選C.【點睛】本題考查了三角形的內(nèi)角和定理和平行線的性質(zhì)的應用,關鍵是求出∠D的度數(shù)和得出∠C=180°-∠D-∠COD.應該掌握的是三角形的內(nèi)角和為180°.二、填空題(共7小題,每小題3分,滿分21分)11、1【解析】
根據(jù)弧長公式l=代入求解即可.【詳解】解:∵,∴.故答案為1.【點睛】本題考查了弧長的計算,解答本題的關鍵是掌握弧長公式:l=.12、1【解析】由統(tǒng)計圖可知共有:8+19+10+3=40人,中位數(shù)應為第20與第21個的平均數(shù),而第20個數(shù)和第21個數(shù)都是1(小時),則中位數(shù)是1小時.故答案為1.13、(0,0)或(0,﹣8)或(﹣6,0)【解析】
由P(﹣3,﹣4)可知,P到原點距離為5,而以P點為圓心,5為半徑畫圓,圓經(jīng)過原點分別與x軸、y軸交于另外一點,共有三個.【詳解】解:∵P(﹣3,﹣4)到原點距離為5,而以P點為圓心,5為半徑畫圓,圓經(jīng)過原點且分別交x軸、y軸于另外兩點(如圖所示),∴故坐標軸上到P點距離等于5的點有三個:(0,0)或(0,﹣8)或(﹣6,0).故答案是:(0,0)或(0,﹣8)或(﹣6,0).14、﹣1【解析】
根據(jù)“方程x2+(m2﹣1)x+1+m=0的兩根互為相反數(shù)”,利用一元二次方程根與系數(shù)的關系,列出關于m的等式,解之,再把m的值代入原方程,找出符合題意的m的值即可.【詳解】∵方程x2+(m2﹣1)x+1+m=0的兩根互為相反數(shù),∴1﹣m2=0,解得:m=1或﹣1,把m=1代入原方程得:x2+2=0,該方程無解,∴m=1不合題意,舍去,把m=﹣1代入原方程得:x2=0,解得:x1=x2=0,(符合題意),∴m=﹣1,故答案為﹣1.【點睛】本題考查了根與系數(shù)的關系,正確掌握一元二次方程兩根之和,兩個之積與系數(shù)之間的關系式解題的關鍵.若x1,x2為方程的兩個根,則x1,x2與系數(shù)的關系式:,.15、且【解析】
∵式子在實數(shù)范圍內(nèi)有意義,∴x+1≥0,且x≠0,解得:x≥-1且x≠0.故答案為x≥-1且x≠0.16、【解析】
∵在Rt△ABC中,BC=6,sinA=∴AB=10∴.∵D是AB的中點,∴AD=AB=1.∵∠C=∠EDA=90°,∠A=∠A∴△ADE∽△ACB,∴即解得:DE=.17、k≥﹣1【解析】分析:根據(jù)方程的系數(shù)結(jié)合根的判別式△≥0,即可得出關于k的一元一次不等式,解之即可得出結(jié)論.詳解:∵關于x的一元二次方程x2+1x-k=0有實數(shù)根,∴△=12-1×1×(-k)=16+1k≥0,解得:k≥-1.故答案為k≥-1.點睛:本題考查了根的判別式,牢記“當△≥0時,方程有實數(shù)根”是解題的關鍵.三、解答題(共7小題,滿分69分)18、(1)y=﹣x2+2x+1;(2)P(2,1)或(,);(1)存在,且Q1(1,0),Q2(2﹣,0),Q1(2+,0),Q4(﹣,0),Q5(,0).【解析】
(1)根據(jù)拋物線的解析式,可得到它的對稱軸方程,進而可根據(jù)點B的坐標來確定點A的坐標,已知OC=1OA,即可得到點C的坐標,利用待定系數(shù)法即可求得該拋物線的解析式.(2)求出點C關于對稱軸的對稱點,求出兩點間的距離與CD相比較可知,PC不可能與CD相等,因此要分兩種情況討論:①CD=PD,根據(jù)拋物線的對稱性可知,C點關于拋物線對稱軸的對稱點滿足P點的要求,坐標易求得;②PD=PC,可設出點P的坐標,然后表示出PC、PD的長,根據(jù)它們的等量關系列式求出點P的坐標.(1)此題要分三種情況討論:①點Q是直角頂點,那么點Q必為拋物線對稱軸與x軸的交點,由此求得點Q的坐標;②M、N在x軸上方,且以N為直角頂點時,可設出點N的坐標,根據(jù)拋物線的對稱性可知MN正好等于拋物線對稱軸到N點距離的2倍,而△MNQ是等腰直角三角形,則QN=MN,由此可表示出點N的縱坐標,聯(lián)立拋物線的解析式,即可得到關于N點橫坐標的方程,從而求得點Q的坐標;根據(jù)拋物線的對稱性知:Q關于拋物線的對稱點也符合題意;③M、N在x軸下方,且以N為直角頂點時,方法同②.【詳解】解:(1)由y=ax2﹣2ax+b可得拋物線對稱軸為x=1,由B(1,0)可得A(﹣1,0);∵OC=1OA,∴C(0,1);依題意有:,解得;∴y=﹣x2+2x+1.(2)存在.①DC=DP時,由C點(0,1)和x=1可得對稱點為P(2,1);設P2(x,y),∵C(0,1),P(2,1),∴CP=2,∵D(1,4),∴CD=<2,②由①此時CD⊥PD,根據(jù)垂線段最短可得,PC不可能與CD相等;②PC=PD時,∵CP22=(1﹣y)2+x2,DP22=(x﹣1)2+(4﹣y)2∴(1﹣y)2+x2=(x﹣1)2+(4﹣y)2將y=﹣x2+2x+1代入可得:,∴;∴P2(,).綜上所述,P(2,1)或(,).(1)存在,且Q1(1,0),Q2(2﹣,0),Q1(2+,0),Q4(﹣,0),Q5(,0);①若Q是直角頂點,由對稱性可直接得Q1(1,0);②若N是直角頂點,且M、N在x軸上方時;設Q2(x,0)(x<1),∴MN=2Q1O2=2(1﹣x),∵△Q2MN為等腰直角三角形;∴y=2(1﹣x)即﹣x2+2x+1=2(1﹣x);∵x<1,∴Q2(,0);由對稱性可得Q1(,0);③若N是直角頂點,且M、N在x軸下方時;同理設Q4(x,y),(x<1)∴Q1Q4=1﹣x,而Q4N=2(Q1Q4),∵y為負,∴﹣y=2(1﹣x),∴﹣(﹣x2+2x+1)=2(1﹣x),∵x<1,∴x=﹣,∴Q4(-,0);由對稱性可得Q5(+2,0).【點睛】本題考查了二次函數(shù)的知識點,解題的關鍵是熟練的掌握二次函數(shù)相關知識點.19、(1)50;(2)240;(3).【解析】
用喜愛社會實踐的人數(shù)除以它所占的百分比得到n的值;先計算出樣本中喜愛看電視的人數(shù),然后用1200乘以樣本中喜愛看電視人數(shù)所占的百分比,即可估計該校喜愛看電視的學生人數(shù);畫樹狀圖展示12種等可能的結(jié)果數(shù),再找出恰好抽到2名男生的結(jié)果數(shù),然后根據(jù)概率公式求解.【詳解】解:(1);(2)樣本中喜愛看電視的人數(shù)為(人,,所以估計該校喜愛看電視的學生人數(shù)為240人;(3)畫樹狀圖為:共有12種等可能的結(jié)果數(shù),其中恰好抽到2名男生的結(jié)果數(shù)為6,所以恰好抽到2名男生的概率.【點睛】本題考查了列表法與樹狀圖法;利用列表法或樹狀圖法展示所有等可能的結(jié)果n,再從中選出符合事件A或B的結(jié)果數(shù)目m,然后利用概率公式計算事件A或事件B的概率,也考查了統(tǒng)計圖.20、(1)見解析;(2)見解析.【解析】
(1)根據(jù)題意畫出圖形即可;(2)利用等腰三角形的性質(zhì)得∠A=45°.則∠ADE=∠A=45°,所以AE=DE,再根據(jù)角平分線性質(zhì)得CD=DE,從而得到AE=CD.【詳解】解:(1)如圖:(2)AE與CD的數(shù)量關系為AE=CD.證明:∵∠C=90°,AC=BC,∴∠A=45°.∵DE⊥AB,∴∠ADE=∠A=45°.∴AE=DE,∵BD平分∠ABC,∴CD=DE,∴AE=CD.【點睛】此題考查等腰三角形的性質(zhì),角平分線的性質(zhì),解題關鍵在于根據(jù)題意作輔助線.21、0【解析】
本題涉及負指數(shù)冪、二次根式化簡和絕對值3個考點.在計算時,需要針對每個考點分別進行計算,然后根據(jù)實數(shù)的運算法則求得計算結(jié)果.【詳解】原式.【點睛】本題主要考查負指數(shù)冪、二次根式化簡和絕對值,熟悉掌握是關鍵.22、(1)(1)S=﹣m1﹣4m+4(﹣4<m<0)(3)(﹣3,1)、(,﹣1)、(,﹣1)【解析】
(1)把點A的坐標代入拋物線的解析式,就可求得拋物線的解析式,根據(jù)A,C兩點的坐標,可求得直線AC的函數(shù)解析式;(1)先過點D作DH⊥x軸于點H,運用割補法即可得到:四邊形OCDA的面積=△ADH的面積+四邊形OCDH的面積,據(jù)此列式計算化簡就可求得S關于m的函數(shù)關系;(3)由于AC確定,可分AC是平行四邊形的邊和對角線兩種情況討論,得到點E與點C的縱坐標之間的關系,然后代入拋物線的解析式,就可得到滿足條件的所有點E的坐標.【詳解】(1)∵A(﹣4,0)在二次函數(shù)y=ax1﹣x+1(a≠0)的圖象上,∴0=16a+6+1,解得a=﹣,∴拋物線的函數(shù)解析式為y=﹣x1﹣x+1;∴點C的坐標為(0,1),設直線AC的解析式為y=kx+b,則,解得,∴直線AC的函數(shù)解析式為:;(1)∵點D(m,n)是拋物線在第二象限的部分上的一動點,∴D(m,﹣m1﹣m+1),過點D作
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年倉庫管理合同正式樣本
- 2025年海綿城市項目提案報告
- 2025年工程建材跨區(qū)域物流合同
- 2025年冷凍食品物流協(xié)調(diào)協(xié)議書
- 2025年合伙事業(yè)策劃協(xié)議書樣本
- 標準文本2025年獨家房產(chǎn)中介代理合同
- 2025年個人消費質(zhì)押擔保短期借款合同
- 2025年物業(yè)經(jīng)理合同聘用標準
- 2025年標準軟件策劃保密協(xié)議指南
- 2025年保密合同書范本重訂協(xié)議
- 東芝授權(quán)委托書標準版
- 調(diào)車作業(yè)-調(diào)車概述(鐵路行車組織)
- 【住院患者跌倒或墜床預防護理措施研究國內(nèi)外文獻綜述3300字】
- 2023施工項目部標準化工作手冊
- 酒店員工招聘與面試技巧培訓課件
- 技術(shù)服務合同-英文版模板
- 公眾聚集場所消防技術(shù)標準要點
- 人教部編版三年級上冊語文【選擇題】專項復習訓練練習100題
- DB64-T 1933-2023 園林樹種引種馴化技術(shù)規(guī)程
- 路損案件現(xiàn)場勘查-路損案件現(xiàn)場拍照取證(路政管理課件)
- 幼兒園員工手冊與規(guī)章制度
評論
0/150
提交評論