浙江省杭州市三墩中學(xué)2024年中考數(shù)學(xué)模擬試題含解析_第1頁
浙江省杭州市三墩中學(xué)2024年中考數(shù)學(xué)模擬試題含解析_第2頁
浙江省杭州市三墩中學(xué)2024年中考數(shù)學(xué)模擬試題含解析_第3頁
浙江省杭州市三墩中學(xué)2024年中考數(shù)學(xué)模擬試題含解析_第4頁
浙江省杭州市三墩中學(xué)2024年中考數(shù)學(xué)模擬試題含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

浙江省杭州市三墩中學(xué)2024年中考數(shù)學(xué)模擬試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖1,在△ABC中,AB=BC,AC=m,D,E分別是AB,BC邊的中點,點P為AC邊上的一個動點,連接PD,PB,PE.設(shè)AP=x,圖1中某條線段長為y,若表示y與x的函數(shù)關(guān)系的圖象大致如圖2所示,則這條線段可能是()A.PD B.PB C.PE D.PC2.在2018年新年賀詞中說道:“安得廣廈千萬間,大庇天下寒士俱歡顏!2017年我國3400000貧困人口實現(xiàn)易地扶貧搬遷、有了溫暖的新家.”其中3400000用科學(xué)記數(shù)法表示為()A.0.34×107 B.3.4×106 C.3.4×105 D.34×1053.初三(1)班的座位表如圖所示,如果如圖所示建立平面直角坐標(biāo)系,并且“過道也占一個位置”,例如小王所對應(yīng)的坐標(biāo)為(3,2),小芳的為(5,1),小明的為(10,2),那么小李所對應(yīng)的坐標(biāo)是()A.(6,3) B.(6,4) C.(7,4) D.(8,4)4.下列各數(shù)中,相反數(shù)等于本身的數(shù)是()A.–1 B.0 C.1 D.25.在以下三個圖形中,根據(jù)尺規(guī)作圖的痕跡,能判斷射線AD平分∠BAC的是()A.圖2 B.圖1與圖2 C.圖1與圖3 D.圖2與圖36.如圖,平行四邊形ABCD中,點A在反比例函數(shù)y=(k≠0)的圖象上,點D在y軸上,點B、點C在x軸上.若平行四邊形ABCD的面積為10,則k的值是()A.﹣10 B.﹣5 C.5 D.107.上體育課時,小明5次投擲實心球的成績?nèi)缦卤硭?,則這組數(shù)據(jù)的眾數(shù)與中位數(shù)分別是()12345成績(m)8.28.08.27.57.8A.8.2,8.2 B.8.0,8.2 C.8.2,7.8 D.8.2,8.08.將一副三角尺(在中,,,在中,,)如圖擺放,點為的中點,交于點,經(jīng)過點,將繞點順時針方向旋轉(zhuǎn)(),交于點,交于點,則的值為()A. B. C. D.9.已知一次函數(shù)y=﹣x+2的圖象,繞x軸上一點P(m,1)旋轉(zhuǎn)181°,所得的圖象經(jīng)過(1.﹣1),則m的值為()A.﹣2 B.﹣1 C.1 D.210.如圖,在矩形AOBC中,O為坐標(biāo)原點,OA、OB分別在x軸、y軸上,點B的坐標(biāo)為(0,3),∠ABO=30°,將△ABC沿AB所在直線對折后,點C落在點D處,則點D的坐標(biāo)為()A.(,) B.(2,) C.(,) D.(,3﹣)11.每個人都應(yīng)懷有對水的敬畏之心,從點滴做起,節(jié)水、愛水,保護(hù)我們生活的美好世界.某地近年來持續(xù)干旱,為倡導(dǎo)節(jié)約用水,該地采用了“階梯水價”計費方法,具體方法:每戶每月用水量不超過4噸的每噸2元;超過4噸而不超過6噸的,超出4噸的部分每噸4元;超過6噸的,超出6噸的部分每噸6元.該地一家庭記錄了去年12個月的月用水量如下表,下列關(guān)于用水量的統(tǒng)計量不會發(fā)生改變的是()用水量x(噸)34567頻數(shù)1254﹣xxA.平均數(shù)、中位數(shù)B.眾數(shù)、中位數(shù)C.平均數(shù)、方差D.眾數(shù)、方差12.如圖,若a<0,b>0,c<0,則拋物線y=ax2+bx+c的大致圖象為()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.哈爾濱市某樓盤以每平方米10000元的均價對外銷售,經(jīng)過連續(xù)兩次上調(diào)后,均價為每平方米12100元,則平均每次上調(diào)的百分率為_____.14.在平面直角坐標(biāo)系中,已知,A(2,0),C(0,﹣1),若P為線段OA上一動點,則CP+AP的最小值為_____.15.小華到商場購買賀卡,他身上帶的錢恰好能買5張3D立體賀卡或20張普通賀卡若小華先買了3張3D立體賀卡,則剩下的錢恰好還能買______張普通賀卡.16.如圖,在平面直角坐標(biāo)系中,正方形ABOC和正方形DOFE的頂點B,F(xiàn)在x軸上,頂點C,D在y軸上,且S△ADC=4,反比例函數(shù)y=(x>0)的圖像經(jīng)過點E,則k=_______。17.一個幾何體的三視圖如左圖所示,則這個幾何體是()A. B. C. D.18.如圖,在Rt△AOB中,∠AOB=90°,OA=3,OB=2,將Rt△AOB繞點O順時針旋轉(zhuǎn)90°后得Rt△FOE,將線段EF繞點E逆時針旋轉(zhuǎn)90°后得線段ED,分別以O(shè),E為圓心,OA、ED長為半徑畫弧AF和弧DF,連接AD,則圖中陰影部分面積是_____.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象分別交x軸、y軸于A、B兩點,與反比例函數(shù)的圖象交于C、D兩點.已知點C的坐標(biāo)是(6,-1),D(n,3).求m的值和點D的坐標(biāo).求的值.根據(jù)圖象直接寫出:當(dāng)x為何值時,一次函數(shù)的值大于反比例函數(shù)的值?20.(6分)如圖,在△ABC中,∠C=90°.作∠BAC的平分線AD,交BC于D;若AB=10cm,CD=4cm,求△ABD的面積.21.(6分)如圖,是菱形的對角線,,(1)請用尺規(guī)作圖法,作的垂直平分線,垂足為,交于;(不要求寫作法,保留作圖痕跡)在(1)條件下,連接,求的度數(shù).22.(8分)如圖,∠ABC=∠BCD=90°,∠A=45°,∠D=30°,BC=1,AC,BD交于點O.求BODO23.(8分)如圖,邊長為1的正方形ABCD的對角線AC、BD相交于點O.有直角∠MPN,使直角頂點P與點O重合,直角邊PM、PN分別與OA、OB重合,然后逆時針旋轉(zhuǎn)∠MPN,旋轉(zhuǎn)角為θ(0°<θ<90°),PM、PN分別交AB、BC于E、F兩點,連接EF交OB于點G.(1)求四邊形OEBF的面積;(2)求證:OG?BD=EF2;(3)在旋轉(zhuǎn)過程中,當(dāng)△BEF與△COF的面積之和最大時,求AE的長.24.(10分)已知二次函數(shù)y=x2-4x-5,與y軸的交點為P,與x軸交于A、B兩點.(點B在點A的右側(cè))(1)當(dāng)y=0時,求x的值.(2)點M(6,m)在二次函數(shù)y=x2-4x-5的圖像上,設(shè)直線MP與x軸交于點C,求cot∠MCB的值.25.(10分)有一項工程,若甲隊單獨做,恰好在規(guī)定日期完成,若乙隊單獨做要超過規(guī)定日期3天完成;現(xiàn)在先由甲、乙兩隊合做2天后,剩下的工程再由乙隊單獨做,也剛好在規(guī)定日期完成,問規(guī)定日期多少天?26.(12分)如圖,已知△ABC內(nèi)接于,AB是直徑,OD∥AC,AD=OC.(1)求證:四邊形OCAD是平行四邊形;(2)填空:①當(dāng)∠B=時,四邊形OCAD是菱形;②當(dāng)∠B=時,AD與相切.27.(12分)在某市組織的大型商業(yè)演出活動中,對團體購買門票實行優(yōu)惠,決定在原定票價基礎(chǔ)上每張降價80元,這樣按原定票價需花費6000元購買的門票張數(shù),現(xiàn)在只花費了4800元.求每張門票原定的票價;根據(jù)實際情況,活動組織單位決定對于個人購票也采取優(yōu)惠措施,原定票價經(jīng)過連續(xù)二次降價后降為324元,求平均每次降價的百分率.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】觀察可得,點P在線段AC上由A到C的運動中,線段PE逐漸變短,當(dāng)EP⊥AC時,PE最短,過垂直這個點后,PE又逐漸變長,當(dāng)AP=m時,點P停止運動,符合圖像的只有線段PE,故選C.點睛:本題考查了動點問題的函數(shù)圖象,對于此類問題來說是典型的數(shù)形結(jié)合,圖象應(yīng)用信息廣泛,通過看圖獲取信息,不僅可以解決生活中的實際問題,還可以提高分析問題、解決問題的能力.用圖象解決問題時,要理清圖象的含義即會識圖.2、B【解析】

解:3400000=.故選B.3、C【解析】

根據(jù)題意知小李所對應(yīng)的坐標(biāo)是(7,4).故選C.4、B【解析】

根據(jù)相反數(shù)的意義,只有符號不同的數(shù)為相反數(shù).【詳解】解:相反數(shù)等于本身的數(shù)是1.故選B.【點睛】本題考查了相反數(shù)的意義.注意掌握只有符號不同的數(shù)為相反數(shù),1的相反數(shù)是1.5、C【解析】【分析】根據(jù)角平分線的作圖方法可判斷圖1,根據(jù)圖2的作圖痕跡可知D為BC中點,不是角平分線,圖3中根據(jù)作圖痕跡可通過判斷三角形全等推導(dǎo)得出AD是角平分線.【詳解】圖1中,根據(jù)作圖痕跡可知AD是角平分線;圖2中,根據(jù)作圖痕跡可知作的是BC的垂直平分線,則D為BC邊的中點,因此AD不是角平分線;圖3:由作圖方法可知AM=AE,AN=AF,∠BAC為公共角,∴△AMN≌△AEF,∴∠3=∠4,∵AM=AE,AN=AF,∴MF=EN,又∵∠MDF=∠EDN,∴△FDM≌△NDE,∴DM=DE,又∵AD是公共邊,∴△ADM≌△ADE,∴∠1=∠2,即AD平分∠BAC,故選C.【點睛】本題考查了尺規(guī)作圖,三角形全等的判定與性質(zhì)等,熟知角平分的尺規(guī)作圖方法、全等三角形的判定與性質(zhì)是解題的關(guān)鍵.6、A【解析】

作AE⊥BC于E,由四邊形ABCD為平行四邊形得AD∥x軸,則可判斷四邊形ADOE為矩形,所以S平行四邊形ABCD=S矩形ADOE,根據(jù)反比例函數(shù)k的幾何意義得到S矩形ADOE=|?k|,利用反比例函數(shù)圖象得到.【詳解】作AE⊥BC于E,如圖,∵四邊形ABCD為平行四邊形,∴AD∥x軸,∴四邊形ADOE為矩形,∴S平行四邊形ABCD=S矩形ADOE,而S矩形ADOE=|?k|,∴|?k|=1,∵k<0,∴k=?1.故選A.【點睛】本題考查了反比例函數(shù)y=(k≠0)系數(shù)k的幾何意義:從反比例函數(shù)y=(k≠0)圖象上任意一點向x軸和y軸作垂線,垂線與坐標(biāo)軸所圍成的矩形面積為|k|.7、D【解析】

解:按從小到大的順序排列小明5次投球的成績:7.5,7.8,8.2,8.1,8.1.其中8.1出現(xiàn)1次,出現(xiàn)次數(shù)最多,8.2排在第三,∴這組數(shù)據(jù)的眾數(shù)與中位數(shù)分別是:8.1,8.2.故選D.【點睛】本題考查眾數(shù);中位數(shù).8、C【解析】

先根據(jù)直角三角形斜邊上的中線性質(zhì)得CD=AD=DB,則∠ACD=∠A=30°,∠BCD=∠B=60°,由于∠EDF=90°,可利用互余得∠CPD=60°,再根據(jù)旋轉(zhuǎn)的性質(zhì)得∠PDM=∠CDN=α,于是可判斷△PDM∽△CDN,得到=,然后在Rt△PCD中利用正切的定義得到tan∠PCD=tan30°=,于是可得=.【詳解】∵點D為斜邊AB的中點,∴CD=AD=DB,∴∠ACD=∠A=30°,∠BCD=∠B=60°,∵∠EDF=90°,∴∠CPD=60°,∴∠MPD=∠NCD,∵△EDF繞點D順時針方向旋轉(zhuǎn)α(0°<α<60°),∴∠PDM=∠CDN=α,∴△PDM∽△CDN,∴=,在Rt△PCD中,∵tan∠PCD=tan30°=,∴=tan30°=.故選:C.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì):對應(yīng)點到旋轉(zhuǎn)中心的距離相等;對應(yīng)點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等.也考查了相似三角形的判定與性質(zhì).9、C【解析】

根據(jù)題意得出旋轉(zhuǎn)后的函數(shù)解析式為y=-x-1,然后根據(jù)解析式求得與x軸的交點坐標(biāo),結(jié)合點的坐標(biāo)即可得出結(jié)論.【詳解】∵一次函數(shù)y=﹣x+2的圖象,繞x軸上一點P(m,1)旋轉(zhuǎn)181°,所得的圖象經(jīng)過(1.﹣1),∴設(shè)旋轉(zhuǎn)后的函數(shù)解析式為y=﹣x﹣1,在一次函數(shù)y=﹣x+2中,令y=1,則有﹣x+2=1,解得:x=4,即一次函數(shù)y=﹣x+2與x軸交點為(4,1).一次函數(shù)y=﹣x﹣1中,令y=1,則有﹣x﹣1=1,解得:x=﹣2,即一次函數(shù)y=﹣x﹣1與x軸交點為(﹣2,1).∴m==1,故選:C.【點睛】本題考查了一次函數(shù)圖象與幾何變換,解題的關(guān)鍵是求出旋轉(zhuǎn)后的函數(shù)解析式.本題屬于基礎(chǔ)題,難度不大.10、A【解析】解:∵四邊形AOBC是矩形,∠ABO=10°,點B的坐標(biāo)為(0,),∴AC=OB=,∠CAB=10°,∴BC=AC?tan10°=×=1.∵將△ABC沿AB所在直線對折后,點C落在點D處,∴∠BAD=10°,AD=.過點D作DM⊥x軸于點M,∵∠CAB=∠BAD=10°,∴∠DAM=10°,∴DM=AD=,∴AM=×cos10°=,∴MO=﹣1=,∴點D的坐標(biāo)為(,).故選A.11、B【解析】

由頻數(shù)分布表可知后兩組的頻數(shù)和為4,即可得知頻數(shù)之和,結(jié)合前兩組的頻數(shù)知第6、7個數(shù)據(jù)的平均數(shù),可得答案.【詳解】∵6噸和7噸的頻數(shù)之和為4-x+x=4,∴頻數(shù)之和為1+2+5+4=12,則這組數(shù)據(jù)的中位數(shù)為第6、7個數(shù)據(jù)的平均數(shù),即5+52∴對于不同的正整數(shù)x,中位數(shù)不會發(fā)生改變,∵后兩組頻數(shù)和等于4,小于5,∴對于不同的正整數(shù)x,眾數(shù)不會發(fā)生改變,眾數(shù)依然是5噸.故選B.【點睛】本題主要考查頻數(shù)分布表及統(tǒng)計量的選擇,由表中數(shù)據(jù)得出數(shù)據(jù)的總數(shù)是根本,熟練掌握平均數(shù)、中位數(shù)、眾數(shù)的定義和計算方法是解題的關(guān)鍵.12、B【解析】

由拋物線的開口方向判斷a的符號,由拋物線與y軸的交點判斷c的符號,然后根據(jù)對稱軸及拋物線與x軸交點情況進(jìn)行推理,進(jìn)而對所得結(jié)論進(jìn)行判斷.【詳解】∵a<0,∴拋物線的開口方向向下,故第三個選項錯誤;∵c<0,∴拋物線與y軸的交點為在y軸的負(fù)半軸上,故第一個選項錯誤;∵a<0、b>0,對稱軸為x=>0,∴對稱軸在y軸右側(cè),故第四個選項錯誤.故選B.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、10%【解析】

設(shè)平均每次上調(diào)的百分率是x,因為經(jīng)過兩次上調(diào),且知道調(diào)前的價格和調(diào)后的價格,從而列方程求出解.【詳解】設(shè)平均每次上調(diào)的百分率是x,依題意得,解得:,(不合題意,舍去).答:平均每次上調(diào)的百分率為10%.故答案是:10%.【點睛】此題考查了一元二次方程的應(yīng)用.解題關(guān)鍵是要讀懂題目的意思,根據(jù)題目給出的條件,找出合適的等量關(guān)系,列出方程,再求解.14、【解析】

可以取一點D(0,1),連接AD,作CN⊥AD于點N,PM⊥AD于點M,根據(jù)勾股定理可得AD=3,證明△APM∽△ADO得,PM=AP.當(dāng)CP⊥AD時,CP+AP=CP+PM的值最小,最小值為CN的長.【詳解】如圖,取一點D(0,1),連接AD,作CN⊥AD于點N,PM⊥AD于點M,在Rt△AOD中,∵OA=2,OD=1,∴AD==3,∵∠PAM=∠DAO,∠AMP=∠AOD=90°,∴△APM∽△ADO,∴,即,∴PM=AP,∴PC+AP=PC+PM,∴當(dāng)CP⊥AD時,CP+AP=CP+PM的值最小,最小值為CN的長.∵△CND∽△AOD,∴,即∴CN=.所以CP+AP的最小值為.故答案為:.【點睛】此題考查勾股定理,三角形相似的判定及性質(zhì),最短路徑問題,如何找到AP的等量線段與線段CP相加是解題的關(guān)鍵,由此利用勾股定理、相似三角形做輔助線得到垂線段PM,使問題得解.15、1【解析】

根據(jù)已知他身上帶的錢恰好能買5張3D立體賀卡或20張普通賀卡得:1張3D立體賀卡的單價是1張普通賀卡單價的4倍,所以設(shè)1張3D立體賀卡x元,剩下的錢恰好還能買y張普通賀卡,根據(jù)3張3D立體賀卡張普通賀卡張3D立體賀卡,可得結(jié)論.【詳解】解:設(shè)1張3D立體賀卡x元,剩下的錢恰好還能買y張普通賀卡.

則1張普通賀卡為:元,

由題意得:,

,

答:剩下的錢恰好還能買1張普通賀卡.

故答案為:1.【點睛】本題考查了一元一次方程的應(yīng)用以及列代數(shù)式,解題的關(guān)鍵是:根據(jù)總價單價數(shù)量列式計算.16、8【解析】

設(shè)正方形ABOC和正方形DOFE的邊長分別是m、n,則AB=OB=m,DE=EF=OF=n,BF=OB+OF=m+n,然后根據(jù)S△ADF=S梯形ABOD+S△DOF-S△ABF=4,得到關(guān)于n的方程,解方程求得n的值,最后根據(jù)系數(shù)k的幾何意義求得即可.【詳解】設(shè)正方形ABOC和正方形DOFE的邊長分別是m、n,則AB=OB=m,DE=EF=OF=n,∴BF=OB+OF=m+n,,∴=8,∵點E(n.n)在反比例函數(shù)y=kx(x>0)的圖象上,∴k==8,故答案為8.【點睛】本題考查了正方形的性質(zhì)和反比例函數(shù)圖象上點的坐標(biāo)特征.圖象上的點(x,y)的橫縱坐標(biāo)的積是定值k,即xy=k.17、A【解析】

根據(jù)主視圖和左視圖可知該幾何體是柱體,根據(jù)俯視圖可知該幾何體是豎立的三棱柱.【詳解】根據(jù)主視圖和左視圖可知該幾何體是柱體,根據(jù)俯視圖可知該幾何體是豎立的三棱柱.主視圖中間的線是實線.故選A.【點睛】考查簡單幾何體的三視圖,掌握常見幾何體的三視圖是解題的關(guān)鍵.18、8﹣π【解析】分析:如下圖,過點D作DH⊥AE于點H,由此可得∠DHE=∠AOB=90°,由旋轉(zhuǎn)的性質(zhì)易得DE=EF=AB,OE=BO=2,OF=AO=3,∠DEF=∠FEO+∠DEH=90°,∠ABO=∠FEO,結(jié)合∠ABO+∠BAO=90°可得∠BAO=∠DEH,從而可證得△DEH≌△BAO,即可得到DH=BO=2,再由勾股定理求得AB的長,即可由S陰影=S扇形AOF+S△OEF+S△ADE-S扇形DEF即可求得陰影部分的面積.詳解:如下圖,過點D作DH⊥AE于點H,∴∠DHE=∠AOB=90°,∵OA=3,OB=2,∴AB=,由旋轉(zhuǎn)的性質(zhì)結(jié)合已知條件易得:DE=EF=AB=,OE=BO=2,OF=AO=3,∠DEF=∠FEO+∠DEH=90°,∠ABO=∠FEO,又∵∠ABO+∠BAO=90°,∴∠BAO=∠DEH,∴△DEH≌△BAO,∴DH=BO=2,∴S陰影=S扇形AOF+S△OEF+S△ADE-S扇形DEF==.故答案為:.點睛:作出如圖所示的輔助線,利用旋轉(zhuǎn)的性質(zhì)證得△DEH≌△BAO,由此得到DH=BO=2,從而將陰影部分的面積轉(zhuǎn)化為:S陰影=S扇形AOF+S△OEF+S△ADE-S扇形DEF來計算是解答本題的關(guān)鍵.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)m=-6,點D的坐標(biāo)為(-2,3);(2);(3)當(dāng)或時,一次函數(shù)的值大于反比例函數(shù)的值.【解析】

(1)將點C的坐標(biāo)(6,-1)代入即可求出m,再把D(n,3)代入反比例函數(shù)解析式求出n即可.(2)根據(jù)C(6,-1)、D(-2,3)得出直線CD的解析式,再求出直線CD與x軸和y軸的交點即可,得出OA、OB的長,再根據(jù)銳角三角函數(shù)的定義即可求得;(3)根據(jù)函數(shù)的圖象和交點坐標(biāo)即可求得.【詳解】⑴把C(6,-1)代入,得.則反比例函數(shù)的解析式為,把代入,得,∴點D的坐標(biāo)為(-2,3).⑵將C(6,-1)、D(-2,3)代入,得,解得.∴一次函數(shù)的解析式為,∴點B的坐標(biāo)為(0,2),點A的坐標(biāo)為(4,0).∴,在在中,∴.⑶根據(jù)函數(shù)圖象可知,當(dāng)或時,一次函數(shù)的值大于反比例函數(shù)的值【點睛】此題考查了反比例函數(shù)與一次函數(shù)的交點問題.其知識點有解直角三角形,待定系數(shù)法求解析式,此題難度適中,注意掌握數(shù)形結(jié)合思想與方程思想的應(yīng)用.20、(1)答案見解析;(2)【解析】

(1)根據(jù)三角形角平分線的定義,即可得到AD;

(2)過D作于DE⊥ABE,根據(jù)角平分線的性質(zhì)得到DE=CD=4,由三角形的面積公式即可得到結(jié)論.【詳解】解:(1)如圖所示,AD即為所求;

(2)如圖,過D作DE⊥AB于E,

∵AD平分∠BAC,

∴DE=CD=4,

∴S△ABD=AB·DE=20cm2.【點睛】掌握畫角平分線的方法和角平分線的相關(guān)定義知識是解答本題的關(guān)鍵.21、(1)答案見解析;(2)45°.【解析】

(1)分別以A、B為圓心,大于長為半徑畫弧,過兩弧的交點作直線即可;(2)根據(jù)∠DBF=∠ABD﹣∠ABF計算即可;【詳解】(1)如圖所示,直線EF即為所求;(2)∵四邊形ABCD是菱形,∴∠ABD=∠DBC∠ABC=75°,DC∥AB,∠A=∠C,∴∠ABC=150°,∠ABC+∠C=180°,∴∠C=∠A=30°.∵EF垂直平分線段AB,∴AF=FB,∴∠A=∠FBA=30°,∴∠DBF=∠ABD﹣∠FBE=45°.【點睛】本題考查了線段的垂直平分線作法和性質(zhì),菱形的性質(zhì)等知識,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題.22、3【解析】試題分析:本題考查了相似三角形的判定與性質(zhì),解直角三角形.由∠A=∠ACD,∠AOB=∠COD可證△ABO∽△CDO,從而BOCO=ABCD;再在Rt△ABC和Rt△BCD中分別求出解:∵∠ABC=∠BCD=90°,∴AB∥CD,∴∠A=∠ACD,∴△ABO∽△CDO,∴BOCO在Rt△ABC中,∠ABC=90°,∠A=45°,BC=1,∴AB=1.在Rt△BCD中,∠BCD=90°,∠D=30°,BC=1,∴CD=3,∴BOCO23、(1);(2)詳見解析;(3)AE=.【解析】

(1)由四邊形ABCD是正方形,直角∠MPN,易證得△BOE≌△COF(ASA),則可證得S四邊形OEBF=S△BOC=S正方形ABCD;(2)易證得△OEG∽△OBE,然后由相似三角形的對應(yīng)邊成比例,證得OG?OB=OE2,再利用OB與BD的關(guān)系,OE與EF的關(guān)系,即可證得結(jié)論;(3)首先設(shè)AE=x,則BE=CF=1﹣x,BF=x,繼而表示出△BEF與△COF的面積之和,然后利用二次函數(shù)的最值問題,求得AE的長.【詳解】(1)∵四邊形ABCD是正方形,∴OB=OC,∠OBE=∠OCF=45°,∠BOC=90°,∴∠BOF+∠COF=90°,∵∠EOF=90°,∴∠BOF+∠COE=90°,∴∠BOE=∠COF,在△BOE和△COF中,∴△BOE≌△COF(ASA),∴S四邊形OEBF=S△BOE+S△BOE=S△BOE+S△COF=S△BOC=S正方形ABCD(2)證明:∵∠EOG=∠BOE,∠OEG=∠OBE=45°,∴△OEG∽△OBE,∴OE:OB=OG:OE,∴OG?OB=OE2,∵∴OG?BD=EF2;(3)如圖,過點O作OH⊥BC,∵BC=1,∴設(shè)AE=x,則BE=CF=1﹣x,BF=x,∴S△BEF+S△COF=BE?BF+CF?OH∵∴當(dāng)時,S△BEF+S△COF最大;即在旋轉(zhuǎn)過程中,當(dāng)△BEF與△COF的面積之和最大時,【點睛】本題屬于四邊形的綜合題,主要考查了正方形的性質(zhì),旋轉(zhuǎn)的性質(zhì)、全等三角形的判定與性質(zhì)、相似三角形的判定與性質(zhì)、勾股定理以及二次函數(shù)的最值問題.注意掌握轉(zhuǎn)化思想的應(yīng)用是解此題的關(guān)鍵.24、(1),;(2)【解析】

(1)當(dāng)y=0,則x2-4x-5=0,解方程即可得到x的值.(2)由題意易求M,P點坐標(biāo),再求出MP的直線

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論