2022屆廣東省廣州市海鷗學校中考數(shù)學模擬預測試卷含解析_第1頁
2022屆廣東省廣州市海鷗學校中考數(shù)學模擬預測試卷含解析_第2頁
2022屆廣東省廣州市海鷗學校中考數(shù)學模擬預測試卷含解析_第3頁
2022屆廣東省廣州市海鷗學校中考數(shù)學模擬預測試卷含解析_第4頁
2022屆廣東省廣州市海鷗學校中考數(shù)學模擬預測試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2022屆廣東省廣州市海鷗學校中考數(shù)學模擬預測試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.下面四個幾何體中,左視圖是四邊形的幾何體共有()A.1個 B.2個 C.3個 D.4個2.如圖,電線桿CD的高度為h,兩根拉線AC與BC互相垂直(A、D、B在同一條直線上),設∠CAB=α,那么拉線BC的長度為()A. B. C. D.3.下列命題正確的是()A.對角線相等的四邊形是平行四邊形B.對角線相等的四邊形是矩形C.對角線互相垂直的平行四邊形是菱形D.對角線互相垂直且相等的四邊形是正方形4.下列分式中,最簡分式是()A. B. C. D.5.如圖,邊長為1的正方形ABCD繞點A逆時針旋轉(zhuǎn)30°到正方形AB’C’D’,圖中陰影部分的面積為().A. B. C. D.6.已知點P(a,m),Q(b,n)都在反比例函數(shù)y=的圖象上,且a<0<b,則下列結論一定正確的是()A.m+n<0 B.m+n>0 C.m<n D.m>n7.如圖,將△ABC沿著點B到C的方向平移到△DEF的位置,AB=10,DO=4,平移距離為6,則陰影部分面積為()A.42 B.96 C.84 D.488.函數(shù)與在同一坐標系中的大致圖象是()A、B、C、D、9.如圖,矩形ABCD中,AB=3,AD=4,連接BD,∠DBC的角平分線BE交DC于點E,現(xiàn)把△BCE繞點B逆時針旋轉(zhuǎn),記旋轉(zhuǎn)后的△BCE為△BC′E′.當線段BE′和線段BC′都與線段AD相交時,設交點分別為F,G.若△BFD為等腰三角形,則線段DG長為()A. B. C. D.10.下列四個不等式組中,解集在數(shù)軸上表示如圖所示的是()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.如圖,在△ABC中,AD、BE分別是邊BC、AC上的中線,AB=AC=5,cos∠C=,那么GE=_______.12.小球在如圖所示的地板上自由地滾動,并隨機地停留在某塊方磚上,那么小球最終停留在黑色區(qū)域的概率是_____________________.13.如圖,已知點A(4,0),O為坐標原點,P是線段OA上任意一點(不含端點O,A),過P,O兩點的二次函數(shù)y1和過P,A兩點的二次函數(shù)y2的圖象開口均向下,它們的頂點分別為B,C,射線OB與射線AC相交于點D.當△ODA是等邊三角形時,這兩個二次函數(shù)的最大值之和等于__.14.如圖①,在矩形ABCD中,對角線AC與BD交于點O,動點P從點A出發(fā),沿AB勻速運動,到達點B時停止,設點P所走的路程為x,線段OP的長為y,若y與x之間的函數(shù)圖象如圖②所示,則矩形ABCD的周長為_____.15.如圖,在△ABC中,AB=AC,以點C為圓心,以CB長為半徑作圓弧,交AC的延長線于點D,連結BD,若∠A=32°,則∠CDB的大小為_____度.16.如果點、是二次函數(shù)是常數(shù)圖象上的兩點,那么______填“”、“”或“”17.如圖,△ABC中,點D、E分別在邊AB、BC上,DE∥AC,若DB=4,AB=6,BE=3,則EC的長是_____.三、解答題(共7小題,滿分69分)18.(10分)計算:﹣﹣|4sin30°﹣|+(﹣)﹣119.(5分)已知直線y=mx+n(m≠0,且m,n為常數(shù))與雙曲線y=(k<0)在第一象限交于A,B兩點,C,D是該雙曲線另一支上兩點,且A、B、C、D四點按順時針順序排列.(1)如圖,若m=﹣,n=,點B的縱坐標為,①求k的值;②作線段CD,使CD∥AB且CD=AB,并簡述作法;(2)若四邊形ABCD為矩形,A的坐標為(1,5),①求m,n的值;②點P(a,b)是雙曲線y=第一象限上一動點,當S△APC≥24時,則a的取值范圍是.20.(8分)已知,如圖1,直線y=x+3與x軸、y軸分別交于A、C兩點,點B在x軸上,點B的橫坐標為,拋物線經(jīng)過A、B、C三點.點D是直線AC上方拋物線上任意一點.(1)求拋物線的函數(shù)關系式;(2)若P為線段AC上一點,且S△PCD=2S△PAD,求點P的坐標;(3)如圖2,連接OD,過點A、C分別作AM⊥OD,CN⊥OD,垂足分別為M、N.當AM+CN的值最大時,求點D的坐標.21.(10分)如圖,點在的直徑的延長線上,點在上,且AC=CD,∠ACD=120°.求證:是的切線;若的半徑為2,求圖中陰影部分的面積.22.(10分)如圖,點A在∠MON的邊ON上,AB⊥OM于B,AE=OB,DE⊥ON于E,AD=AO,DC⊥OM于C.求證:四邊形ABCD是矩形;若DE=3,OE=9,求AB、AD的長.23.(12分)網(wǎng)上購物已經(jīng)成為人們常用的一種購物方式,售后評價特別引人關注,消費者在網(wǎng)店購買某種商品后,對其有“好評”、“中評”、“差評”三種評價,假設這三種評價是等可能的.(1)小明對一家網(wǎng)店銷售某種商品顯示的評價信息進行了統(tǒng)計,并列出了兩幅不完整的統(tǒng)計圖.利用圖中所提供的信息解決以下問題:①小明一共統(tǒng)計了個評價;②請將圖1補充完整;③圖2中“差評”所占的百分比是;(2)若甲、乙兩名消費者在該網(wǎng)店購買了同一商品,請你用列表格或畫樹狀圖的方法幫助店主求一下兩人中至少有一個給“好評”的概率.24.(14分)如圖,在四邊形ABCD中,AB=AD,BC=DC,AC、BD相交于點O,點E在AO上,且OE=OC.求證:∠1=∠2;連結BE、DE,判斷四邊形BCDE的形狀,并說明理由.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】簡單幾何體的三視圖.【分析】左視圖是從左邊看到的圖形,因為圓柱的左視圖是矩形,圓錐的左視圖是等腰三角形,球的左視圖是圓,正方體的左視圖是正方形,所以,左視圖是四邊形的幾何體是圓柱和正方體2個.故選B.2、B【解析】根據(jù)垂直的定義和同角的余角相等,可由∠CAD+∠ACD=90°,∠ACD+∠BCD=90°,可求得∠CAD=∠BCD,然后在Rt△BCD中cos∠BCD=,可得BC=.故選B.點睛:本題主要考查解直角三角形的應用,熟練掌握同角的余角相等和三角函數(shù)的定義是解題的關鍵.3、C【解析】分析:根據(jù)平行四邊形、矩形、菱形、正方形的判定定理判斷即可.詳解:對角線互相平分的四邊形是平行四邊形,A錯誤;對角線相等的平行四邊形是矩形,B錯誤;對角線互相垂直的平行四邊形是菱形,C正確;對角線互相垂直且相等的平行四邊形是正方形;故選:C.點睛:本題考查的是命題的真假判斷,正確的命題叫真命題,錯誤的命題叫做假命題.判斷命題的真假關鍵是要熟悉課本中的性質(zhì)定理.4、A【解析】試題分析:選項A為最簡分式;選項B化簡可得原式==;選項C化簡可得原式==;選項D化簡可得原式==,故答案選A.考點:最簡分式.5、C【解析】

設B′C′與CD的交點為E,連接AE,利用“HL”證明Rt△AB′E和Rt△ADE全等,根據(jù)全等三角形對應角相等∠DAE=∠B′AE,再根據(jù)旋轉(zhuǎn)角求出∠DAB′=60°,然后求出∠DAE=30°,再解直角三角形求出DE,然后根據(jù)陰影部分的面積=正方形ABCD的面積﹣四邊形ADEB′的面積,列式計算即可得解.【詳解】如圖,設B′C′與CD的交點為E,連接AE,在Rt△AB′E和Rt△ADE中,,∴Rt△AB′E≌Rt△ADE(HL),∴∠DAE=∠B′AE,∵旋轉(zhuǎn)角為30°,∴∠DAB′=60°,∴∠DAE=×60°=30°,∴DE=1×=,∴陰影部分的面積=1×1﹣2×(×1×)=1﹣.故選C.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),正方形的性質(zhì),全等三角形判定與性質(zhì),解直角三角形,利用全等三角形求出∠DAE=∠B′AE,從而求出∠DAE=30°是解題的關鍵,也是本題的難點.6、D【解析】

根據(jù)反比例函數(shù)的性質(zhì),可得答案.【詳解】∵y=?的k=-2<1,圖象位于二四象限,a<1,∴P(a,m)在第二象限,∴m>1;∵b>1,∴Q(b,n)在第四象限,∴n<1.∴n<1<m,即m>n,故D正確;故選D.【點睛】本題考查了反比例函數(shù)的性質(zhì),利用反比例函數(shù)的性質(zhì):k<1時,圖象位于二四象限是解題關鍵.7、D【解析】

由平移的性質(zhì)知,BE=6,DE=AB=10,∴OE=DE﹣DO=10﹣4=6,∴S四邊形ODFC=S梯形ABEO=(AB+OE)?BE=(10+6)×6=1.故選D.【點睛】本題考查平移的性質(zhì),平移前后兩個圖形大小,形狀完全相同,圖形上的每個點都平移了相同的距離,對應點之間的距離就是平移的距離.8、D.【解析】試題分析:根據(jù)一次函數(shù)和反比例函數(shù)的性質(zhì),分k>0和k<0兩種情況討論:當k<0時,一次函數(shù)圖象過二、四、三象限,反比例函數(shù)中,-k>0,圖象分布在一、三象限;當k>0時,一次函數(shù)過一、三、四象限,反比例函數(shù)中,-k<0,圖象分布在二、四象限.故選D.考點:一次函數(shù)和反比例函數(shù)的圖象.9、A【解析】

先在Rt△ABD中利用勾股定理求出BD=5,在Rt△ABF中利用勾股定理求出BF=,則AF=4-=.再過G作GH∥BF,交BD于H,證明GH=GD,BH=GH,設DG=GH=BH=x,則FG=FD-GD=-x,HD=5-x,由GH∥FB,得出=,即可求解.【詳解】解:在Rt△ABD中,∵∠A=90°,AB=3,AD=4,∴BD=5,在Rt△ABF中,∵∠A=90°,AB=3,AF=4-DF=4-BF,∴BF2=32+(4-BF)2,解得BF=,∴AF=4-=.過G作GH∥BF,交BD于H,∴∠FBD=∠GHD,∠BGH=∠FBG,∵FB=FD,∴∠FBD=∠FDB,∴∠FDB=∠GHD,∴GH=GD,∵∠FBG=∠EBC=∠DBC=∠ADB=∠FBD,又∵∠FBG=∠BGH,∠FBG=∠GBH,∴BH=GH,設DG=GH=BH=x,則FG=FD-GD=-x,HD=5-x,∵GH∥FB,∴=,即=,解得x=.故選A.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),矩形的性質(zhì),等腰三角形的性質(zhì),勾股定理,平行線分線段成比例定理,準確作出輔助線是解題關鍵.10、D【解析】

此題涉及的知識點是不等式組的表示方法,根據(jù)規(guī)律可得答案.【詳解】由解集在數(shù)軸上的表示可知,該不等式組為,故選D.【點睛】本題重點考查學生對于在數(shù)軸上表示不等式的解集的掌握程度,不等式組的解集的表示方法:大小小大取中間是解題關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】

過點E作EF⊥BC交BC于點F,分別求得AD=3,BD=CD=4,EF=,DF=2,BF=6,再結合△BGD∽△BEF即可.【詳解】過點E作EF⊥BC交BC于點F.∵AB=AC,AD為BC的中線∴AD⊥BC∴EF為△ADC的中位線.又∵cos∠C=,AB=AC=5,∴AD=3,BD=CD=4,EF=,DF=2∴BF=6∴在Rt△BEF中BE==,又∵△BGD∽△BEF∴,即BG=.GE=BE-BG=故答案為.【點睛】本題考查的知識點是三角形的相似,解題的關鍵是熟練的掌握三角形的相似.12、2【解析】試題分析:根據(jù)題意和圖示,可知所有的等可能性為18種,然后可知落在黑色區(qū)域的可能有4種,因此可求得小球停留在黑色區(qū)域的概率為:41813、2【解析】

連接PB、PC,根據(jù)二次函數(shù)的對稱性可知OB=PB,PC=AC,從而判斷出△POB和△ACP是等邊三角形,再根據(jù)等邊三角形的性質(zhì)求解即可.【詳解】解:如圖,連接PB、PC,由二次函數(shù)的性質(zhì),OB=PB,PC=AC,∵△ODA是等邊三角形,∴∠AOD=∠OAD=60°,∴△POB和△ACP是等邊三角形,∵A(4,0),∴OA=4,∴點B、C的縱坐標之和為:OB×sin60°+PC×sin60°=4×=2,即兩個二次函數(shù)的最大值之和等于2.故答案為2.【點睛】本題考查了二次函數(shù)的最值問題,等邊三角形的判定與性質(zhì),解直角三角形,作輔助線構造出等邊三角形并利用等邊三角形的知識求解是解題的關鍵.14、1【解析】分析:根據(jù)點P的移動規(guī)律,當OP⊥BC時取最小值2,根據(jù)矩形的性質(zhì)求得矩形的長與寬,易得該矩形的周長.詳解:∵當OP⊥AB時,OP最小,且此時AP=4,OP=2,∴AB=2AP=8,AD=2OP=6,∴C矩形ABCD=2(AB+AD)=2×(8+6)=1.故答案為1.點睛:本題考查了動點問題的函數(shù)圖象,關鍵是根據(jù)所給函數(shù)圖象和點的運動軌跡判斷出AP=4,OP=2.15、1【解析】

根據(jù)等腰三角形的性質(zhì)以及三角形內(nèi)角和定理在△ABC中可求得∠ACB=∠ABC=74°,根據(jù)等腰三角形的性質(zhì)以及三角形外角的性質(zhì)在△BCD中可求得∠CDB=∠CBD=∠ACB=1°.【詳解】∵AB=AC,∠A=32°,∴∠ABC=∠ACB=74°,又∵BC=DC,∴∠CDB=∠CBD=∠ACB=1°,故答案為1.【點睛】本題主要考查等腰三角形的性質(zhì),三角形外角的性質(zhì),掌握等邊對等角是解題的關鍵,注意三角形內(nèi)角和定理的應用.16、【解析】

根據(jù)二次函數(shù)解析式可知函數(shù)圖象對稱軸是x=0,且開口向上,分析可知兩點均在對稱軸左側的圖象上;接下來,結合二次函數(shù)的性質(zhì)可判斷對稱軸左側圖象的增減性,【詳解】解:二次函數(shù)的函數(shù)圖象對稱軸是x=0,且開口向上,∴在對稱軸的左側y隨x的增大而減小,∵-3>-4,∴>.故答案為>.【點睛】本題考查了二次函數(shù)的圖像和數(shù)形結合的數(shù)學思想.17、【解析】

由△ABC中,點D、E分別在邊AB、BC上,DE∥AC,根據(jù)平行線分線段成比例定理,可得DB:AB=BE:BC,又由DB=4,AB=6,BE=3,即可求得答案.【詳解】解:∵DE∥AC,∴DB:AB=BE:BC,∵DB=4,AB=6,BE=3,∴4:6=3:BC,解得:BC=,∴EC=BC﹣BE=﹣3=.故答案為.【點睛】考查了平行線分線段成比例定理,解題時注意:平行于三角形的一邊,并且和其他兩邊(或兩邊的延長線)相交的直線,所截得的三角形的三邊與原三角形的三邊對應成比例.三、解答題(共7小題,滿分69分)18、﹣4﹣1.【解析】

先逐項化簡,再合并同類項或同類二次根式即可.【詳解】解:原式=﹣3﹣(﹣2)﹣12=﹣3﹣+2﹣12=﹣4﹣1.【點睛】本題考查了實數(shù)的混合運算,熟練掌握特殊角的三角函數(shù)值,二次根式的性質(zhì)以及負整數(shù)指數(shù)冪的意義是解答本題的關鍵.19、(1)①k=5;②見解析,由此AO交雙曲線于點C,延長BO交雙曲線于點D,線段CD即為所求;(2)①;②0<a<1或a>5【解析】

(1)①求出直線的解析式,利用待定系數(shù)法即可解決問題;②如圖,由此AO交雙曲線于點C,延長BO交雙曲線于點D,線段CD即為所求;(2)①求出A,B兩點坐標,利用待定系數(shù)法即可解決問題;②分兩種情形求出△PAC的面積=24時a的值,即可判斷.【詳解】(1)①∵,,∴直線的解析式為,∵點B在直線上,縱坐標為,∴,解得x=2∴,∴;②如下圖,由此AO交雙曲線于點C,延長BO交雙曲線于點D,線段CD即為所求;(2)①∵點在上,∴k=5,∵四邊形ABCD是矩形,∴OA=OB=OC=OD,∴A,B關于直線y=x對稱,∴,則有:,解得;②如下圖,當點P在點A的右側時,作點C關于y軸的對稱點C′,連接AC,AC′,PC,PC′,PA.∵A,C關于原點對稱,,∴,∵,當時,∴,∴,∴a=5或(舍棄),當點P在點A的左側時,同法可得a=1,∴滿足條件的a的范圍為或.【點睛】本題屬于反比例函數(shù)與一次函數(shù)的綜合問題,熟練掌握待定系數(shù)法解函數(shù)解析式以及交點坐標的求法是解決本題的關鍵.20、(1)y=﹣x2﹣x+3;(2)點P的坐標為(﹣,1);(3)當AM+CN的值最大時,點D的坐標為(,).【解析】

(1)利用一次函數(shù)圖象上點的坐標特征可求出點A、C的坐標,由點B所在的位置結合點B的橫坐標可得出點B的坐標,根據(jù)點A、B、C的坐標,利用待定系數(shù)法即可求出拋物線的函數(shù)關系式;(2)過點P作PE⊥x軸,垂足為點E,則△APE∽△ACO,由△PCD、△PAD有相同的高且S△PCD=2S△PAD,可得出CP=2AP,利用相似三角形的性質(zhì)即可求出AE、PE的長度,進而可得出點P的坐標;(3)連接AC交OD于點F,由點到直線垂線段最短可找出當AC⊥OD時AM+CN取最大值,過點D作DQ⊥x軸,垂足為點Q,則△DQO∽△AOC,根據(jù)相似三角形的性質(zhì)可設點D的坐標為(﹣3t,4t),利用二次函數(shù)圖象上點的坐標特征可得出關于t的一元二次方程,解之取其負值即可得出t值,再將其代入點D的坐標即可得出結論.【詳解】(1)∵直線y=x+3與x軸、y軸分別交于A、C兩點,∴點A的坐標為(﹣4,0),點C的坐標為(0,3).∵點B在x軸上,點B的橫坐標為,∴點B的坐標為(,0),設拋物線的函數(shù)關系式為y=ax2+bx+c(a≠0),將A(﹣4,0)、B(,0)、C(0,3)代入y=ax2+bx+c,得:,解得:,∴拋物線的函數(shù)關系式為y=﹣x2﹣x+3;(2)如圖1,過點P作PE⊥x軸,垂足為點E,∵△PCD、△PAD有相同的高,且S△PCD=2S△PAD,∴CP=2AP,∵PE⊥x軸,CO⊥x軸,∴△APE∽△ACO,∴,∴AE=AO=,PE=CO=1,∴OE=OA﹣AE=,∴點P的坐標為(﹣,1);(3)如圖2,連接AC交OD于點F,∵AM⊥OD,CN⊥OD,∴AF≥AM,CF≥CN,∴當點M、N、F重合時,AM+CN取最大值,過點D作DQ⊥x軸,垂足為點Q,則△DQO∽△AOC,∴,∴設點D的坐標為(﹣3t,4t).∵點D在拋物線y=﹣x2﹣x+3上,∴4t=﹣3t2+t+3,解得:t1=﹣(不合題意,舍去),t2=,∴點D的坐標為(,),故當AM+CN的值最大時,點D的坐標為(,).【點睛】本題考查了待定系數(shù)法求二次函數(shù)解析式、一次(二次)函數(shù)圖象上點的坐標特征、三角形的面積以及相似三角形的性質(zhì),解題的關鍵是:(1)根據(jù)點A、B、C的坐標,利用待定系數(shù)法求出拋物線的函數(shù)關系式;(2)利用相似三角形的性質(zhì)找出AE、PE的長;(3)利用相似三角形的性質(zhì)設點D的坐標為(﹣3t,4t).21、(1)見解析(2)圖中陰影部分的面積為π.【解析】

(1)連接OC.只需證明∠OCD=90°.根據(jù)等腰三角形的性質(zhì)即可證明;(2)先根據(jù)直角三角形中30°的銳角所對的直角邊是斜邊的一半求出OD,然后根據(jù)勾股定理求出CD,則陰影部分的面積即為直角三角形OCD的面積減去扇形COB的面積.【詳解】(1)證明:連接OC.∵AC=CD,∠ACD=120°,∴∠A=∠D=30°.∵OA=OC,∴∠2=∠A=30°.∴∠OCD=∠ACD-∠2=90°,即OC⊥CD,∴CD是⊙O的切線;(2)解:∠1=∠2+∠A=60°.∴S扇形BOC==.在Rt△OCD中,∠D=30°,∴OD=2OC=4,∴CD==.∴SRt△OCD=OC×CD=×2×=.∴圖中陰影部分的面積為:-.22、(1)證明見解析;(2)AB、AD的長分別為2和1.【解析】

(1)證Rt△ABO≌Rt△DEA(HL)得∠AOB=∠DAE,AD∥BC.證四邊形ABCD是平行四邊形,又,故四邊形ABCD是矩形;(2)由(1)知Rt△ABO≌Rt△DEA,AB=DE=2.設AD=x,則OA=x,AE=OE-OA=9-x.在Rt△DEA中,由得:.【詳解】(1)證明:∵AB⊥OM于B,DE⊥ON于E,∴.在Rt△ABO與Rt△DEA中,∵

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論