甘肅省白銀市靖遠第一中學2024屆高一下數(shù)學期末監(jiān)測模擬試題含解析_第1頁
甘肅省白銀市靖遠第一中學2024屆高一下數(shù)學期末監(jiān)測模擬試題含解析_第2頁
甘肅省白銀市靖遠第一中學2024屆高一下數(shù)學期末監(jiān)測模擬試題含解析_第3頁
甘肅省白銀市靖遠第一中學2024屆高一下數(shù)學期末監(jiān)測模擬試題含解析_第4頁
甘肅省白銀市靖遠第一中學2024屆高一下數(shù)學期末監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

甘肅省白銀市靖遠第一中學2024屆高一下數(shù)學期末監(jiān)測模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.與圓關于直線對稱的圓的方程為()A. B.C. D.2.若存在正實數(shù),使得,則()A.實數(shù)的最大值為 B.實數(shù)的最小值為C.實數(shù)的最大值為 D.實數(shù)的最小值為3.已知函數(shù)的定義域為,當時,,且對任意的實數(shù),等式恒成立,若數(shù)列滿足,且,則的值為()A.4037 B.4038 C.4027 D.40284.高鐵、掃碼支付、共享單車、網(wǎng)購被稱為中國的“新四大發(fā)明”,為評估共享單車的使用情況,選了座城市作實驗基地,這座城市共享單車的使用量(單位:人次/天)分別為,,…,,下面給出的指標中可以用來評估共享單車使用量的穩(wěn)定程度的是()A.,,…,的標準差 B.,,…,的平均數(shù)C.,,…,的最大值 D.,,…,的中位數(shù)5.已知,,,則的大小關系為()A. B. C. D.6.已知各頂點都在一個球面上的正四棱柱(其底面是正方形,且側棱垂直于底面)高為4,體積為16,則這個球的表面積是()A. B. C. D.7.已知向量,滿足,和的夾角為,則()A. B. C. D.18.已知,且,則()A. B. C. D.9.要得到函數(shù)y=sin2x-πA.向左平行移動π3個單位 B.向右平行移動πC.向右平行移動π3個單位 D.向左平行移動π10.若對任意,不等式恒成立,則a的取值范圍為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.在中,、、所對的邊依次為、、,且,若用含、、,且不含、、的式子表示,則_______.12.已知點和在直線的兩側,則a的取值范圍是__________.13.有一個倒圓錐形容器,它的軸截面是一個正三角形,在容器內放一個半徑為的鐵球,并注入水,使水面與球正好相切,然后將球取出,則這時容器中水的深度為___________.14.若無窮等比數(shù)列的各項和等于,則的取值范圍是_____.15.設數(shù)列是首項為0的遞增數(shù)列,函數(shù)滿足:對于任意的實數(shù),總有兩個不同的根,則的通項公式是________.16.設集合,它共有個二元子集,如、、等等.記這個二元子集為、、、、,設,定義,則_____.(結果用數(shù)字作答)三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知數(shù)列{}的首項.(1)求證:數(shù)列為等比數(shù)列;(2)記,若,求最大正整數(shù).18.如圖,在平面直角坐標系中,銳角和鈍角的頂點與原點重合,始邊與軸的正半軸重合,終邊分別與單位圓交于,兩點,且.(1)求的值;(2)若點的橫坐標為,求的值.19.在△ABC中,角A,B,C對應的邊分別是a,b,c,已知cos2A﹣3cos(B+C)=1.(1)求角A的大?。唬?)若△ABC的面積S=5,b=5,求sinBsinC的值.20.若數(shù)列滿足:存在正整數(shù),對任意的,使得成立,則稱為階穩(wěn)增數(shù)列.(1)若由正整數(shù)構成的數(shù)列為階穩(wěn)增數(shù)列,且對任意,數(shù)列中恰有個,求的值;(2)設等比數(shù)列為階穩(wěn)增數(shù)列且首項大于,試求該數(shù)列公比的取值范圍;(3)在(1)的條件下,令數(shù)列(其中,常數(shù)為正實數(shù)),設為數(shù)列的前項和.若已知數(shù)列極限存在,試求實數(shù)的取值范圍,并求出該極限值.21.在△ABC中,a=3,b?c=2,cosB=.(Ⅰ)求b,c的值;(Ⅱ)求sin(B–C)的值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】

設所求圓的圓心坐標為,列出方程組,求得圓心關于的對稱點,即可求解所求圓的方程.【詳解】由題意,圓的圓心坐標,設所求圓的圓心坐標為,則圓心關于的對稱點,滿足,解得,即所求圓的圓心坐標為,且半徑與圓相等,所以所求圓的方程為,故選A.【點睛】本題主要考查了圓的方程的求解,其中解答中熟記圓的方程,以及準確求解點關于直線的對稱點的坐標是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.2、C【解析】

將題目所給方程轉化為關于的一元二次方程,根據(jù)此方程在上有解列不等式組,解不等式組求得的取值范圍,進而求出正確選項.【詳解】由得,當時,方程為不和題意,故這是關于的一元二次方程,依題意可知,該方程在上有解,注意到,所以由解得,故實數(shù)的最大值為,所以選C.【點睛】本小題主要考查一元二次方程根的分布問題,考查化歸與轉化的數(shù)學思想方法,屬于中檔題.3、A【解析】

由,對任意的實數(shù),等式恒成立,且,得到an+1=an+2,由等差數(shù)列的定義求得結果.【詳解】∵,∴f(an+1)f(﹣2﹣an)=1,∵f(x)?f(y)=f(x+y)恒成立,∴令x=﹣1,y=0,則f(﹣1)?f(0)=f(﹣1),∵當x<0時,f(x)>1,∴f(﹣1)≠0,則f(0)=1,則f(an+1)f(﹣2﹣an)=1,等價為f(an+1)f(﹣2﹣an)=f(0),即f(an+1﹣2﹣an)=f(0),則an+1﹣2﹣an=0,∴an+1﹣an=2.∴數(shù)列{an}是以1為首項,以2為公差的等差數(shù)列,首項a1=f(0)=1,∴an=1+2(n﹣1)=2n﹣1,∴=2×2019﹣1=4037.故選:A【點睛】本題主要考查數(shù)列與函數(shù)的綜合運用,根據(jù)抽象函數(shù)的關系結合等差數(shù)列的通項公式建立方程是解決本題的關鍵,屬于中檔題.4、A【解析】

利用方差或標準差表示一組數(shù)據(jù)的穩(wěn)定程度可得出選項.【詳解】表示一組數(shù)據(jù)的穩(wěn)定程度是方差或標準差,標準差越小,數(shù)據(jù)越穩(wěn)定故選:A【點睛】本題考查了用樣本估計總體,需掌握住數(shù)據(jù)的穩(wěn)定程度是用方差或標準差估計的,屬于基礎題.5、B【解析】

根據(jù)對數(shù)函數(shù)的單調性可知都大于1,把化成后可得的大小,從而可得的大小關系.【詳解】因為及都是上的增函數(shù),故,,又,故,選B.【點睛】對數(shù)的大小比較,可通過尋找合適的單調函數(shù)來構建大小關系,如果底數(shù)不統(tǒng)一,可以利用對數(shù)的運算性質統(tǒng)一底數(shù).不同類型的數(shù)比較大小,應找一個中間數(shù),通過它實現(xiàn)大小關系的傳遞.6、C【解析】

根據(jù)正四棱柱的底面是正方形,高為4,體積為16,求得底面正方形的邊長,再求出其對角線長,然后根據(jù)正四棱柱的體對角線是外接球的直徑可得球的半徑,再根據(jù)球的表面積公式可求得.【詳解】依題意正四棱柱的體對角線是其外接球的直徑,的中點是球心,如圖:依題意設,則正四棱柱的體積為:,解得,所以外接球的直徑,所以外接球的半徑,則這個球的表面積是.故選C.【點睛】本題考查了球與正四棱柱的組合體,球的表面積公式,正四棱柱的體積公式,屬中檔題.7、B【解析】

由平面向量的數(shù)量積公式,即可得到本題答案.【詳解】由題意可得.故選:B.【點睛】本題主要考查平面向量的數(shù)量積公式,屬基礎題.8、D【解析】

根據(jù)不等式的性質,一一分析選擇正誤即可.【詳解】根據(jù)不等式的性質,當時,對于A,若,則,故A錯誤;對于B,若,則,故B錯誤;對于C,若,則,故C錯誤;對于D,當時,總有成立,故D正確;故選:D.【點睛】本題考查不等式的基本性質,屬于基礎題.9、B【解析】

把y=sin【詳解】由題得y=sin所以要得到函數(shù)y=sin2x-π3的圖象,只要將函數(shù)故選:B【點睛】本題主要考查三角函數(shù)的圖像變換,意在考查學生對該知識的理解掌握水平,屬于基礎題.10、D【解析】

對任意,不等式恒成立,即恒成立,代入計算得到答案.【詳解】對任意,不等式恒成立即恒成立故答案為D【點睛】本題考查了不等式恒成立問題,意在考查學生的計算能力和解決問題的能力.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

利用誘導公式,二倍角公式,余弦定理化簡即可得解.【詳解】.故答案為.【點睛】本題主要考查了誘導公式,二倍角的三角函數(shù)公式,余弦定理,屬于中檔題.12、【解析】試題分析:若點A(3,1)和點B(4,6)分別在直線3x-2y+a=0兩側,則將點代入直線中是異號,則[3×3-2×1+a]×[3×4-2×6+a]<0,即(a+7)a<0,解得-7<a<0,故填寫-7<a<0考點:本試題主要考查了二元一次不等式與平面區(qū)域的運用.點評:解決該試題的關鍵是根據(jù)A、B在直線兩側,則A、B坐標代入直線方程所得符號相反構造不等式.13、15【解析】

根據(jù)球的半徑,先求得球的體積;根據(jù)圓與等邊三角形關系,設出的邊長為,由面積關系表示出圓錐的體積;設拿出鐵球后水面高度為,用表示出水的體積,由即可求得液面高度.【詳解】因為鐵球半徑為,所以由球的體積公式可得,設的邊長為,則由面積公式與內切圓關系可得,解得,則圓錐的高為.則圓錐的體積為,設拿出鐵球后的水面為,且到的距離為,如下圖所示:則由,可得,所以拿出鐵球后水的體積為,由,可知,解得,即將鐵球取出后容器中水的深度為15.故答案為:15.【點睛】本題考查了圓錐內切球性質的應用,球的體積公式及圓錐體積公式的求法,屬于中檔題.14、.【解析】

根據(jù)題意可知,,從而得出,再由,即可求出的取值范圍.【詳解】解:由題意可知,,且,,,,或,故的取值范圍是,故答案為:.【點睛】本題主要考查等比數(shù)列的極限問題,解題時要熟練掌握無窮等比數(shù)列的極限和,屬于基礎題.15、【解析】

利用三角函數(shù)的圖象與性質、誘導公式和數(shù)列的遞推公式,可得,再利用“累加”法和等差數(shù)列的前n項和公式,即可求解.【詳解】由題意,因為,當時,,又因為對任意的實數(shù),總有兩個不同的根,所以,所以,又,對任意的實數(shù),總有兩個不同的根,所以,又,對任意的實數(shù),總有兩個不同的根,所以,由此可得,所以,所以.故答案為:.【點睛】本題主要考查了三角函數(shù)的圖象與性質的應用,以及誘導公式,數(shù)列的遞推關系式和“累加”方法等知識的綜合應用,著重考查了推理與運算能力,屬于中檔試題.16、1835028【解析】

分別分析中二元子集中較大元素分別為、、、時,對應的二元子集中較小的元素,再利用題中的定義結合數(shù)列求和思想求出結果.【詳解】當二元子集較大的數(shù)為,則較小的數(shù)為;當二元子集較大的數(shù)為,則較小的數(shù)為、;當二元子集較大的數(shù)為,則較小的數(shù)為、、;當二元子集較大的數(shù)為,則較小的數(shù)為、、、、.由題意可得,令,得,上式下式得,化簡得,因此,,故答案為:.【點睛】本題考查新定義,同時也考查了數(shù)列求和,解題的關鍵就是找出相應的規(guī)律,列出代數(shù)式進行計算,考查運算求解能力,屬于難題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)詳見解析;(2)99.【解析】

(1)利用數(shù)列遞推公式取倒數(shù),變形可得,從而可證數(shù)列為等比數(shù)列;(2)確定數(shù)列的通項,利用等比數(shù)列的求和公式求和,即可求最大的正整數(shù).【詳解】解(1)∵,∴,∵,∴∴數(shù)列為等比數(shù)列.(2)由(1)可求得,∴.∴.因為在上單調遞增,又因為,∴【點睛】本題考查數(shù)列遞推公式,考查等比數(shù)列的證明,考查等比數(shù)列的求和公式,屬于中檔題.18、(1)-1;(2)【解析】

(1)用表示出,然后利用誘導公式化簡所求表達式,求得表達式的值.(2)根據(jù)點的橫坐標即的值,求得的值,根據(jù)誘導公式求得的值,由此利用兩角和與差的正弦公式,化簡求得的值.【詳解】解:(1)∵∴,∴(2)由已知點的橫坐標為∴,,【點睛】本小題主要考查三角函數(shù)的定義,考查利用誘導公式化簡求值,考查兩角和與差的正弦公式以及同角三角函數(shù)的基本關系式,考查運算求解能力,屬于中檔題.19、(1)(2)【解析】試題分析:(1)根據(jù)二倍角公式,三角形內角和,所以,整理為關于的二次方程,解得角的大?。唬?)根據(jù)三角形的面積公式和上一問角,代入后解得邊,這樣就知道,然后根據(jù)余弦定理再求,最后根據(jù)證得定理分別求得和.試題解析:(1)由cos2A-3cos(B+C)=1,得2cos2A+3cosA-2=0,即(2cosA-1)(cosA+2)=0,解得cosA=或cosA=-2(舍去).因為0<A<π,所以A=.(2)由S=bcsinA=bc×=bc=5,得bc=20,又b=5,知c=4.由余弦定理得a2=b2+c2-2bccosA=25+16-20=21,故a=.從而由正弦定理得sinBsinC=sinA×sinA=sin2A=×=.考點:1.二倍角公式;2.正余弦定理;3.三角形面積公式.【方法點睛】本題涉及到解三角形問題,所以有關三角問題的公式都有涉及,當出現(xiàn)時,就要考慮一個條件,,,這樣就做到了有效的消元,涉及三角形的面積問題,就要考慮公式,靈活使用其中的一個.20、(1);(2);(3).【解析】

(1)設,由題意得出,求出正整數(shù)的值即可;(2)根據(jù)定義可知等比數(shù)列中的奇數(shù)項構成的等比數(shù)列為階穩(wěn)增數(shù)列,偶數(shù)項構成的等比數(shù)列也為階穩(wěn)增數(shù)列,分和兩種情況討論,列出關于的不等式,解出即可;(3)求出,然后分、和三種情況討論,求出,結合數(shù)列的極限存在,求出實數(shù)的取值范圍.【詳解】(1)設,由于數(shù)列為階穩(wěn)增數(shù)列,則,對任意,數(shù)列中恰有個,則數(shù)列中的項依次為:、、、、、、、、、、、、、、、、,設數(shù)列中值為的最大項數(shù)為,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論