四川省2022年中考數(shù)學(xué)押題卷含解析_第1頁
四川省2022年中考數(shù)學(xué)押題卷含解析_第2頁
四川省2022年中考數(shù)學(xué)押題卷含解析_第3頁
四川省2022年中考數(shù)學(xué)押題卷含解析_第4頁
四川省2022年中考數(shù)學(xué)押題卷含解析_第5頁
已閱讀5頁,還剩21頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

四川省2022年中考數(shù)學(xué)押題卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.的相反數(shù)是()A. B.- C. D.-2.下列計算正確的是()A.a(chǎn)2?a3=a6 B.(a2)3=a6 C.a(chǎn)2+a2=a3 D.a(chǎn)6÷a2=a33.下列由左邊到右邊的變形,屬于因式分解的是().A.(x+1)(x-1)=x2-1B.x2-2x+1=x(x-2)+1C.a(chǎn)2-b2=(a+b)(a-b)D.mx+my+nx+ny=m(x+y)+n(x+y)4.如圖,直線、及木條在同一平面上,將木條繞點旋轉(zhuǎn)到與直線平行時,其最小旋轉(zhuǎn)角為().A. B. C. D.5.把6800000,用科學(xué)記數(shù)法表示為()A.6.8×105 B.6.8×106 C.6.8×107 D.6.8×1086.把一枚六個面編號分別為1,2,3,4,5,6的質(zhì)地均勻的正方體骰子先后投擲2次,若兩個正面朝上的編號分別為m,n,則二次函數(shù)y=xA.512B.49C.177.下列圖案是軸對稱圖形的是()A. B. C. D.8.鐘鼎文是我國古代的一種文字,是鑄刻在殷周青銅器上的銘文,下列鐘鼎文中,不是軸對稱圖形的是()A. B. C. D.9.如果,那么代數(shù)式的值是()A.6 B.2 C.-2 D.-610.實數(shù)a在數(shù)軸上的位置如圖所示,則化簡后為()A.7 B.﹣7 C.2a﹣15 D.無法確定11.如圖:將一個矩形紙片,沿著折疊,使點分別落在點處.若,則的度數(shù)為()A. B. C. D.12.今年春節(jié)某一天早7:00,室內(nèi)溫度是6℃,室外溫度是-2℃,則室內(nèi)溫度比室外溫度高()A.-4℃ B.4℃ C.8℃ D.-8℃二、填空題:(本大題共6個小題,每小題4分,共24分.)13.已知一塊等腰三角形鋼板的底邊長為60cm,腰長為50cm,能從這塊鋼板上截得得最大圓得半徑為________cm14.一艘貨輪以182km/h的速度在海面上沿正東方向航行,當(dāng)行駛至A處時,發(fā)現(xiàn)它的東南方向有一燈塔B,貨輪繼續(xù)向東航行30分鐘后到達C處,發(fā)現(xiàn)燈塔B在它的南偏東15°方向,則此時貨輪與燈塔B的距離是________km.15.分解因式:3a2﹣12=___.16.如圖,身高1.6米的小麗在陽光下的影長為2米,在同一時刻,一棵大樹的影長為8米,則這棵樹的高度為_____米.17.如圖,在矩形ABCD中,對角線AC與BD相交于點O,過點A作AE⊥BD,垂足為點E,若∠EAC=2∠CAD,則∠BAE=__________度.18.=__________三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,直線l是線段MN的垂直平分線,交線段MN于點O,在MN下方的直線l上取一點P,連接PN,以線段PN為邊,在PN上方作正方形NPAB,射線MA交直線l于點C,連接BC.(1)設(shè)∠ONP=α,求∠AMN的度數(shù);(2)寫出線段AM、BC之間的等量關(guān)系,并證明.20.(6分)如圖,把△EFP按圖示方式放置在菱形ABCD中,使得頂點E、F、P分別在線段AB、AD、AC上,已知EP=FP=4,EF=4,∠BAD=60°,且AB>4.(1)求∠EPF的大?。唬?)若AP=6,求AE+AF的值.21.(6分)如圖,已知拋物線與軸交于兩點(A點在B點的左邊),與軸交于點.(1)如圖1,若△ABC為直角三角形,求的值;(2)如圖1,在(1)的條件下,點在拋物線上,點在拋物線的對稱軸上,若以為邊,以點、、、Q為頂點的四邊形是平行四邊形,求點的坐標(biāo);(3)如圖2,過點作直線的平行線交拋物線于另一點,交軸于點,若﹕=1﹕1.求的值.22.(8分)如圖,在正方形中,點是對角線上一個動點(不與點重合),連接過點作,交直線于點.作交直線于點,連接.(1)由題意易知,,觀察圖,請猜想另外兩組全等的三角形;;(2)求證:四邊形是平行四邊形;(3)已知,的面積是否存在最小值?若存在,請求出這個最小值;若不存在,請說明理由.23.(8分)某藥廠銷售部門根據(jù)市場調(diào)研結(jié)果,對該廠生產(chǎn)的一種新型原料藥未來兩年的銷售進行預(yù)測,并建立如下模型:設(shè)第t個月該原料藥的月銷售量為P(單位:噸),P與t之間存在如圖所示的函數(shù)關(guān)系,其圖象是函數(shù)P=(0<t≤8)的圖象與線段AB的組合;設(shè)第t個月銷售該原料藥每噸的毛利潤為Q(單位:萬元),Q與t之間滿足如下關(guān)系:Q=(1)當(dāng)8<t≤24時,求P關(guān)于t的函數(shù)解析式;(2)設(shè)第t個月銷售該原料藥的月毛利潤為w(單位:萬元)①求w關(guān)于t的函數(shù)解析式;②該藥廠銷售部門分析認為,336≤w≤513是最有利于該原料藥可持續(xù)生產(chǎn)和銷售的月毛利潤范圍,求此范圍所對應(yīng)的月銷售量P的最小值和最大值.24.(10分)如圖,在△ABC中,AD是BC邊上的中線,E是AD的中點,過點A作BC的平行線交BE的延長線于點F,連接CF,求證:AF=DC;若AB⊥AC,試判斷四邊形ADCF的形狀,并證明你的結(jié)論.25.(10分)2018年“植樹節(jié)”前夕,某小區(qū)為綠化環(huán)境,購進200棵柏樹苗和120棵棗樹苗,且兩種樹苗所需費用相同.每棵棗樹苗的進價比每棵柏樹苗的進價的2倍少5元,每棵柏樹苗的進價是多少元.26.(12分)如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=﹣x+2的圖象交x軸于點P,二次函數(shù)y=﹣x2+x+m的圖象與x軸的交點為(x1,0)、(x2,0),且+=17(1)求二次函數(shù)的解析式和該二次函數(shù)圖象的頂點的坐標(biāo).(2)若二次函數(shù)y=﹣x2+x+m的圖象與一次函數(shù)y=﹣x+2的圖象交于A、B兩點(點A在點B的左側(cè)),在x軸上是否存在點M,使得△MAB是以∠ABM為直角的直角三角形?若存在,請求出點M的坐標(biāo);若不存在,請說明理由.27.(12分)如圖,直角坐標(biāo)系中,⊙M經(jīng)過原點O(0,0),點A(,0)與點B(0,﹣1),點D在劣弧OA上,連接BD交x軸于點C,且∠COD=∠CBO.(1)請直接寫出⊙M的直徑,并求證BD平分∠ABO;(2)在線段BD的延長線上尋找一點E,使得直線AE恰好與⊙M相切,求此時點E的坐標(biāo).

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】∵+(﹣)=0,∴的相反數(shù)是﹣.故選B.2、B【解析】試題解析:A.故錯誤.B.正確.C.不是同類項,不能合并,故錯誤.D.故選B.點睛:同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加.同底數(shù)冪相除,底數(shù)不變,指數(shù)相減.3、C【解析】

因式分解是把一個多項式化為幾個整式的積的形式,據(jù)此進行解答即可.【詳解】解:A、B、D三個選項均不是把一個多項式化為幾個整式的積的形式,故都不是因式分解,只有C選項符合因式分解的定義,故選擇C.【點睛】本題考查了因式分解的定義,牢記定義是解題關(guān)鍵.4、B【解析】

如圖所示,過O點作a的平行線d,根據(jù)平行線的性質(zhì)得到∠2=∠3,進而求出將木條c繞點O旋轉(zhuǎn)到與直線a平行時的最小旋轉(zhuǎn)角.【詳解】如圖所示,過O點作a的平行線d,∵a∥d,由兩直線平行同位角相等得到∠2=∠3=50°,木條c繞O點與直線d重合時,與直線a平行,旋轉(zhuǎn)角∠1+∠2=90°.故選B【點睛】本題主要考查圖形的旋轉(zhuǎn)與平行線,解題的關(guān)鍵是熟練掌握平行線的性質(zhì).5、B【解析】分析:科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當(dāng)原數(shù)絕對值≥1時,n是正數(shù);當(dāng)原數(shù)的絕對值<1時,n是負數(shù).詳解:把6800000用科學(xué)記數(shù)法表示為6.8×1.故選B.點睛:本題考查了科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.6、C【解析】分析:本題可先列出出現(xiàn)的點數(shù)的情況,因為二次圖象開口向上,要使圖象與x軸有兩個不同的交點,則最低點要小于0,即4n-m2<0,再把m、n的值一一代入檢驗,看是否滿足.最后把滿足的個數(shù)除以擲骰子可能出現(xiàn)的點數(shù)的總個數(shù)即可.解答:解:擲骰子有6×6=36種情況.根據(jù)題意有:4n-m2<0,因此滿足的點有:n=1,m=3,4,5,6,n=2,m=3,4,5,6,n=3,m=4,5,6,n=4,m=5,6,n=5,m=5,6,n=6,m=5,6,共有17種,故概率為:17÷36=1736故選C.點評:本題考查的是概率的公式和二次函數(shù)的圖象問題.要注意畫出圖形再進行判斷,找出滿足條件的點.7、C【解析】解:A.此圖形不是軸對稱圖形,不合題意;B.此圖形不是軸對稱圖形,不合題意;C.此圖形是軸對稱圖形,符合題意;D.此圖形不是軸對稱圖形,不合題意.故選C.8、A【解析】根據(jù)軸對稱圖形的概念求解.解:根據(jù)軸對稱圖形的概念可知:B,C,D是軸對稱圖形,A不是軸對稱圖形,故選A.“點睛”本題考查了軸對稱圖形的概念.軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合.9、A【解析】【分析】將所求代數(shù)式先利用單項式乘多項式法則、平方差公式進行展開,然后合并同類項,最后利用整體代入思想進行求值即可.【詳解】∵3a2+5a-1=0,∴3a2+5a=1,∴5a(3a+2)-(3a+2)(3a-2)=15a2+10a-9a2+4=6a2+10a+4=2(3a2+5a)+4=6,故選A.【點睛】本題考查了代數(shù)式求值,涉及到單項式乘多項式、平方差公式、合并同類項等,利用整體代入思想進行解題是關(guān)鍵.10、C【解析】

根據(jù)數(shù)軸上點的位置判斷出a﹣4與a﹣11的正負,原式利用二次根式性質(zhì)及絕對值的代數(shù)意義化簡,去括號合并即可得到結(jié)果.【詳解】解:根據(jù)數(shù)軸上點的位置得:5<a<10,∴a﹣4>0,a﹣11<0,則原式=|a﹣4|﹣|a﹣11|=a﹣4+a﹣11=2a﹣15,故選:C.【點睛】此題考查了二次根式的性質(zhì)與化簡,以及實數(shù)與數(shù)軸,熟練掌握運算法則是解本題的關(guān)鍵.11、B【解析】根據(jù)折疊前后對應(yīng)角相等可知.

解:設(shè)∠ABE=x,

根據(jù)折疊前后角相等可知,∠C1BE=∠CBE=50°+x,

所以50°+x+x=90°,

解得x=20°.

故選B.“點睛”本題考查圖形的翻折變換,解題過程中應(yīng)注意折疊是一種對稱變換,它屬于軸對稱,根據(jù)軸對稱的性質(zhì),折疊前后圖形的形狀和大小不變,如本題中折疊前后角相等.12、C【解析】

根據(jù)題意列出算式,計算即可求出值.【詳解】解:根據(jù)題意得:6-(-2)=6+2=8,

則室內(nèi)溫度比室外溫度高8℃,

故選:C.【點睛】本題考查了有理數(shù)的減法,熟練掌握運算法則是解題的關(guān)鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、15【解析】如圖,等腰△ABC的內(nèi)切圓⊙O是能從這塊鋼板上截得的最大圓,則由題意可知:AD和BF是△ABC的角平分線,AB=AC=50cm,BC=60cm,∴∠ADB=90°,BD=CD=30cm,∴AD=(cm),連接圓心O和切點E,則∠BEO=90°,又∵OD=OE,OB=OB,∴△BEO≌△BDO,∴BE=BD=30cm,∴AE=AB-BE=50-30=20cm,設(shè)OD=OE=x,則AO=40-x,在Rt△AOE中,由勾股定理可得:,解得:(cm).即能截得的最大圓的半徑為15cm.故答案為:15.點睛:(1)三角形中能夠裁剪出的最大的圓是這個三角形的內(nèi)切圓;(2)若三角形的三邊長分別為a、b、c,面積為S,內(nèi)切圓的半徑為r,則.14、1【解析】

作CE⊥AB于E,根據(jù)題意求出AC的長,根據(jù)正弦的定義求出CE,根據(jù)三角形的外角的性質(zhì)求出∠B的度數(shù),根據(jù)正弦的定義計算即可.【詳解】作CE⊥AB于E,12km/h×30分鐘=92km,∴AC=92km,∵∠CAB=45°,∴CE=AC?sin45°=9km,∵燈塔B在它的南偏東15°方向,∴∠NCB=75°,∠CAB=45°,∴∠B=30°,∴BC=CEsin∠B=故答案為:1.【點睛】本題考查的是解直角三角形的應(yīng)用-方向角問題,正確標(biāo)注方向角、熟記銳角三角函數(shù)的定義是解題的關(guān)鍵.15、3(a+2)(a﹣2)【解析】要將一個多項式分解因式的一般步驟是首先看各項有沒有公因式,若有公因式,則把它提取出來,之后再觀察是否是完全平方式或平方差式,若是就考慮用公式法繼續(xù)分解因式.因此,3a2﹣12=3(a2﹣4)=3(a+2)(a﹣2).16、6.4【解析】

根據(jù)平行投影,同一時刻物長與影長的比值固定即可解題.【詳解】解:由題可知:,解得:樹高=6.4米.【點睛】本題考查了投影的實際應(yīng)用,屬于簡單題,熟悉投影概念,列比例式是解題關(guān)鍵.17、22.5°【解析】

四邊形ABCD是矩形,AC=BD,OA=OC,OB=OD,OA=OB═OC,∠OAD=∠ODA,∠OAB=∠OBA,∠AOE=∠OAD+∠ODA=2∠OAD,∠EAC=2∠CAD,∠EAO=∠AOE,AE⊥BD,∠AEO=90°,∠AOE=45°,∠OAB=∠OBA=67.5°,即∠BAE=∠OAB﹣∠OAE=22.5°.考點:矩形的性質(zhì);等腰三角形的性質(zhì).18、2;【解析】試題解析:先求-2的平方4,再求它的算術(shù)平方根,即:.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)45°(2),理由見解析【解析】

(1)由線段的垂直平分線的性質(zhì)可得PM=PN,PO⊥MN,由等腰三角形的性質(zhì)可得∠PMN=∠PNM=α,由正方形的性質(zhì)可得AP=PN,∠APN=90°,可得∠APO=α,由三角形內(nèi)角和定理可求∠AMN的度數(shù);(2)由等腰直角三角形的性質(zhì)和正方形的性質(zhì)可得,,∠MNC=∠ANB=45°,可證△CBN∽△MAN,可得.【詳解】解:(1)如圖,連接MP,∵直線l是線段MN的垂直平分線,∴PM=PN,PO⊥MN∴∠PMN=∠PNM=α∴∠MPO=∠NPO=90°-α,∵四邊形ABNP是正方形∴AP=PN,∠APN=90°∴AP=MP,∠APO=90°-(90°-α)=α∴∠APM=∠MPO-∠APO=(90°-α)-α=90°-2α,∵AP=PM∴,∴∠AMN=∠AMP-∠PMN=45°+α-α=45°(2)理由如下:如圖,連接AN,CN,∵直線l是線段MN的垂直平分線,∴CM=CN,∴∠CMN=∠CNM=45°,∴∠MCN=90°∴,∵四邊形APNB是正方形∴∠ANB=∠BAN=45°∴,∠MNC=∠ANB=45°∴∠ANM=∠BNC又∵∴△CBN∽△MAN∴∴【點睛】本題考查了正方形的性質(zhì),線段垂直平分線的性質(zhì),相似三角形的判定和性質(zhì),添加恰當(dāng)輔助線構(gòu)造相似三角形是本題的關(guān)鍵.20、(1)∠EPF=120°;(2)AE+AF=6.【解析】試題分析:(1)過點P作PG⊥EF于G,解直角三角形即可得到結(jié)論;

(2)如圖2,過點P作PM⊥AB于M,PN⊥AD于N,證明△ABC≌△ADC,Rt△PME≌Rt△PNF,問題即可得證.試題解析:(1)如圖1,過點P作PG⊥EF于G,

∵PE=PF,

∴FG=EG=EF=2,∠FPG=∠EPG=∠EPF,

在△FPG中,sin∠FPG=,

∴∠FPG=60°,

∴∠EPF=2∠FPG=120°;

(2)如圖2,過點P作PM⊥AB于M,PN⊥AD于N,

∵四邊形ABCD是菱形,

∴AD=AB,DC=BC,

∴∠DAC=∠BAC,

∴PM=PN,

在Rt△PME于Rt△PNF中,,

∴Rt△PME≌Rt△PNF,

∴FN=EM,在Rt△PMA中,∠PMA=90°,∠PAM=∠DAB=30°,

∴AM=AP?cos30°=3,同理AN=3,

∴AE+AF=(AM-EM)+(AN+NF)=6.【點睛】運用了菱形的性質(zhì),解直角三角形,全等三角形的判定和性質(zhì),最值問題,等腰三角形的性質(zhì),作輔助線構(gòu)造直角三角形是解題的關(guān)鍵.21、(1);(2)和;(3)【解析】

(1)設(shè),,再根據(jù)根與系數(shù)的關(guān)系得到,根據(jù)勾股定理得到:、,根據(jù)列出方程,解方程即可;(2)求出A、B坐標(biāo),設(shè)出點Q坐標(biāo),利用平行四邊形的性質(zhì),分類討論點P坐標(biāo),利用全等的性質(zhì)得出P點的橫坐標(biāo)后,分別代入拋物線解析式,求出P點坐標(biāo);(3)過點作DH⊥軸于點,由::,可得::.設(shè),可得點坐標(biāo)為,可得.設(shè)點坐標(biāo)為.可證△∽△,利用相似性質(zhì)列出方程整理可得到①,將代入拋物線上,可得②,聯(lián)立①②解方程組,即可解答.【詳解】解:設(shè),,則是方程的兩根,∴.∵已知拋物線與軸交于點.∴在△中:,在△中:,∵△為直角三角形,由題意可知∠°,∴,即,∴,∴,解得:,又,∴.由可知:,令則,∴,∴.①以為邊,以點、、、Q為頂點的四邊形是四邊形時,設(shè)拋物線的對稱軸為,l與交于點,過點作⊥l,垂足為點,即∠°∠.∵四邊形為平行四邊形,∴∥,又l∥軸,∴∠∠=∠,∴△≌△,∴,∴點的橫坐標(biāo)為,∴即點坐標(biāo)為.②當(dāng)以為邊,以點、、、Q為頂點的四邊形是四邊形時,設(shè)拋物線的對稱軸為,l與交于點,過點作⊥l,垂足為點,即∠°∠.∵四邊形為平行四邊形,∴∥,又l∥軸,∴∠∠=∠,∴△≌△,∴,∴點的橫坐標(biāo)為,∴即點坐標(biāo)為∴符合條件的點坐標(biāo)為和.過點作DH⊥軸于點,∵::,∴::.設(shè),則點坐標(biāo)為,∴.∵點在拋物線上,∴點坐標(biāo)為,由(1)知,∴,∵∥,∴△∽△,∴,∴,即①,又在拋物線上,∴②,將②代入①得:,解得(舍去),把代入②得:.【點睛】本題是代數(shù)幾何綜合題,考查了二次函數(shù)圖象性質(zhì)、一元二次方程根與系數(shù)關(guān)系、三角形相似以及平行四邊形的性質(zhì),解答關(guān)鍵是綜合運用數(shù)形結(jié)合分類討論思想.22、(1);(2)見解析;(3)存在,2【解析】

(1)利用正方形的性質(zhì)及全等三角形的判定方法證明全等即可;(2)由(1)可知,則有,從而得到,最后利用一組對邊平行且相等即可證明;(3)由(1)可知,則,從而得到是等腰直角三角形,則當(dāng)最短時,的面積最小,再根據(jù)AB的值求出PB的最小值即可得出答案.【詳解】解:(1)四邊形是正方形,,,,,,在和中,在和中,,故答案為;(2)證明:由(1)可知,,四邊形是平行四邊形.(3)解:存在,理由如下:是等腰直角三角形,最短時,的面積最小,當(dāng)時,最短,此時,的面積最小為.【點睛】本題主要考查全等三角形的判定及性質(zhì),平行四邊形的判定,掌握全等三角形的判定方法和平行四邊形的判定方法是解題的關(guān)鍵.23、(1)P=t+2;(2)①當(dāng)0<t≤8時,w=240;當(dāng)8<t≤12時,w=2t2+12t+16;當(dāng)12<t≤24時,w=﹣t2+42t+88;②此范圍所對應(yīng)的月銷售量P的最小值為12噸,最大值為19噸.【解析】分析:(1)設(shè)8<t≤24時,P=kt+b,將A(8,10)、B(24,26)代入求解可得P=t+2;(2)①分0<t≤8、8<t≤12和12<t≤24三種情況,根據(jù)月毛利潤=月銷量×每噸的毛利潤可得函數(shù)解析式;②求出8<t≤12和12<t≤24時,月毛利潤w在滿足336≤w≤513條件下t的取值范圍,再根據(jù)一次函數(shù)的性質(zhì)可得P的最大值與最小值,二者綜合可得答案.詳解:(1)設(shè)8<t≤24時,P=kt+b,將A(8,10)、B(24,26)代入,得:,解得:,∴P=t+2;(2)①當(dāng)0<t≤8時,w=(2t+8)×=240;當(dāng)8<t≤12時,w=(2t+8)(t+2)=2t2+12t+16;當(dāng)12<t≤24時,w=(-t+44)(t+2)=-t2+42t+88;②當(dāng)8<t≤12時,w=2t2+12t+16=2(t+3)2-2,∴8<t≤12時,w隨t的增大而增大,當(dāng)2(t+3)2-2=336時,解題t=10或t=-16(舍),當(dāng)t=12時,w取得最大值,最大值為448,此時月銷量P=t+2在t=10時取得最小值12,在t=12時取得最大值14;當(dāng)12<t≤24時,w=-t2+42t+88=-(t-21)2+529,當(dāng)t=12時,w取得最小值448,由-(t-21)2+529=513得t=17或t=25,∴當(dāng)12<t≤17時,448<w≤513,此時P=t+2的最小值為14,最大值為19;綜上,此范圍所對應(yīng)的月銷售量P的最小值為12噸,最大值為19噸.點睛:本題主要考查二次函數(shù)的應(yīng)用,掌握待定系數(shù)法求函數(shù)解析式及根據(jù)相等關(guān)系列出分段函數(shù)的解析式是解題的前提,利用二次函數(shù)的性質(zhì)求得336≤w≤513所對應(yīng)的t的取值范圍是解題的關(guān)鍵.24、(1)見解析(2)見解析【解析】

(1)根據(jù)AAS證△AFE≌△DBE,推出AF=BD,即可得出答案.(2)得出四邊形ADCF是平行四邊形,根據(jù)直角三角形斜邊上中線性質(zhì)得出CD=AD,根據(jù)菱形的判定推出即可.【詳解】解:(1)證明:∵AF∥BC,∴∠AFE=∠DBE.∵E是AD的中點,AD是BC邊上的中線,∴AE=DE,BD=CD.在△AFE和△DBE中,∵∠AFE=∠DBE,∠FEA=∠BED,AE=DE,∴△AFE≌△DBE(AAS)∴AF=BD.∴AF=DC.(2)四邊形ADCF是菱形,證明如下:∵AF∥BC,AF=DC,∴四邊形ADCF是平行四邊形.∵AC⊥AB,AD是斜邊BC的中線,∴AD=DC.∴平行四邊形ADCF是菱形25、15元.【解析】

首先設(shè)每棵柏樹苗的進價是x元,則每棵棗樹苗的進價是(2x-5)元,根據(jù)題意列出一元一次方程進行求解.【詳解】解:設(shè)每棵柏樹苗的進價是x元,則每棵棗樹苗的進價是(2x-5)元.根據(jù)題意,列方程得:,解得:x=15答:每棵柏樹苗的進價是15元.【點睛】此題考查了一元一次方程的應(yīng)用,解題關(guān)鍵是要讀懂題目的意思,根據(jù)題目給出的條件,找出合適的等量關(guān)系列出方程,再求解.26、(1)y=﹣x2+x+2=(x﹣)2+,頂點坐標(biāo)為(,);(2)存在,點M(,0).理由見解析.【解析】

(1)由根與系數(shù)的關(guān)系,結(jié)合已知條件可得9+4m=17,解方程求得m的值,即可得求得二次函數(shù)的解析式,再求得該二次函數(shù)圖象的頂點的坐標(biāo)即可;(2)存在,將拋物線表達式和一次函數(shù)y=﹣x+2聯(lián)立并解得x=

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論