版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2024屆黑龍江哈爾濱市第三中學高一下數(shù)學期末檢測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若函數(shù)則()A. B. C. D.2.如圖所示,4個散點圖中,不適合用線性回歸模型擬合其中兩個變量的是()A. B.C. D.3.已知1,a,b,c,5五個數(shù)成等比數(shù)列,則b的值為()A. B. C. D.34.已知,,且,,則的值為()A. B.1 C. D.5.直線的傾斜角是()A.30° B.60° C.120° D.135°6.下圖來自古希臘數(shù)學家希波克拉底所研究的平面幾何圖形.此圖由兩個圓構(gòu)成,O為大圓圓心,線段AB為小圓直徑.△AOB的三邊所圍成的區(qū)域記為I,黑色月牙部分記為Ⅱ,兩小月牙之和(斜線部分)部分記為Ⅲ.在整個圖形中隨機取一點,此點取自Ⅰ,Ⅱ,Ⅲ的概率分別記為p1,p2,p3,則()A. B. C. D.7.若函數(shù)在處取最小值,則等于()A.3 B. C. D.48.如圖是棱長為的正方體的平面展開圖,則在這個正方體中直線所成角的大小為()A. B. C. D.9.為了得到函數(shù)y=sin(2x-πA.向右平移π6個單位 B.向右平移πC.向左平移π6個單位 D.向左平移π10.如圖,向量,,,則向量可以表示為()A.B.C.D.二、填空題:本大題共6小題,每小題5分,共30分。11.設函數(shù)的最小值為,則的取值范圍是___________.12.已知正實數(shù)x,y滿足,則的最小值為________.13.把一枚質(zhì)地均勻的硬幣先后拋擲兩次,兩次都是正面向上的概率為________.14.若直線與圓相交于,兩點,且(其中為原點),則的值為________.15.如圖,長方體中,,,,與相交于點,則點的坐標為______________.16.在△ABC中,若,則△ABC的形狀是____.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.為了了解四川省各景點在大眾中的熟知度,隨機對歲的人群抽樣了人,回答問題“四川省有哪幾個著名的旅游景點?”統(tǒng)計結(jié)果如表.組號分組回答正確的人數(shù)回答正確的人數(shù)占本組的頻率第組第組第組第組第組(1)分別求出的值;(2)從第,,組回答正確的人中用分層抽樣的方法抽取人,求第,,組每組各抽取多少人?(3)通過直方圖求出年齡的眾數(shù),平均數(shù).18.已知圓,直線平分圓.(1)求直線的方程;(2)設,圓的圓心是點,對圓上任意一點,在直線上是否存在與點不重合的點,使是常數(shù),若存在,求出點坐標;若不存在,說明理由.19.已知圓,過點的直線與圓相交于不同的兩點,.(1)若,求直線的方程.(2)判斷是否為定值.若是,求出這個定值;若不是,請說明理由.20.東莞市公交公司為了方便廣大市民出行,科學規(guī)劃公交車輛的投放,計劃在某個人員密集流動地段增設一個起點站,為了研究車輛發(fā)車的間隔時間與乘客等候人數(shù)之間的關(guān)系,選取一天中的六個不同的時段進行抽樣調(diào)查,經(jīng)過統(tǒng)計得到如下數(shù)據(jù):間隔時間(分鐘)81012141618等候人數(shù)(人)161923262933調(diào)查小組先從這6組數(shù)據(jù)中選取其中的4組數(shù)據(jù)求得線性回歸方程,再用剩下的2組數(shù)據(jù)進行檢驗,檢驗方法如下:先用求得的線性回歸方程計算間隔時間對應的等候人數(shù),再求與實際等候人數(shù)的差,若兩組差值的絕對值均不超過1,則稱所求的回歸方程是“理想回歸方程”.參考公式:用最小二乘法求線性回歸方程的系數(shù)公式:,(1)若選取的是前4組數(shù)據(jù),求關(guān)于的線性回歸方程;(2)判斷(1)中的方程是否是“理想回歸方程”:(3)為了使等候的乘客不超過38人,試用(1)中方程估計間隔時間最多可以設置為多少分鐘?21.假設關(guān)于某設備的使用年限x和支出的維修費y(萬元)有如下表的統(tǒng)計資料(1)畫出數(shù)據(jù)的散點圖,并判斷y與x是否呈線性相關(guān)關(guān)系(2)若y與x呈線性相關(guān)關(guān)系,求線性回歸方程的回歸系數(shù),(3)估計使用年限為10年時,維修費用是多少?參考公式及相關(guān)數(shù)據(jù):
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】
首先根據(jù)題意得到,再計算即可.【詳解】……,.故選:B【點睛】本題主要考查分段函數(shù)值的求法,同時考查了指數(shù)冪的運算,屬于簡單題.2、A【解析】
根據(jù)線性回歸模型建立方法,分析選項,找出散點比較分散且無任何規(guī)律的選項可得答案.【詳解】根據(jù)題意,適合用線性回歸擬合其中兩個變量的散點圖必須散點分布比較集中,且大體接近某一條直線,分析選項可得A選項的散點圖雜亂無章,最不符合條件.故選A【點睛】本題考查了統(tǒng)計案例散點圖,屬于基礎題.3、A【解析】
根據(jù)等比數(shù)列奇數(shù)項也成等比數(shù)列,求解.【詳解】因為1,a,b,c,5五個數(shù)成等比數(shù)列,所以也成等比數(shù)列,等比數(shù)列奇數(shù)項的符號一致,,.故選A.【點睛】本題考查了等比數(shù)列的基本性質(zhì),屬于簡單題型,但需注意這個隱含條件.4、A【解析】
由已知求出,的值,再由,展開兩角差的余弦求解,即可得答案.【詳解】由,,且,,,,∴,∴,.故選:A.【點睛】本題考查兩角和與差的余弦、倍角公式,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意“拆角配角”思想的運用.5、C【解析】
根據(jù)直線方程求出斜率即可得到傾斜角.【詳解】由題:直線的斜率為,所以傾斜角為120°.故選:C【點睛】此題考查根據(jù)直線方程求傾斜角,需要熟練掌握直線傾斜角與斜率的關(guān)系,熟記常見特殊角的三角函數(shù)值.6、D【解析】
設OA=1,則AB,分別求出三個區(qū)域的面積,由測度比是面積比得答案.【詳解】設OA=1,則AB,,以AB中點為圓心的半圓的面積為,以O為圓心的大圓面積的四分之一為,以AB為弦的大圓的劣弧所對弓形的面積為π﹣1,黑色月牙部分的面積為π﹣(π﹣1)=1,圖Ⅲ部分的面積為π﹣1.設整個圖形的面積為S,則p1,p1,p3.∴p1=p1>p3,故選D.【點睛】本題考查幾何概型概率的求法,考查數(shù)形結(jié)合的解題思想方法,正確求出各部分面積是關(guān)鍵,是中檔題.7、A【解析】
將函數(shù)的解析式配湊為,再利用基本不等式求出該函數(shù)的最小值,利用等號成立得出相應的值,可得出的值.【詳解】當時,,則,當且僅當時,即當時,等號成立,因此,,故選A.【點睛】本題考查基本不等式等號成立的條件,利用基本不等式要對代數(shù)式進行配湊,注意“一正、二定、三相等”這三個條件的應用,考查計算能力,屬于中等題.8、C【解析】
根據(jù)異面直線所成的角的定義,先作其中一條的平行線,作出異面直線所成的角,然后求解.【詳解】如圖所示:在正方體中,,所以直線所成角,由正方體的性質(zhì),知,所以.故選:C【點睛】本題主要考查了異面直線所成的角,還考查了推理論證的能力,屬于基礎題.9、A【解析】
根據(jù)函數(shù)平移變換的方法,由2x→2x-π3即2x→2(x-π【詳解】根據(jù)函數(shù)平移變換,由y=sin2x變換為只需將y=sin2x的圖象向右平移π6【點睛】本題主要考查了三角函數(shù)圖象的平移變換,解題關(guān)鍵是看自變量上的變化量,屬于中檔題.10、C【解析】
利用平面向量加法和減法的運算,求得的線性表示.【詳解】依題意,即,故選C.【點睛】本小題主要考查平面向量加法和減法的運算,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、.【解析】
確定函數(shù)的單調(diào)性,由單調(diào)性確定最小值.【詳解】由題意在上是增函數(shù),在上是減函數(shù),又,∴,,故答案為.【點睛】本題考查分段函數(shù)的單調(diào)性.由單調(diào)性確定最小值,12、4【解析】
將變形為,展開,利用基本不等式求最值.【詳解】解:,當時等號成立,又,得,此時等號成立,故答案為:4.【點睛】本題考查基本不等式求最值,特別是掌握“1”的妙用,是基礎題.13、【解析】
把一枚質(zhì)地均勻的硬幣先后拋擲兩次,利用列舉法求出基本事件有4個,由此能求出兩次都是正面向上的概率.【詳解】把一枚質(zhì)地均勻的硬幣先后拋擲兩次,基本事件有4個,分別為:正正,正反,反正,反反,兩次都是正面向上的概率為.故答案為:.【點睛】本題考查古典概型的概率計算,求解時注意列舉法的應用,即列舉出所有等可能結(jié)果.14、【解析】
首先根據(jù)題意畫出圖形,再根據(jù)求出直線的傾斜角,求斜率即可.【詳解】如圖所示直線與圓恒過定點,不妨設,因為,所以,兩種情況討論,可得,.所以斜率.故答案為:【點睛】本題主要考查直線與圓的位置關(guān)系,同時考查了數(shù)形結(jié)合的思想,屬于簡單題.15、【解析】
易知是的中點,求出的坐標,根據(jù)中點坐標公式求解.【詳解】可知,,由中點坐標公式得的坐標公式,即【點睛】本題考查空間直角坐標系和中點坐標公式,空間直角坐標的讀取是易錯點.16、鈍角三角形【解析】
由,結(jié)合正弦定理可得,,由余弦定理可得可判斷的取值范圍【詳解】解:,由正弦定理可得,由余弦定理可得是鈍角三角形故答案為鈍角三角形.【點睛】本題主要考查了正弦定理、余弦定理的綜合應用在三角形的形狀判斷中的應用,屬于基礎題三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2)第組抽取人,第組抽取人,第組抽取人;(3)40,.【解析】
(1)由頻率分布表得第四組人數(shù)為25人,由頻率分布直方圖得第四組的頻率為0.25,從而求出.由此求出各組人數(shù),進而能求出,,,的值.(2)由第2,3,4組回答正確的人分別有18、27、9人,從中用分層抽樣的方法抽取6人,由此能求出第2,3,4組每組各抽取多少人.(3)由頻率分布直方圖能求出年齡的眾數(shù),平均數(shù).【詳解】(1)由頻率分布表得第四組人數(shù)為:人,由頻率分布直方圖得第四組的頻率為,.第一組抽取的人數(shù)為:人,第二組抽取的人數(shù)為:人,第三組抽取的人數(shù)為:人,第五組抽取的人數(shù)為:人,.(2)第,,組回答正確的人分別有、、人,從中用分層抽樣的方法抽取人,第組抽?。喝?,第組抽?。喝?,第組抽?。喝耍?)由頻率分布直方圖得:年齡的眾數(shù)為:,年齡的平均數(shù)為:【點睛】本題考查頻率、頻數(shù)、眾數(shù)、平均數(shù)的求法,考查分層抽樣的應用,是基礎題,解題時要認真審題,注意頻率分布直方圖的性質(zhì)的合理運用.18、(1)直線的方程為.(2)見解析【解析】
(1)結(jié)合直線l平分圓,則可知該直線過圓心,代入圓心坐標,計算參數(shù),即可.(2)結(jié)合A,M坐標,計算直線AM方程,采取假設法,假設存在該點,計算,對應項成比例,計算參數(shù)t,即可.【詳解】(1)圓的標準方程為因為直線平分圓,所以,得,從而可得直線的方程為.(2)點,,直線方程為,假設存在點,滿足條件,設,則有,當是常數(shù)時,是常數(shù),∴,∴,∵,∴.∴存在滿足條件.【點睛】本題考查了直線與圓的綜合問題,第一問代入圓心坐標,即可,同時采取假設法,計算,利用對應項系數(shù)成比例,建立等式,即可.19、(1)或.(2)是,定值.【解析】
(1)根據(jù)題意設出,再聯(lián)立直線方程和圓的方程,得到,,然后由列式,再將的值代入求解,即可求出;(2)先根據(jù)特殊情況,當直線與軸垂直時,求出,再說明當直線與軸不垂直時,是否成立,即可判斷.【詳解】(1)由已知得不與軸垂直,不妨設,,.聯(lián)立消去得,則有,又,,,解得或.所以,直線的方程為或.(2)當直線與軸垂直時(斜率不存在),,的坐標分別為,,此時.當不與軸垂直時,又由(1),,且,所以.綜上,為定值.【點睛】本題主要考查直線與圓的位置關(guān)系的應用,韋達定理的應用,數(shù)量積的坐標表示,以及和圓有關(guān)的定值問題的解法的應用,意在考查學生的數(shù)學運算能力,屬于中檔題.20、(1)(2)是“理想回歸方程”(3)估計間隔時間最多可以設置為21分鐘【解析】
(1)根據(jù)所給公式計算可得回歸方程;(2)由理想回歸方程的定義驗證;(3)直接解不等式即可.【詳解】(1),(2)當時,當時,,所以判斷(1)中的方程是“理想回歸方程”(3)由,得估計間隔時間最多可以設置為21分鐘【點
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度綠色建筑租賃合同(含能源管理)2篇
- 2025年度個人債務重組合同范本2篇
- 2025版施工隊中途退場原因調(diào)查及責任追究合同3篇
- 2025-2030全球微注塑材料行業(yè)調(diào)研及趨勢分析報告
- 2024年全國營養(yǎng)師技能大賽福建選拔賽考試題庫(附答案)
- 2025-2030全球軍事應用防護涂層行業(yè)調(diào)研及趨勢分析報告
- 2025-2030全球駐極體過濾介質(zhì)行業(yè)調(diào)研及趨勢分析報告
- 2025-2030全球植入性人工器官行業(yè)調(diào)研及趨勢分析報告
- 外墻清洗合同范例
- 2025年度鋼材價格預測居間服務協(xié)議3篇
- 2024年湖南高速鐵路職業(yè)技術(shù)學院高職單招數(shù)學歷年參考題庫含答案解析
- 國旗班指揮刀訓練動作要領
- 2024年國家工作人員學法用法考試題庫及參考答案
- 國家公務員考試(面試)試題及解答參考(2024年)
- 《阻燃材料與技術(shù)》課件 第6講 阻燃纖維及織物
- 2021-2022學年遼寧省重點高中協(xié)作校高一上學期期末語文試題
- 同等學力英語申碩考試詞匯(第六版大綱)電子版
- 人教版五年級上冊遞等式計算100道及答案
- 墓地個人協(xié)議合同模板
- 2024年部編版初中語文各年級教師用書七年級(上冊)
- 2024年新課標全國Ⅰ卷語文高考真題試卷(含答案)
評論
0/150
提交評論