版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
安徽省馬鞍山市當涂縣達標名校2024屆中考數(shù)學模擬預測題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.在1、﹣1、3、﹣2這四個數(shù)中,最大的數(shù)是()A.1 B.﹣1 C.3 D.﹣22.若x>y,則下列式子錯誤的是()A.x﹣3>y﹣3 B.﹣3x>﹣3y C.x+3>y+3 D.3.如圖,△ABC為鈍角三角形,將△ABC繞點A按逆時針方向旋轉(zhuǎn)120°得到△AB′C′,連接BB′,若AC′∥BB′,則∠CAB′的度數(shù)為()A.45° B.60° C.70° D.90°4.如圖,P為⊙O外一點,PA、PB分別切⊙O于點A、B,CD切⊙O于點E,分別交PA、PB于點C、D,若PA=6,則△PCD的周長為()A.8 B.6 C.12 D.105.下列計算正確的是()A.a(chǎn)6÷a2=a3 B.(﹣2)﹣1=2C.(﹣3x2)?2x3=﹣6x6 D.(π﹣3)0=16.二次函數(shù)y=﹣(x+2)2﹣1的圖象的對稱軸是()A.直線x=1 B.直線x=﹣1 C.直線x=2 D.直線x=﹣27.計算的結(jié)果是()A.1 B.-1 C. D.8.設x1,x2是一元二次方程x2﹣2x﹣3=0的兩根,則x12+x22=()A.6B.8C.10D.129.的相反數(shù)是()A.﹣ B. C. D.210.如圖,A、B、C是⊙O上的三點,∠B=75°,則∠AOC的度數(shù)是()A.150° B.140° C.130° D.120°二、填空題(共7小題,每小題3分,滿分21分)11.如圖,菱形ABCD和菱形CEFG中,∠ABC=60°,點B,C,E在同一條直線上,點D在CG上,BC=1,CE=3,H是AF的中點,則CH的長為________.12.為了了解某班數(shù)學成績情況,抽樣調(diào)查了13份試卷成績,結(jié)果如下:3個140分,4個135分,2個130分,2個120分,1個100分,1個80分.則這組數(shù)據(jù)的中位數(shù)為______分.13.函數(shù)y=中,自變量x的取值范圍是________.14.用一條長60cm的繩子圍成一個面積為216的矩形.設矩形的一邊長為xcm,則可列方程為______.15.如圖,在中,CM平分交AB于點M,過點M作交AC于點N,且MN平分,若,則BC的長為______.16.如圖,在平面直角坐標系xOy中,△DEF可以看作是△ABC經(jīng)過若干次圖形的變化(平移、軸對稱、旋轉(zhuǎn))得到的,寫出一種由△ABC得到△DEF的過程:_____.17.如圖,一束光線從點A(3,3)出發(fā),經(jīng)過y軸上點C反射后經(jīng)過點B(1,0),則光線從點A到點B經(jīng)過的路徑長為_____.三、解答題(共7小題,滿分69分)18.(10分)已知拋物線y=x2﹣6x+9與直線y=x+3交于A,B兩點(點A在點B的左側(cè)),拋物線的頂點為C,直線y=x+3與x軸交于點D.(1)求拋物線的頂點C的坐標及A,B兩點的坐標;(2)將拋物線y=x2﹣6x+9向上平移1個單位長度,再向左平移t(t>0)個單位長度得到新拋物線,若新拋物線的頂點E在△DAC內(nèi),求t的取值范圍;(3)點P(m,n)(﹣3<m<1)是拋物線y=x2﹣6x+9上一點,當△PAB的面積是△ABC面積的2倍時,求m,n的值.19.(5分)已知二次函數(shù).(1)該二次函數(shù)圖象的對稱軸是;(2)若該二次函數(shù)的圖象開口向上,當時,函數(shù)圖象的最高點為,最低點為,點的縱坐標為,求點和點的坐標;(3)對于該二次函數(shù)圖象上的兩點,,設,當時,均有,請結(jié)合圖象,直接寫出的取值范圍.20.(8分)如圖,BD⊥AC于點D,CE⊥AB于點E,AD=AE.求證:BE=CD.21.(10分)如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=
(x>0)的圖象交于A(2,﹣1),B(,n)兩點,直線y=2與y軸交于點C.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)求△ABC的面積.22.(10分)小華想復習分式方程,由于印刷問題,有一個數(shù)“?”看不清楚:.她把這個數(shù)“?”猜成5,請你幫小華解這個分式方程;小華的媽媽說:“我看到標準答案是:方程的增根是,原分式方程無解”,請你求出原分式方程中“?”代表的數(shù)是多少?23.(12分)小明家的洗手盆上裝有一種抬啟式水龍頭(如圖1),完全開啟后,把手AM的仰角α=37°,此時把手端點A、出水口B和點落水點C在同一直線上,洗手盆及水龍頭的相關(guān)數(shù)據(jù)如圖2.(參考數(shù)據(jù):sin37°=
,cos37°=
,tan37°=
)
(1)求把手端點A到BD的距離;
(2)求CH的長.
24.(14分)《如果想毀掉一個孩子,就給他一部手機!》這是2017年微信圈一篇熱傳的文章.國際上,法國教育部宣布從2018年9月新學期起小學和初中禁止學生使用手機.為了解學生手機使用情況,某學校開展了“手機伴我健康行”主題活動,他們隨機抽取部分學生進行“使用手機目的”和“每周使用手機的時間”的問卷調(diào)查,并繪制成如圖①,②的統(tǒng)計圖,已知“查資料”的人數(shù)是40人.請你根據(jù)以上信息解答下列問題:在扇形統(tǒng)計圖中,“玩游戲”對應的百分比為,圓心角度數(shù)是度;補全條形統(tǒng)計圖;該校共有學生2100人,估計每周使用手機時間在2小時以上(不含2小時)的人數(shù).
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】
有理數(shù)大小比較的法則:①正數(shù)都大于0;②負數(shù)都小于0;③正數(shù)大于一切負數(shù);④兩個負數(shù),絕對值大的其值反而小,據(jù)此判斷即可.【詳解】解:根據(jù)有理數(shù)比較大小的方法,可得-2<-1<1<1,∴在1、-1、1、-2這四個數(shù)中,最大的數(shù)是1.故選C.【點睛】此題主要考查了有理數(shù)大小比較的方法,要熟練掌握,解答此題的關(guān)鍵是要明確:①正數(shù)都大于0;②負數(shù)都小于0;③正數(shù)大于一切負數(shù);④兩個負數(shù),絕對值大的其值反而?。?、B【解析】根據(jù)不等式的性質(zhì)在不等式兩邊加(或減)同一個數(shù)(或式子),不等號的方向不變;不等式兩邊乘(或除以)同一個正數(shù),不等號的方向不變;不等式兩邊乘(或除以)同一個負數(shù),不等號的方向改變即可得出答案:A、不等式兩邊都減3,不等號的方向不變,正確;B、乘以一個負數(shù),不等號的方向改變,錯誤;C、不等式兩邊都加3,不等號的方向不變,正確;D、不等式兩邊都除以一個正數(shù),不等號的方向不變,正確.故選B.3、D【解析】已知△ABC繞點A按逆時針方向旋轉(zhuǎn)l20°得到△AB′C′,根據(jù)旋轉(zhuǎn)的性質(zhì)可得∠BAB′=∠CAC′=120°,AB=AB′,根據(jù)等腰三角形的性質(zhì)和三角形的內(nèi)角和定理可得∠AB′B=(180°-120°)=30°,再由AC′∥BB′,可得∠C′AB′=∠AB′B=30°,所以∠CAB′=∠CAC′-∠C′AB′=120°-30°=90°.故選D.4、C【解析】
由切線長定理可求得PA=PB,AC=CE,BD=ED,則可求得答案.【詳解】∵PA、PB分別切⊙O于點A、B,CD切⊙O于點E,∴PA=PB=6,AC=EC,BD=ED,∴PC+CD+PD=PC+CE+DE+PD=PA+AC+PD+BD=PA+PB=6+6=12,即△PCD的周長為12,故選:C.【點睛】本題主要考查切線的性質(zhì),利用切線長定理求得PA=PB、AC=CE和BD=ED是解題的關(guān)鍵.5、D【解析】解:A.a(chǎn)6÷a2=a4,故A錯誤;B.(﹣2)﹣1=﹣,故B錯誤;C.(﹣3x2)?2x3=﹣6x5,故C錯;D.(π﹣3)0=1,故D正確.故選D.6、D【解析】
根據(jù)二次函數(shù)頂點式的性質(zhì)解答即可.【詳解】∵y=﹣(x+2)2﹣1是頂點式,∴對稱軸是:x=-2,故選D.【點睛】本題考查二次函數(shù)頂點式y(tǒng)=a(x-h)2+k的性質(zhì),對稱軸為x=h,頂點坐標為(h,k)熟練掌握頂點式的性質(zhì)是解題關(guān)鍵.7、C【解析】
原式通分并利用同分母分式的減法法則計算,即可得到結(jié)果.【詳解】解:==,故選:C.【點睛】此題考查了分式的混合運算,熟練掌握運算法則是解本題的關(guān)鍵.8、C【解析】試題分析:根據(jù)根與系數(shù)的關(guān)系得到x1+x2=2,x1?x2=﹣3,再變形x12+x22得到(x1+x2)2﹣2x1?x2,然后利用代入計算即可.解:∵一元二次方程x2﹣2x﹣3=0的兩根是x1、x2,∴x1+x2=2,x1?x2=﹣3,∴x12+x22=(x1+x2)2﹣2x1?x2=22﹣2×(﹣3)=1.故選C.9、A【解析】分析:根據(jù)相反數(shù)的定義結(jié)合實數(shù)的性質(zhì)進行分析判斷即可.詳解:的相反數(shù)是.故選A.點睛:熟記相反數(shù)的定義:“只有符號不同的兩個數(shù)(實數(shù))互為相反數(shù)”是正確解答這類題的關(guān)鍵.10、A【解析】
直接根據(jù)圓周角定理即可得出結(jié)論.【詳解】∵A、B、C是⊙O上的三點,∠B=75°,∴∠AOC=2∠B=150°.故選A.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】
連接AC、CF,GE,根據(jù)菱形性質(zhì)求出AC、CF,再求出∠ACF=90°,然后利用勾股定理列式求出AF,再根據(jù)直角三角形斜邊上的中線等于斜邊的一半解答即可.【詳解】解:如圖,連接AC、CF、GE,CF和GE相交于O點∵在菱形ABCD中,,BC=1,∴,AC=1,∴∵在菱形CEFG中,是它的對角線,∴,∴,∴∵==,∴在,又∵H是AF的中點∴.【點睛】本題考查了直角三角形斜邊上的中線等于斜邊的一半的性質(zhì),菱形的性質(zhì),勾股定理,熟記各性質(zhì)并作輔助線構(gòu)造出直角三角形是解題的關(guān)鍵.12、1【解析】
∵13份試卷成績,結(jié)果如下:3個140分,4個1分,2個130分,2個120分,1個100分,1個80分,∴第7個數(shù)是1分,∴中位數(shù)為1分,故答案為1.13、x≤1【解析】分析:根據(jù)二次根式有意義的條件解答即可.詳解:∵二次根式有意義,被開方數(shù)為非負數(shù),∴1-x≥0,解得x≤1.故答案為x≤1.點睛:本題考查了二次根式有意義的條件,熟知二次根式有意義,被開方數(shù)為非負數(shù)是解題的關(guān)鍵.14、【解析】
根據(jù)周長表達出矩形的另一邊,再根據(jù)矩形的面積公式即可列出方程.【詳解】解:由題意可知,矩形的周長為60cm,∴矩形的另一邊為:,∵面積為216,∴故答案為:.【點睛】本題考查了一元二次方程與實際問題,解題的關(guān)鍵是找出等量關(guān)系.15、1【解析】
根據(jù)題意,可以求得∠B的度數(shù),然后根據(jù)解直角三角形的知識可以求得NC的長,從而可以求得BC的長.【詳解】∵在Rt△ABC中,CM平分∠ACB交AB于點M,過點M作MN∥BC交AC于點N,且MN平分∠AMC,∴∠AMN=∠NMC=∠B,∠NCM=∠BCM=∠NMC,∴∠ACB=2∠B,NM=NC,∴∠B=30°,∵AN=1,∴MN=2,∴AC=AN+NC=3,∴BC=1,故答案為1.【點睛】本題考查含30°角的直角三角形、平行線的性質(zhì)、等腰三角形的判定與性質(zhì),解答本題的關(guān)鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結(jié)合的思想解答.16、平移,軸對稱【解析】分析:根據(jù)平移的性質(zhì)和軸對稱的性質(zhì)即可得到由△OCD得到△AOB的過程.詳解:△ABC向上平移5個單位,再沿y軸對折,得到△DEF,故答案為:平移,軸對稱.點睛:考查了坐標與圖形變化-旋轉(zhuǎn),平移,軸對稱,解題時需要注意:平移的距離等于對應點連線的長度,對稱軸為對應點連線的垂直平分線,旋轉(zhuǎn)角為對應點與旋轉(zhuǎn)中心連線的夾角的大?。?7、2【解析】
延長AC交x軸于B′.根據(jù)光的反射原理,點B、B′關(guān)于y軸對稱,CB=CB′.路徑長就是AB′的長度.結(jié)合A點坐標,運用勾股定理求解.【詳解】解:如圖所示,延長AC交x軸于B′.則點B、B′關(guān)于y軸對稱,CB=CB′.作AD⊥x軸于D點.則AD=3,DB′=3+1=1.由勾股定理AB′=2∴AC+CB=AC+CB′=AB′=2.即光線從點A到點B經(jīng)過的路徑長為2.考點:解直角三角形的應用點評:本題考查了直角三角形的有關(guān)知識,同時滲透光學中反射原理,構(gòu)造直角三角形是解決本題關(guān)鍵三、解答題(共7小題,滿分69分)18、(1)C(2,0),A(1,4),B(1,9);(2)<t<5;(2)m=,∴n=.【解析】分析:(Ⅰ)將拋物線的一般式配方為頂點式即可求出點C的坐標,聯(lián)立拋物線與直線的解析式即可求出A、B的坐標.(Ⅱ)由題意可知:新拋物線的頂點坐標為(2﹣t,1),然后求出直線AC的解析式后,將點E的坐標分別代入直線AC與AD的解析式中即可求出t的值,從而可知新拋物線的頂點E在△DAC內(nèi),求t的取值范圍.(Ⅲ)直線AB與y軸交于點F,連接CF,過點P作PM⊥AB于點M,PN⊥x軸于點N,交DB于點G,由直線y=x+2與x軸交于點D,與y軸交于點F,得D(﹣2,0),F(xiàn)(0,2),易得CF⊥AB,△PAB的面積是△ABC面積的2倍,所以AB?PM=AB?CF,PM=2CF=1,從而可求出PG=3,利用點G在直線y=x+2上,P(m,n),所以G(m,m+2),所以PG=n﹣(m+2),所以n=m+4,由于P(m,n)在拋物線y=x2﹣1x+9上,聯(lián)立方程從而可求出m、n的值.詳解:(I)∵y=x2﹣1x+9=(x﹣2)2,∴頂點坐標為(2,0).聯(lián)立,解得:或;(II)由題意可知:新拋物線的頂點坐標為(2﹣t,1),設直線AC的解析式為y=kx+b將A(1,4),C(2,0)代入y=kx+b中,∴,解得:,∴直線AC的解析式為y=﹣2x+1.當點E在直線AC上時,﹣2(2﹣t)+1=1,解得:t=.當點E在直線AD上時,(2﹣t)+2=1,解得:t=5,∴當點E在△DAC內(nèi)時,<t<5;(III)如圖,直線AB與y軸交于點F,連接CF,過點P作PM⊥AB于點M,PN⊥x軸于點N,交DB于點G.由直線y=x+2與x軸交于點D,與y軸交于點F,得D(﹣2,0),F(xiàn)(0,2),∴OD=OF=2.∵∠FOD=90°,∴∠OFD=∠ODF=45°.∵OC=OF=2,∠FOC=90°,∴CF==2,∠OFC=∠OCF=45°,∴∠DFC=∠DFO+∠OFC=45°+45°=90°,∴CF⊥AB.∵△PAB的面積是△ABC面積的2倍,∴AB?PM=AB?CF,∴PM=2CF=1.∵PN⊥x軸,∠FDO=45°,∴∠DGN=45°,∴∠PGM=45°.在Rt△PGM中,sin∠PGM=,∴PG===3.∵點G在直線y=x+2上,P(m,n),∴G(m,m+2).∵﹣2<m<1,∴點P在點G的上方,∴PG=n﹣(m+2),∴n=m+4.∵P(m,n)在拋物線y=x2﹣1x+9上,∴m2﹣1m+9=n,∴m2﹣1m+9=m+4,解得:m=.∵﹣2<m<1,∴m=不合題意,舍去,∴m=,∴n=m+4=.點睛:本題是二次函數(shù)綜合題,涉及待定系數(shù)法,解方程,勾股定理,三角形的面積公式,綜合程度較高,需要學生綜合運用所學知識.19、(1)x=1;(2),;(3)【解析】
(1)二次函數(shù)的對稱軸為直線x=-,帶入即可求出對稱軸,(2)在區(qū)間內(nèi)發(fā)現(xiàn)能夠取到函數(shù)的最低點,即為頂點坐標,當開口向上是,距離對稱軸越遠,函數(shù)值越大,所以當x=5時,函數(shù)有最大值.(3)分類討論,當二次函數(shù)開口向上時不滿足條件,所以函數(shù)圖像開口只能向下,且應該介于-1和3之間,才會使,解不等式組即可.【詳解】(1)該二次函數(shù)圖象的對稱軸是直線;(2)∵該二次函數(shù)的圖象開口向上,對稱軸為直線,,∴當時,的值最大,即.把代入,解得.∴該二次函數(shù)的表達式為.當時,,∴.(3)易知a0,∵當時,均有,∴,解得∴的取值范圍.【點睛】本題考查了二次函數(shù)的對稱軸,定區(qū)間內(nèi)求函數(shù)值域,以及二次函數(shù)圖像的性質(zhì),難度較大,綜合性強,熟悉二次函數(shù)的單調(diào)性是解題關(guān)鍵.20、證明過程見解析【解析】
要證明BE=CD,只要證明AB=AC即可,由條件可以求得△AEC和△ADB全等,從而可以證得結(jié)論.【詳解】∵BD⊥AC于點D,CE⊥AB于點E,∴∠ADB=∠AEC=90°,在△ADB和△AEC中,∴△ADB≌△AEC(ASA)∴AB=AC,又∵AD=AE,∴BE=CD.考點:全等三角形的判定與性質(zhì).21、(1)y=2x﹣5,;(2).【解析】
試題分析:(1)把A坐標代入反比例解析式求出m的值,確定出反比例解析式,再將B坐標代入求出n的值,確定出B坐標,將A與B坐標代入一次函數(shù)解析式求出k與b的值,即可確定出一次函數(shù)解析式;(2)用矩形面積減去周圍三個小三角形的面積,即可求出三角形ABC面積.試題解析:(1)把A(2,﹣1)代入反比例解析式得:﹣1=,即m=﹣2,∴反比例解析式為,把B(,n)代入反比例解析式得:n=﹣4,即B(,﹣4),把A與B坐標代入y=kx+b中得:,解得:k=2,b=﹣5,則一次函數(shù)解析式為y=2x﹣5;(2)如圖,S△ABC=考點:反比例函數(shù)與一次函數(shù)的交點問題;一次函數(shù)及其應用;反比例函數(shù)及其應用.22、(1);(2)原分式方程中“?”代表的數(shù)是-1.【解析】
(1)“?”當成5,解分式方程即可,(2)方程有增根是去分母時產(chǎn)生的,故先去分母,再將x=2代入即可解答.【詳解】(1)方程兩邊同時乘以得解得經(jīng)檢驗,是原分式方程的解.(2)設?為,方程兩邊同時乘以得由于是原分式方程的增根,所以把代入上面的等式得所以,原分式方程中“?”代表的數(shù)是-1.【點
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度全新店面轉(zhuǎn)讓定金及風險管理協(xié)議3篇
- 2025年度5G通信技術(shù)應用合作協(xié)議范例3篇
- 2025年度內(nèi)墻膩子施工與廢棄物處理技術(shù)合作勞務合同2篇
- 2025年度旅游項目承包合同2篇
- 2025年度文化產(chǎn)業(yè)資產(chǎn)并購收購協(xié)議書3篇
- 2025年度內(nèi)部承包合同協(xié)議書:XX工廠內(nèi)部承包生產(chǎn)任務分配與考核協(xié)議3篇
- 2025汽車租賃合同樣本范文
- 2025年度跨境電商全新員工入職與全球業(yè)務拓展合同3篇
- 2025年度公司車輛租賃及駕駛員培訓考核合同3篇
- 二零二五年度智慧教育平臺合作項目協(xié)議書模板3篇
- 2024年01月22504學前兒童科學教育活動指導期末試題答案
- 多發(fā)性神經(jīng)病護理
- 【MOOC】線性代數(shù)-浙江大學 中國大學慕課MOOC答案
- 開門紅包費用申請
- 區(qū)塊鏈原理與實踐全套完整教學課件
- 運動神經(jīng)元病小講課
- 工會的財務管理制度〔13篇〕
- 新版醫(yī)務人員法律法規(guī)知識培訓課件
- 2024年土地市場研究分析服務協(xié)議
- 物業(yè)管理公文寫作培訓
- 2023醫(yī)療質(zhì)量安全核心制度要點釋義(第二版)對比版
評論
0/150
提交評論