版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年江蘇省啟東市高一數(shù)學第二學期期末考試試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知函數(shù),且不等式的解集為,則函數(shù)的圖象為()A. B.C. D.2.在中,,,為的外接圓的圓心,則()A. B.C. D.3.《九章算術》是我國古代數(shù)學成就的杰出代表.其中《方田》章給出計算弧田面積所用的經(jīng)驗公式為:弧田面積(弦矢+矢).弧田,由圓弧和其所對弦所圍成.公式中“弦”指圓弧所對的弦長,“矢”等于半徑長與圓心到弦的距離之差.現(xiàn)有圓心角為,弦長等于的弧田.按照《九章算術》中弧田面積的經(jīng)驗公式計算所得弧田面積為()A. B. C. D.4.已知等比數(shù)列中,,數(shù)列是等差數(shù)列,且,則()A.3 B.6 C.7 D.85.已知是單位向量,.若向量滿足()A. B.C. D.6.下列說法中,正確的是()A.若,則B.若,則C.若,則D.若,則7.已知兩條直線與兩個平面,給出下列命題:①若,則;②若,則;③若,則;④若,則;其中正確的命題個數(shù)為A.1 B.2 C.3 D.48.如果且,那么的大小關系是()A. B.C. D.9.已知均為銳角,,則=A. B. C. D.10.若實數(shù)滿足,則的大小關系是:A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知的內(nèi)角、、的對邊分別為、、,若,,且的面積是,___________.12.利用數(shù)學歸納法證明不等式“”的過程中,由“”變到“”時,左邊增加了_____項.13.已知數(shù)列滿足,若,則的所有可能值的和為______;14.已知樣本數(shù)據(jù)的方差是1,如果有,那么數(shù)據(jù),的方差為______.15.終邊經(jīng)過點,則_____________16.已知等差數(shù)列中,首項,公差,前項和,則使有最小值的_________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.如圖,三條直線型公路,,在點處交匯,其中與、與的夾角都為,在公路上取一點,且km,過鋪設一直線型的管道,其中點在上,點在上(,足夠長),設km,km.(1)求出,的關系式;(2)試確定,的位置,使得公路段與段的長度之和最?。?8.如圖,在四棱錐中,底面為正方形,平面,,與交于點,,分別為,的中點.(Ⅰ)求證:平面平面;(Ⅱ)求證:∥平面;(Ⅲ)求證:平面.19.已知的角、、所對的邊分別是、、,設向量,,.(1)若,求證:為等腰三角形;(2)若,邊長,角,求的面積.20.已知函數(shù),且,.(1)求該函數(shù)的最小正周期及對稱中心坐標;(2)若方程的根為,且,求的值.21.已知函數(shù),(1)求的單調(diào)遞增區(qū)間.(2)求在區(qū)間的最大值和最小值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】本題考查二次函數(shù)圖像,二次方程的根,二次不等式的解集三者之間的關系.不等式的解集為,所以方程的兩根是則解得所以則故選B2、A【解析】
利用正弦定理可求出的外接圓半徑.【詳解】由正弦定理可得,因此,,故選A.【點睛】本題考查利用正弦定理求三角形外接圓的半徑,考查計算能力,屬于基礎題.3、C【解析】
首先根據(jù)圖形計算出矢,弦,再帶入弧田面積公式即可.【詳解】如圖所示:因為,,為等邊三角形.所以,矢,弦..故選:C【點睛】本題主要考查扇形面積公式,同時考查學生對題意的理解,屬于中檔題.4、D【解析】
由等比數(shù)列的性質(zhì)求得,再由等差數(shù)列的性質(zhì)可得結果.【詳解】因為等比數(shù)列,且,解得,數(shù)列是等差數(shù)列,則,故選:D.【點睛】本題主要考查等比數(shù)列與等差數(shù)列的下標性質(zhì),屬于基礎題.解等差數(shù)列問題要注意應用等差數(shù)列的性質(zhì)().5、A【解析】
因為,,做出圖形可知,當且僅當與方向相反且時,取到最大值;最大值為;當且僅當與方向相同且時,取到最小值;最小值為.6、C【解析】試題分析:選項A中,條件應為;選項B中當時不成立;選項D中,結論應為;C正確.考點:不等式的性質(zhì).7、A【解析】
結合線面平行定理和舉例判斷.【詳解】若,則可能平行或異面,故①錯誤;若,則可能與的交線平行,故②錯誤;若,則,所以,故③正確;若,則可能平行,相交或異面,故④錯誤;故選A.【點睛】本題線面關系的判斷,主要依據(jù)線面定理和舉例排除.8、B【解析】
取,故選B.9、A【解析】因為,所以,又,所以,則;因為且,所以,又,所以;則====;故選A.點睛:三角函數(shù)式的化簡要遵循“三看”原則(1)一看“角”,這是最重要的一環(huán),通過看角之間的區(qū)別和聯(lián)系,把角進行合理的拆分,從而正確使用公式;(2)而看“函數(shù)名稱”看函數(shù)名稱之間的差異,從而確定使用公式,常見的有“切化弦”;(3)三看“結構特征”,分析結構特征,可以幫助我們找到變形的方向,如“遇到分式通分”等.10、D【解析】分析:先解不等式,再根據(jù)不等式性質(zhì)確定的大小關系.詳解:因為,所以,所以選D.點睛:本題考查一元二次不等式解法以及不等式性質(zhì),考查基本求解能力與運用性質(zhì)解決問題能力.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
利用同角三角函數(shù)計算出的值,利用三角形的面積公式和條件可求出、的值,再利用余弦定理求出的值.【詳解】,,,且的面積是,,,,,由余弦定理得,.故答案為.【點睛】本題考查利用余弦定理解三角形,同時也考查了同角三角函數(shù)的基本關系、三角形面積公式的應用,考查運算求解能力,屬于中等題.12、.【解析】
分析題意,根據(jù)數(shù)學歸納法的證明方法得到時,不等式左邊的表示式是解答該題的突破口,當時,左邊,由此將其對時的式子進行對比,得到結果.【詳解】當時,左邊,當時,左邊,觀察可知,增加的項數(shù)是,故答案是.【點睛】該題考查的是有關數(shù)學歸納法的問題,在解題的過程中,需要明確式子的形式,正確理解對應式子中的量,認真分析,明確哪些項是添的,得到結果.13、36【解析】
根據(jù)條件得到的遞推關系,從而判斷出的類型求解出可能的通項公式,即可計算出的所有可能值,并完成求和.【詳解】因為,所以或,當時,是等差數(shù)列,,所以;當時,是等比數(shù)列,,所以,所以的所有可能值之和為:.故答案為:.【點睛】本題考查等差和等比數(shù)列的判斷以及求數(shù)列中項的值,難度一般.已知數(shù)列滿足(為常數(shù)),則是公差為的等差數(shù)列;已知數(shù)列滿足,則是公比為的等比數(shù)列.14、1【解析】
利用方差的性質(zhì)直接求解.【詳解】根據(jù)題意,樣本數(shù)據(jù)的平均數(shù)為,方差是1,則有,對于數(shù)據(jù),其平均數(shù)為,其方差為,故答案為1.【點睛】本題考查方差的求法,考查方差的性質(zhì)等基礎知識,考查運算求解能力,是基礎題.15、【解析】
根據(jù)正弦值的定義,求得正弦值.【詳解】依題意.故答案為:【點睛】本小題主要考查根據(jù)角的終邊上一點的坐標求正弦值,屬于基礎題.16、或【解析】
求出,然后利用,求出的取值范圍,即可得出使得有最小值的的值.【詳解】,令,解得.因此,當或時,取得最小值.故答案為:或.【點睛】本題考查等差數(shù)列前項和的最小值求解,可以利用二次函數(shù)性質(zhì)求前項和的最小值,也可以轉(zhuǎn)化為數(shù)列所有非正數(shù)項相加,考查計算能力,屬于中等題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)當時,公路段與段的總長度最小【解析】
(1)(法一)觀察圖形可得,由此根據(jù)三角形的面積公式,建立方程,化簡即可得到的關系式;(法二)以點為坐標原點,所在的直線為軸建立平面直角坐標系,找到各點坐標,根據(jù)三點共線,即可得到結論;(2)運用“乘1法”,利用基本不等式,即可求得最值,得到答案.【詳解】(1)(法一)由圖形可知.,,所以,即.(法二)以為坐標原點,所在的直線為軸建立平面直角坐標系,則,,,,由,,三點共線得.(2)由(1)可知,則(),當且僅當(km)時取等號.答:當時,公路段與段的總長度最小為8..【點睛】本題主要考查了三角形的面積公式應用,以及利用基本不等式求最值,著重考查了推理運算能力,屬于基礎題.18、(Ⅰ)見解析(Ⅱ)見解析(Ⅲ)見解析【解析】
(I)通過證明平面來證得平面平面.(II)取中點,連接,通過證明四邊形為平行四邊形,證得,由此證得∥平面.(III)通過證明平面證得,通過計算證明證得,由此證得平面.【詳解】證明:(Ⅰ)因為平面,所以.因為,,所以平面.因為平面,所以平面平面.(Ⅱ)取中點,連結,因為為的中點所以,且.因為為的中點,底面為正方形,所以,且.所以,且.所以四邊形為平行四邊形.所以.因為平面且平面,所以平面.(Ⅲ)在正方形中,,因為平面,所以.因為,所以平面.所以.在△中,設交于.因為,且分別為的中點,所以.所以.設,由已知,所以.所以.所以.所以,且為公共角,所以△∽△.所以.所以.因為,所以平面.【點睛】本小題主要考查線面垂直、面面垂直的證明,考查線面平行的證明,考查空間想象能力和邏輯推理能力,屬于中檔題.19、(1)見解析(2)【解析】
⑴因為,所以,即,其中是的外接圓半徑,所以,所以為等腰三角形.⑵因為,所以.由余弦定理可知,,即解方程得:(舍去)所以.20、(1)最小正周期為.對稱中心坐標為;(2)-1【解析】
(1)由題意兩未知數(shù)列兩方程即可求出、的值,再進行三角變換,可得的解析式,再利用正弦函數(shù)的周期公式、圖象的對稱性,即可得出結論.(2)先由條件求得的值,可得的值.【詳解】(1)由,得:,解得:,,,即函數(shù)的最小正周期為.由得:函數(shù)的對稱中心坐標為;(2)由題意得:,即,或,則或,由知:,.【點睛】本題主要考查三角恒等變換,正弦函數(shù)的周期性、圖象的對稱性,以及三角函數(shù)求值.21、(1),;(2)最大值為,最小值為【解析】
利用二倍角公式、兩角和差正弦公式和輔助角
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 網(wǎng)絡營銷人才獵頭協(xié)議
- 物流服務中貨物損壞免責協(xié)議
- 智能零售終端設備研發(fā)生產(chǎn)合作協(xié)議
- 經(jīng)營計劃制定與執(zhí)行制度
- 金融行業(yè)投資風險免責協(xié)議
- 2024年教育軟件開發(fā)合作協(xié)議
- 市政工程涵洞施工質(zhì)量提升措施
- 有色金屬冶煉加工合作合同
- 橋梁施工中的技術難點與保障措施
- 影視版權授權使用及免責聲明合同
- 骨科手術后患者營養(yǎng)情況及營養(yǎng)不良的原因分析,骨傷科論文
- GB/T 24474.1-2020乘運質(zhì)量測量第1部分:電梯
- GB/T 12684-2006工業(yè)硼化物分析方法
- 定崗定編定員實施方案(一)
- 高血壓患者用藥的注意事項講義課件
- 特種作業(yè)安全監(jiān)護人員培訓課件
- (完整)第15章-合成生物學ppt
- 太平洋戰(zhàn)爭課件
- 封條模板A4打印版
- T∕CGCC 7-2017 焙烤食品用糖漿
- 貨代操作流程及規(guī)范
評論
0/150
提交評論