2022屆吉林省四平市畢業(yè)升學考試模擬卷數(shù)學卷含解析_第1頁
2022屆吉林省四平市畢業(yè)升學考試模擬卷數(shù)學卷含解析_第2頁
2022屆吉林省四平市畢業(yè)升學考試模擬卷數(shù)學卷含解析_第3頁
2022屆吉林省四平市畢業(yè)升學考試模擬卷數(shù)學卷含解析_第4頁
2022屆吉林省四平市畢業(yè)升學考試模擬卷數(shù)學卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022屆吉林省四平市畢業(yè)升學考試模擬卷數(shù)學卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如果m的倒數(shù)是﹣1,那么m2018等于()A.1 B.﹣1 C.2018 D.﹣20182.如圖,矩形ABCD的頂點A、C分別在直線a、b上,且a∥b,∠1=60°,則∠2的度數(shù)為()A.30° B.45° C.60° D.75°3.在中,,,下列結論中,正確的是()A. B.C. D.4.如圖,正方形ABCD中,AB=6,G是BC的中點.將△ABG沿AG對折至△AFG,延長GF交DC于點E,則DE的長是()A.1 B.1.5 C.2 D.2.55.如圖1、2、3分別表示甲、乙、丙三人由A地到B地的路線圖,已知甲的路線為:A→C→B;乙的路線為:A→D→E→F→B,其中E為AB的中點;丙的路線為:A→I→J→K→B,其中J在AB上,且AJ>JB.若符號[→]表示[直線前進],則根據(jù)圖1、圖2、圖3的數(shù)據(jù),判斷三人行進路線長度的大小關系為()A.甲=乙=丙 B.甲<乙<丙 C.乙<丙<甲 D.丙<乙<甲6.已知下列命題:①對頂角相等;②若a>b>0,則<;③對角線相等且互相垂直的四邊形是正方形;④拋物線y=x2﹣2x與坐標軸有3個不同交點;⑤邊長相等的多邊形內角都相等.從中任選一個命題是真命題的概率為()A. B. C. D.7.如圖的幾何體是由五個小正方體組合而成的,則這個幾何體的左視圖是()A. B.C. D.8.用配方法解下列方程時,配方有錯誤的是()A.化為 B.化為C.化為 D.化為9.如圖所示的幾何體的左視圖是()A. B. C. D.10.下列運算正確的是()A.x3+x3=2x6 B.x6÷x2=x3 C.(﹣3x3)2=2x6 D.x2?x﹣3=x﹣111.下列美麗的圖案中,不是軸對稱圖形的是()A. B. C. D.12.將拋物線y=A.y=-12C.y=-12二、填空題:(本大題共6個小題,每小題4分,共24分.)13.甲、乙兩個搬運工搬運某種貨物.已知乙比甲每小時多搬運600kg,甲搬運5000kg所用的時間與乙搬運8000kg所用的時間相等.設甲每小時搬運xkg貨物,則可列方程為_____.14.據(jù)統(tǒng)計,今年無錫黿頭渚“櫻花節(jié)”活動期間入園賞櫻人數(shù)約803萬人次,用科學記數(shù)法可表示為_____人次.15.一名模型賽車手遙控一輛賽車,先前進1m,然后,原地逆時針方向旋轉角a(0°<α<180°).被稱為一次操作.若五次操作后,發(fā)現(xiàn)賽車回到出發(fā)點,則角α為16.如圖,點G是的重心,AG的延長線交BC于點D,過點G作交AC于點E,如果,那么線段GE的長為______.17.如圖,Rt△ABC紙片中,∠C=90°,AC=6,BC=8,點D在邊BC上,以AD為折痕將△ABD折疊得到△AB′D,AB′與邊BC交于點E.若△DEB′為直角三角形,則BD的長是_______.18.若一組數(shù)據(jù)1,2,3,的平均數(shù)是2,則的值為______.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)城市小區(qū)生活垃圾分為:餐廚垃圾、有害垃圾、可回收垃圾、其他垃圾四種不同的類型.(1)甲投放了一袋垃圾,恰好是餐廚垃圾的概率是;(2)甲、乙分別投放了一袋垃圾,求恰好是同一類型垃圾的概率.20.(6分)如圖,在△ABC中,∠CAB=90°,∠CBA=50°,以AB為直徑作⊙O交BC于點D,點E在邊AC上,且滿足ED=EA.(1)求∠DOA的度數(shù);(2)求證:直線ED與⊙O相切.21.(6分)先化簡,再求值:,其中a是方程a2+a﹣6=0的解.22.(8分)下表中給出了變量x,與y=ax2,y=ax2+bx+c之間的部分對應值,(表格中的符號“…”表示該項數(shù)據(jù)已丟失)x﹣101ax2……1ax2+bx+c72…(1)求拋物線y=ax2+bx+c的表達式(2)拋物線y=ax2+bx+c的頂點為D,與y軸的交點為A,點M是拋物線對稱軸上一點,直線AM交對稱軸右側的拋物線于點B,當△ADM與△BDM的面積比為2:3時,求B點坐標;(3)在(2)的條件下,設線段BD與x軸交于點C,試寫出∠BAD和∠DCO的數(shù)量關系,并說明理由.23.(8分)如圖,拋物線y=﹣x2+bx+c(a≠0)與x軸交于點A(﹣1,0)和B(3,0),與y軸交于點C,點D的橫坐標為m(0<m<3),連結DC并延長至E,使得CE=CD,連結BE,BC.(1)求拋物線的解析式;(2)用含m的代數(shù)式表示點E的坐標,并求出點E縱坐標的范圍;(3)求△BCE的面積最大值.24.(10分)為做好防汛工作,防汛指揮部決定對某水庫的水壩進行加高加固,專家提供的方案是:水壩加高2米(即CD=2米),背水坡DE的坡度i=1:1(即DB:EB=1:1),如圖所示,已知AE=4米,∠EAC=130°,求水壩原來的高度BC.(參考數(shù)據(jù):sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)25.(10分)在一次數(shù)學活動課上,老師讓同學們到操場上測量旗桿的高度,然后回來交流各自的測量方法.小芳的測量方法是:拿一根高3.5米的竹竿直立在離旗桿27米的C處(如圖),然后沿BC方向走到D處,這時目測旗桿頂部A與竹竿頂部E恰好在同一直線上,又測得C、D兩點的距離為3米,小芳的目高為1.5米,這樣便可知道旗桿的高.你認為這種測量方法是否可行?請說明理由.26.(12分)如圖,小巷左石兩側是豎直的墻,一架梯子斜靠在左墻時,梯子底端到左墻角的距離BC為0.7米,梯子頂端到地面的距離AC為2.4米,如果保持梯子底端位置不動,將梯子斜靠在右墻時,梯子頂端到地面的距離A′D為1.5米,求小巷有多寬.27.(12分)為進一步深化基教育課程改革,構建符合素質教育要求的學校課程體系,某學校自主開發(fā)了A書法、B閱讀,C足球,D器樂四門校本選修課程供學生選擇,每門課程被選到的機會均等.學生小紅計劃選修兩門課程,請寫出所有可能的選法;若學生小明和小剛各計劃送修一門課程,則他們兩人恰好選修同一門課程的概率為多少?

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】

因為兩個數(shù)相乘之積為1,則這兩個數(shù)互為倒數(shù),如果m的倒數(shù)是﹣1,則m=-1,然后再代入m2018計算即可.【詳解】因為m的倒數(shù)是﹣1,所以m=-1,所以m2018=(-1)2018=1,故選A.【點睛】本題主要考查倒數(shù)的概念和乘方運算,解決本題的關鍵是要熟練掌握倒數(shù)的概念和乘方運算法則.2、C【解析】試題分析:過點D作DE∥a,∵四邊形ABCD是矩形,∴∠BAD=∠ADC=90°,∴∠3=90°﹣∠1=90°﹣60°=30°,∵a∥b,∴DE∥a∥b,∴∠4=∠3=30°,∠2=∠5,∴∠2=90°﹣30°=60°.故選C.考點:1矩形;2平行線的性質.3、C【解析】

直接利用銳角三角函數(shù)關系分別計算得出答案.【詳解】∵,,∴,∴,故選項A,B錯誤,∵,∴,故選項C正確;選項D錯誤.故選C.【點睛】此題主要考查了銳角三角函數(shù)關系,熟練掌握銳角三角函數(shù)關系是解題關鍵.4、C【解析】

連接AE,根據(jù)翻折變換的性質和正方形的性質可證Rt△AFE≌Rt△ADE,在直角△ECG中,根據(jù)勾股定理求出DE的長.【詳解】連接AE,∵AB=AD=AF,∠D=∠AFE=90°,由折疊的性質得:Rt△ABG≌Rt△AFG,在△AFE和△ADE中,∵AE=AE,AD=AF,∠D=∠AFE,∴Rt△AFE≌Rt△ADE,∴EF=DE,設DE=FE=x,則CG=3,EC=6?x.在直角△ECG中,根據(jù)勾股定理,得:(6?x)2+9=(x+3)2,解得x=2.則DE=2.【點睛】熟練掌握翻折變換、正方形的性質、全等三角形的判定與性質是本題的解題關鍵.5、A【解析】分析:由角的度數(shù)可以知道2、3中的兩個三角形的對應邊都是平行的,所以圖2,圖3中的三角形都和圖1中的三角形相似.而且圖2三角形全等,圖3三角形相似.詳解:根據(jù)以上分析:所以圖2可得AE=BE,AD=EF,DE=BE.∵AE=BE=AB,∴AD=EF=AC,DE=BE=BC,∴甲=乙.圖3與圖1中,三個三角形相似,所以====.∵AJ+BJ=AB,∴AI+JK=AC,IJ+BK=BC,∴甲=丙.∴甲=乙=丙.故選A.點睛:本題考查了的知識點是平行四邊形的性質,解答本題的關鍵是利用相似三角形的平移,求得線段的關系.6、B【解析】∵①對頂角相等,故此選項正確;②若a>b>0,則<,故此選項正確;③對角線相等且互相垂直平分的四邊形是正方形,故此選項錯誤;④拋物線y=x2﹣2x與坐標軸有2個不同交點,故此選項錯誤;⑤邊長相等的多邊形內角不一定都相等,故此選項錯誤;∴從中任選一個命題是真命題的概率為:.故選:B.7、D【解析】

找到從左面看到的圖形即可.【詳解】從左面上看是D項的圖形.故選D.【點睛】本題考查三視圖的知識,左視圖是從物體左面看到的視圖.8、B【解析】

配方法的一般步驟:(1)把常數(shù)項移到等號的右邊;(2)把二次項的系數(shù)化為1;(3)等式兩邊同時加上一次項系數(shù)一半的平方.【詳解】解:、,,,,故選項正確.、,,,,故選項錯誤.、,,,,,故選項正確.、,,,,.故選項正確.故選:.【點睛】此題考查了配方法解一元二次方程,解題時要注意解題步驟的準確應用.選擇用配方法解一元二次方程時,最好使方程的二次項的系數(shù)為1,一次項的系數(shù)是2的倍數(shù).9、A【解析】本題考查的是三視圖.左視圖可以看到圖形的排和每排上最多有幾層.所以選擇A.10、D【解析】分析:根據(jù)合并同類項法則,同底數(shù)冪相除,積的乘方的性質,同底數(shù)冪相乘的性質,逐一判斷即可.詳解:根據(jù)合并同類項法則,可知x3+x3=2x3,故不正確;根據(jù)同底數(shù)冪相除,底數(shù)不變指數(shù)相加,可知a6÷a2=a4,故不正確;根據(jù)積的乘方,等于各個因式分別乘方,可知(-3a3)2=9a6,故不正確;根據(jù)同底數(shù)冪相乘,底數(shù)不變指數(shù)相加,可得x2?x﹣3=x﹣1,故正確.故選D.點睛:此題主要考查了整式的相關運算,是一道綜合性題目,熟練應用整式的相關性質和運算法則是解題關鍵.11、A【解析】

根據(jù)軸對稱圖形的概念對各選項分析判斷即可得解.【詳解】解:A、不是軸對稱圖形,故本選項正確;B、是軸對稱圖形,故本選項錯誤;C、是軸對稱圖形,故本選項錯誤;D、是軸對稱圖形,故本選項錯誤.故選A.【點睛】本題考查了軸對稱圖形的概念,軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合.12、D【解析】

將拋物線y=12【詳解】由題意得,a=-12設旋轉180°以后的頂點為(x′,y′),則x′=2×0-(-2)=2,y′=2×3-5=1,∴旋轉180°以后的頂點為(2,1),∴旋轉180°以后所得圖象的解析式為:y=-1故選D.【點睛】本題考查了二次函數(shù)圖象的旋轉變換,在繞拋物線某點旋轉180°以后,二次函數(shù)的開口大小沒有變化,方向相反;設旋轉前的的頂點為(x,y),旋轉中心為(a,b),由中心對稱的性質可知新頂點坐標為(2a-x,2b-y),從而可求出旋轉后的函數(shù)解析式.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、=【解析】

設甲每小時搬運x千克,則乙每小時搬運(x+600)千克,根據(jù)甲搬運5000kg所用時間與乙搬運8000kg所用時間相等建立方程求出其解就可以得出結論.【詳解】解:設甲每小時搬運x千克,則乙每小時搬運(x+600)千克,由題意得:=.故答案是:=.【點睛】本題考查了由實際問題抽象出分式方程,根據(jù)題意找到等量關系是關鍵.14、8.03×106【解析】科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).803萬=.15、72°或144°【解析】

∵五次操作后,發(fā)現(xiàn)賽車回到出發(fā)點,∴正好走了一個正五邊形,因為原地逆時針方向旋轉角a(0°<α<180°),那么朝左和朝右就是兩個不同的結論所以∴角α=(5-2)?180°÷5=108°,則180°-108°=72°或者角α=(5-2)?180°÷5=108°,180°-72°÷2=144°16、2【解析】分析:由點G是△ABC重心,BC=6,易得CD=3,AG:AD=2:3,又由GE∥BC,可證得△AEG∽△ACD,然后由相似三角形的對應邊成比例,即可求得線段GE的長.詳解:∵點G是△ABC重心,BC=6,∴CD=BC=3,AG:AD=2:3,∵GE∥BC,∴△AEG∽△ADC,∴GE:CD=AG:AD=2:3,∴GE=2.故答案為2.點睛:本題考查了三角形重心的定義和性質、相似三角形的判定和性質.利用三角形重心的性質得出AG:AD=2:3是解題的關鍵.17、5或1.【解析】

先依據(jù)勾股定理求得AB的長,然后由翻折的性質可知:AB′=5,DB=DB′,接下來分為∠B′DE=90°和∠B′ED=90°,兩種情況畫出圖形,設DB=DB′=x,然后依據(jù)勾股定理列出關于x的方程求解即可.【詳解】∵Rt△ABC紙片中,∠C=90°,AC=6,BC=8,∴AB=5,∵以AD為折痕△ABD折疊得到△AB′D,∴BD=DB′,AB′=AB=5.如圖1所示:當∠B′DE=90°時,過點B′作B′F⊥AF,垂足為F.設BD=DB′=x,則AF=6+x,F(xiàn)B′=8-x.在Rt△AFB′中,由勾股定理得:AB′5=AF5+FB′5,即(6+x)5+(8-x)5=55.解得:x1=5,x5=0(舍去).∴BD=5.如圖5所示:當∠B′ED=90°時,C與點E重合.∵AB′=5,AC=6,∴B′E=5.設BD=DB′=x,則CD=8-x.在Rt△′BDE中,DB′5=DE5+B′E5,即x5=(8-x)5+55.解得:x=1.∴BD=1.綜上所述,BD的長為5或1.18、1【解析】

根據(jù)這組數(shù)據(jù)的平均數(shù)是1和平均數(shù)的計算公式列式計算即可.【詳解】∵數(shù)據(jù)1,1,3,的平均數(shù)是1,∴,解得:.故答案為:1.【點睛】本題考查了平均數(shù)的定義,根據(jù)平均數(shù)的定義建立方程求解是解題的關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1);(2)【解析】

(1)直接利用概率公式求出甲投放的垃圾恰好是“餐廚垃圾”的概率;(2)首先利用樹狀圖法列舉出所有可能,進而利用概率公式求出答案.【詳解】解:(1)∵垃圾要按餐廚垃圾、有害垃圾、可回收垃圾、其他垃圾四類分別裝袋,甲投放了一袋垃圾,∴甲投放了一袋是餐廚垃圾的概率是,故答案為:;(2)記這四類垃圾分別為A、B、C、D,畫樹狀圖如下:由樹狀圖知,甲、乙投放的垃圾共有16種等可能結果,其中投放的兩袋垃圾同類的有4種結果,所以投放的兩袋垃圾同類的概率為=.【點睛】本題考查了用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復不遺漏的列出所有可能的結果,適合于兩步完成的事件.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.20、(1)∠DOA=100°;(2)證明見解析.【解析】試題分析:(1)根據(jù)∠CBA=50°,利用圓周角定理即可求得∠DOA的度數(shù);(2)連接OE,利用SSS證明△EAO≌△EDO,根據(jù)全等三角形的性質可得∠EDO=∠EAO=90°,即可證明直線ED與⊙O相切.試題解析:(1)∵∠DBA=50°,∴∠DOA=2∠DBA=100°;(2)證明:連接OE,在△EAO和△EDO中,AO=DO,EA=ED,EO=EO,∴△EAO≌△EDO,得到∠EDO=∠EAO=90°,∴直線ED與⊙O相切.考點:圓周角定理;全等三角形的判定及性質;切線的判定定理21、.【解析】

先計算括號里面的,再利用除法化簡原式,【詳解】,=,=,=,=,由a2+a﹣6=0,得a=﹣3或a=2,∵a﹣2≠0,∴a≠2,∴a=﹣3,當a=﹣3時,原式=.【點睛】本題考查了分式的化簡求值及一元二次方程的解,解題的關鍵是熟練掌握分式的混合運算.22、(1)y=x2﹣4x+2;(2)點B的坐標為(5,7);(1)∠BAD和∠DCO互補,理由詳見解析.【解析】

(1)由(1,1)在拋物線y=ax2上可求出a值,再由(﹣1,7)、(0,2)在拋物線y=x2+bx+c上可求出b、c的值,此題得解;(2)由△ADM和△BDM同底可得出兩三角形的面積比等于高的比,結合點A的坐標即可求出點B的橫坐標,再利用二次函數(shù)圖象上點的坐標特征即可求出點B的坐標;(1)利用二次函數(shù)圖象上點的坐標特征可求出A、D的坐標,過點A作AN∥x軸,交BD于點N,則∠AND=∠DCO,根據(jù)點B、D的坐標利用待定系數(shù)法可求出直線BD的解析式,利用一次函數(shù)圖象上點的坐標特征可求出點N的坐標,利用兩點間的距離公式可求出BA、BD、BN的長度,由三者間的關系結合∠ABD=∠NBA,可證出△ABD∽△NBA,根據(jù)相似三角形的性質可得出∠ANB=∠DAB,再由∠ANB+∠AND=120°可得出∠DAB+∠DCO=120°,即∠BAD和∠DCO互補.【詳解】(1)當x=1時,y=ax2=1,解得:a=1;將(﹣1,7)、(0,2)代入y=x2+bx+c,得:,解得:,∴拋物線的表達式為y=x2﹣4x+2;(2)∵△ADM和△BDM同底,且△ADM與△BDM的面積比為2:1,∴點A到拋物線的距離與點B到拋物線的距離比為2:1.∵拋物線y=x2﹣4x+2的對稱軸為直線x=﹣=2,點A的橫坐標為0,∴點B到拋物線的距離為1,∴點B的橫坐標為1+2=5,∴點B的坐標為(5,7).(1)∠BAD和∠DCO互補,理由如下:當x=0時,y=x2﹣4x+2=2,∴點A的坐標為(0,2),∵y=x2﹣4x+2=(x﹣2)2﹣2,∴點D的坐標為(2,﹣2).過點A作AN∥x軸,交BD于點N,則∠AND=∠DCO,如圖所示.設直線BD的表達式為y=mx+n(m≠0),將B(5,7)、D(2,﹣2)代入y=mx+n,,解得:,∴直線BD的表達式為y=1x﹣2.當y=2時,有1x﹣2=2,解得:x=,∴點N的坐標為(,2).∵A(0,2),B(5,7),D(2,﹣2),∴AB=5,BD=1,BN=,∴==.又∵∠ABD=∠NBA,∴△ABD∽△NBA,∴∠ANB=∠DAB.∵∠ANB+∠AND=120°,∴∠DAB+∠DCO=120°,∴∠BAD和∠DCO互補.【點睛】本題是二次函數(shù)綜合題,考查了待定系數(shù)法求二次函數(shù)和一次函數(shù)解析式、等底三角形面積的關系、二次函數(shù)的圖像與性質、相似三角形的判定與性質.熟練掌握待定系數(shù)法是解(1)的關鍵;熟練掌握等底三角形面積的關系式解(2)的關鍵;證明△ABD∽△NBA是解(1)的關鍵.23、(1)y=﹣x2+2x+1.(2)2≤Ey<2.(1)當m=1.5時,S△BCE有最大值,S△BCE的最大值=.【解析】分析:(1)1)把A、B兩點代入拋物線解析式即可;(2)設,利用求線段中點的公式列出關于m的方程組,再利用0<m<1即可求解;(1)連結BD,過點D作x軸的垂線交BC于點H,由,設出點D的坐標,進而求出點H的坐標,利用三角形的面積公式求出,再利用公式求二次函數(shù)的最值即可.詳解:(1)∵拋物線過點A(1,0)和B(1,0)(2)∵∴點C為線段DE中點設點E(a,b)∵0<m<1,∴當m=1時,縱坐標最小值為2當m=1時,最大值為2∴點E縱坐標的范圍為(1)連結BD,過點D作x軸的垂線交BC于點H∵CE=CD∴H(m,-m+1)∴當m=1.5時,.點睛:本題考查了二次函數(shù)的綜合題、待定系數(shù)法、一次函數(shù)等知識點,解題的關鍵是靈活運用所學知識解決問題,會用方程的思想解決問題.24、水壩原來的高度為12米【解析】試題分析:設BC=x米,用x表示出AB的長,利用坡度的定義得到BD=BE,進而列出x的方程,求出x的值即可.試題解析:設BC=x米,在Rt△ABC中,∠CAB=180°﹣∠EAC=50°,AB=≈=,在Rt△EBD中,∵i=DB:EB=1:1,∴BD=BE,∴CD+BC=AE+AB,即2+x=4+,解得x=1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論