版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022屆貴州省黔西南興仁市黔龍校中考數學全真模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.多項式4a﹣a3分解因式的結果是()A.a(4﹣a2)B.a(2﹣a)(2+a)C.a(a﹣2)(a+2)D.a(2﹣a)22.不等式組中兩個不等式的解集,在數軸上表示正確的是A. B.C. D.3.下列方程中,是一元二次方程的是()A.2x﹣y=3 B.x2+=2 C.x2+1=x2﹣1 D.x(x﹣1)=04.據相關報道,開展精準扶貧工作五年以來,我國約有55000000人擺脫貧困,將55000000用科學記數法表示是()A.55×106 B.0.55×108 C.5.5×106 D.5.5×1075.下列計算正確的是()A. B.0.00002=2×105C. D.6.中國古代人民很早就在生產生活中發(fā)現了許多有趣的數學問題,其中《孫子算經》中有個問題:今有三人共車,二車空;二人共車,九人步,問人與車各幾何?這道題的意思是:今有若干人乘車,每三人乘一車,最終剩余2輛車,若每2人共乘一車,最終剩余9個人無車可乘,問有多少人,多少輛車?如果我們設有輛車,則可列方程()A. B.C. D.7.如圖,四邊形ABCD內接于⊙O,點I是△ABC的內心,∠AIC=124°,點E在AD的延長線上,則∠CDE的度數為()A.56° B.62° C.68° D.78°8.下列命題正確的是()A.對角線相等的四邊形是平行四邊形B.對角線相等的四邊形是矩形C.對角線互相垂直的平行四邊形是菱形D.對角線互相垂直且相等的四邊形是正方形9.如圖,在中,,將繞點逆時針旋轉,使點落在線段上的點處,點落在點處,則兩點間的距離為()A. B. C. D.10.如圖,在四邊形ABCD中,對角線AC⊥BD,垂足為O,點E、F、G、H分別為邊AD、AB、BC、CD的中點.若AC=10,BD=6,則四邊形EFGH的面積為()A.20 B.15 C.30 D.60二、填空題(本大題共6個小題,每小題3分,共18分)11.2018年5月18日,益陽新建西流灣大橋竣工通車,如圖,從沅江A地到資陽B地有兩條路線可走,從資陽B地到益陽火車站可經會龍山大橋或西流灣大橋或龍洲大橋到達,現讓你隨機選擇一條從沅江A地出發(fā)經過資陽B地到達益陽火車站的行走路線,那么恰好選到經過西流灣大橋的路線的概率是_____.12.觀察下列圖形:它們是按一定的規(guī)律排列的,依照此規(guī)律,第n個圖形共有___個★.13.如圖,平面直角坐標系中,矩形OABC的頂點A(﹣6,0),C(0,2).將矩形OABC繞點O順時針方向旋轉,使點A恰好落在OB上的點A1處,則點B的對應點B1的坐標為_____.14.如圖,在Rt△ABC中,∠C=90°,AC=8,BC=1.在邊AB上取一點O,使BO=BC,以點O為旋轉中心,把△ABC逆時針旋轉90°,得到△A′B′C′(點A、B、C的對應點分別是點A′、B′、C′、),那么△ABC與△A′B′C′的重疊部分的面積是_________.15.關于x的分式方程=2的解為正實數,則實數a的取值范圍為_____.16.如圖,邊長為6的菱形ABCD中,AC是其對角線,∠B=60°,點P在CD上,CP=2,點M在AD上,點N在AC上,則△PMN的周長的最小值為_____________.三、解答題(共8題,共72分)17.(8分)已知:如圖,梯形ABCD,DC∥AB,對角線AC平分∠BCD,點E在邊CB的延長線上,EA⊥AC,垂足為點A.(1)求證:B是EC的中點;(2)分別延長CD、EA相交于點F,若AC2=DC?EC,求證:AD:AF=AC:FC.18.(8分)閱讀下列材料,解答下列問題:材料1.把一個多項式化成幾個整式的積的形式,這種變形叫做因式分解,也叫分解因式.如果把整式的乘法看成一個變形過程,那么多項式的因式分解就是它的逆過程.公式法(平方差公式、完全平方公式)是因式分解的一種基本方法.如對于二次三項式a2+2ab+b2,可以逆用乘法公式將它分解成(a+b)2的形式,我們稱a2+2ab+b2為完全平方式.但是對于一般的二次三項式,就不能直接應用完全平方了,我們可以在二次三項式中先加上一項,使其配成完全平方式,再減去這項,使整個式子的值不變,于是有:x2+2ax﹣3a2=x2+2ax+a2﹣a2﹣3a2=(x+a)2﹣(2a)2=(x+3a)(x﹣a)材料2.因式分解:(x+y)2+2(x+y)+1解:將“x+y”看成一個整體,令x+y=A,則原式=A2+2A+1=(A+1)2再將“A”還原,得:原式=(x+y+1)2.上述解題用到的是“整體思想”,整體思想是數學解題中常見的一種思想方法,請你解答下列問題:(1)根據材料1,把c2﹣6c+8分解因式;(2)結合材料1和材料2完成下面小題:①分解因式:(a﹣b)2+2(a﹣b)+1;②分解因式:(m+n)(m+n﹣4)+3.19.(8分)如圖,拋物線y=ax2+bx+c(a≠0)與y軸交于點C(0,4),與x軸交于點A和點B,其中點A的坐標為(﹣2,0),拋物線的對稱軸x=1與拋物線交于點D,與直線BC交于點E.(1)求拋物線的解析式;(2)若點F是直線BC上方的拋物線上的一個動點,是否存在點F使四邊形ABFC的面積最大,若存在,求出點F的坐標和最大值;若不存在,請說明理由;(3)平行于DE的一條動直線l與直線BC相較于點P,與拋物線相交于點Q,若以D、E、P、Q為頂點的四邊形是平行四邊形,求P點的坐標.20.(8分)如圖,已知點A,B的坐標分別為(0,0)、(2,0),將△ABC繞C點按順時針方向旋轉90°得到△A1B1C.(1)畫出△A1B1C;(2)A的對應點為A1,寫出點A1的坐標;(3)求出B旋轉到B1的路線長.21.(8分)如圖,在平面直角坐標系中,矩形OCDE的三個頂點分別是C(3,0),D(3,4),E(0,4).點A在DE上,以A為頂點的拋物線過點C,且對稱軸x=1交x軸于點B.連接EC,AC.點P,Q為動點,設運動時間為t秒.(1)求拋物線的解析式.(2)在圖①中,若點P在線段OC上從點O向點C以1個單位/秒的速度運動,同時,點Q在線段CE上從點C向點E以2個單位/秒的速度運動,當一個點到達終點時,另一個點隨之停止運動.當t為何值時,△PCQ為直角三角形?(3)在圖②中,若點P在對稱軸上從點A開始向點B以1個單位/秒的速度運動,過點P做PF⊥AB,交AC于點F,過點F作FG⊥AD于點G,交拋物線于點Q,連接AQ,CQ.當t為何值時,△ACQ的面積最大?最大值是多少?22.(10分)甲、乙兩人在筆直的湖邊公路上同起點、同終點、同方向勻速步行2400米,先到終點的人原地休息.已知甲先出發(fā)4分鐘,在整個步行過程中,甲、乙兩人間的距離y(米)與甲出發(fā)的時間x(分)之間的關系如圖中折線OA-AB-BC-CD所示.(1)求線段AB的表達式,并寫出自變量x的取值范圍;(2)求乙的步行速度;(3)求乙比甲早幾分鐘到達終點?23.(12分)如圖,一次函數y1=kx+b的圖象與反比例函數y2=的圖象交于A(2,3),B(6,n)兩點.分別求出一次函數與反比例函數的解析式;求△OAB的面積.24.在星期一的第八節(jié)課,我校體育老師隨機抽取了九年級的總分學生進行體育中考的模擬測試,并對成績進行統(tǒng)計分析,繪制了頻數分布表和統(tǒng)計圖,按得分劃分成A、B、C、D、E、F六個等級,并繪制成如下兩幅不完整的統(tǒng)計圖表.等級得分x(分)頻數(人)A95<x≤1004B90<x≤95mC85<x≤90nD80<x≤8524E75<x≤808F70<x≤754請你根據圖表中的信息完成下列問題:(1)本次抽樣調查的樣本容量是.其中m=,n=.(2)扇形統(tǒng)計圖中,求E等級對應扇形的圓心角α的度數;(3)我校九年級共有700名學生,估計體育測試成績在A、B兩個等級的人數共有多少人?(4)我校決定從本次抽取的A等級學生(記為甲、乙、丙、丁)中,隨機選擇2名成為學校代表參加全市體能競賽,請你用列表法或畫樹狀圖的方法,求恰好抽到甲和乙的概率.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】
首先提取公因式a,再利用平方差公式分解因式得出答案.【詳解】4a﹣a3=a(4﹣a2)=a(2﹣a)(2+a).故選:B.【點睛】此題主要考查了提取公因式法以及公式法分解因式,正確運用公式是解題關鍵.2、B【解析】由①得,x<3,由②得,x≥1,所以不等式組的解集為:1≤x<3,在數軸上表示為:,故選B.3、D【解析】試題解析:含有兩個未知數,不是整式方程,C沒有二次項.故選D.點睛:一元二次方程需要滿足三個條件:含有一個未知數,未知數的最高次數是2,整式方程.4、D【解析】試題解析:55000000=5.5×107,故選D.考點:科學記數法—表示較大的數5、D【解析】
在完成此類化簡題時,應先將分子、分母中能夠分解因式的部分進行分解因式.有些需要先提取公因式,而有些則需要運用公式法進行分解因式.通過分解因式,把分子分母中能夠分解因式的部分,分解成乘積的形式,然后找到其中的公因式約去.【詳解】解:A、原式=;故本選項錯誤;B、原式=2×10-5;故本選項錯誤;C、原式=;故本選項錯誤;D、原式=;故本選項正確;故選:D.【點睛】分式的乘除混合運算一般是統(tǒng)一為乘法運算,如果有乘方,還應根據分式乘方法則先乘方,即把分子、分母分別乘方,然后再進行乘除運算.同樣要注意的地方有:一是要確定好結果的符號;二是運算順序不能顛倒.6、A【解析】
根據每三人乘一車,最終剩余2輛車,每2人共乘一車,最終剩余1個人無車可乘,進而表示出總人數得出等式即可.【詳解】設有x輛車,則可列方程:
3(x-2)=2x+1.
故選:A.【點睛】此題主要考查了由實際問題抽象出一元一次方程,正確表示總人數是解題關鍵.7、C【解析】分析:由點I是△ABC的內心知∠BAC=2∠IAC、∠ACB=2∠ICA,從而求得∠B=180°﹣(∠BAC+∠ACB)=180°﹣2(180°﹣∠AIC),再利用圓內接四邊形的外角等于內對角可得答案.詳解:∵點I是△ABC的內心,∴∠BAC=2∠IAC、∠ACB=2∠ICA,∵∠AIC=124°,∴∠B=180°﹣(∠BAC+∠ACB)=180°﹣2(∠IAC+∠ICA)=180°﹣2(180°﹣∠AIC)=68°,又四邊形ABCD內接于⊙O,∴∠CDE=∠B=68°,故選C.點睛:本題主要考查三角形的內切圓與內心,解題的關鍵是掌握三角形的內心的性質及圓內接四邊形的性質.8、C【解析】分析:根據平行四邊形、矩形、菱形、正方形的判定定理判斷即可.詳解:對角線互相平分的四邊形是平行四邊形,A錯誤;對角線相等的平行四邊形是矩形,B錯誤;對角線互相垂直的平行四邊形是菱形,C正確;對角線互相垂直且相等的平行四邊形是正方形;故選:C.點睛:本題考查的是命題的真假判斷,正確的命題叫真命題,錯誤的命題叫做假命題.判斷命題的真假關鍵是要熟悉課本中的性質定理.9、A【解析】
先利用勾股定理計算出AB,再在Rt△BDE中,求出BD即可;【詳解】解:∵∠C=90°,AC=4,BC=3,
∴AB=5,
∵△ABC繞點A逆時針旋轉,使點C落在線段AB上的點E處,點B落在點D處,
∴AE=AC=4,DE=BC=3,
∴BE=AB-AE=5-4=1,
在Rt△DBE中,BD=,故選A.【點睛】本題考查了旋轉的性質:對應點到旋轉中心的距離相等;對應點與旋轉中心所連線段的夾角等于旋轉角;旋轉前、后的圖形全等.10、B【解析】
有一個角是直角的平行四邊形是矩形.利用中位線定理可得出四邊形EFGH是矩形,根據矩形的面積公式解答即可.【詳解】∵點E、F分別為四邊形ABCD的邊AD、AB的中點,∴EF∥BD,且EF=BD=1.同理求得EH∥AC∥GF,且EH=GF=AC=5,又∵AC⊥BD,∴EF∥GH,FG∥HE且EF⊥FG.四邊形EFGH是矩形.∴四邊形EFGH的面積=EF?EH=1×5=2,即四邊形EFGH的面積是2.故選B.【點睛】本題考查的是中點四邊形.解題時,利用了矩形的判定以及矩形的定理,矩形的判定定理有:(1)有一個角是直角的平行四邊形是矩形;(2)有三個角是直角的四邊形是矩形;(1)對角線互相平分且相等的四邊形是矩形.二、填空題(本大題共6個小題,每小題3分,共18分)11、.【解析】
由題意可知一共有6種可能,經過西流灣大橋的路線有2種可能,根據概率公式計算即可.【詳解】解:由題意可知一共有6種可能,經過西流灣大橋的路線有2種可能,所以恰好選到經過西流灣大橋的路線的概率=.故答案為.【點睛】本題考查的是用列表法或畫樹狀圖法求概率.注意列表法或畫樹狀圖法可以不重復不遺漏的列出所有可能的結果,列表法適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件.注意概率=所求情況數與總情況數之比.12、【解析】
分別求出第1個、第2個、第3個、第4個圖形中★的個數,得到第5個圖形中★的個數,進而找到規(guī)律,得出第n個圖形中★的個數,即可求解.【詳解】第1個圖形中有1+3×1=4個★,
第2個圖形中有1+3×2=7個★,
第3個圖形中有1+3×3=10個★,
第4個圖形中有1+3×4=13個★,
第5個圖形中有1+3×5=16個★,
…
第n個圖形中有1+3×n=(3n+1)個★.故答案是:1+3n.【點睛】考查了規(guī)律型:圖形的變化類;根據圖形中變化的量和n的關系與不變的量得到圖形中★的個數與n的關系是解決本題的關鍵.13、(-2,6)【解析】分析:連接OB1,作B1H⊥OA于H,證明△AOB≌△HB1O,得到B1H=OA=6,OH=AB=2,得到答案.詳解:連接OB1,作B1H⊥OA于H,由題意得,OA=6,AB=OC-2,則tan∠BOA=,∴∠BOA=30°,∴∠OBA=60°,由旋轉的性質可知,∠B1OB=∠BOA=30°,∴∠B1OH=60°,在△AOB和△HB1O,,∴△AOB≌△HB1O,∴B1H=OA=6,OH=AB=2,∴點B1的坐標為(-2,6),故答案為(-2,6).點睛:本題考查的是矩形的性質、旋轉變換的性質,掌握矩形的性質、全等三角形的判定和性質定理是解題的關鍵.14、【解析】
先求得OD,AE,DE的值,再利用S四邊形ODEF=S△AOF-S△ADE即可.【詳解】如圖,OA’=OA=4,則OD=OA’=3,OD=3∴AD=1,可得DE=,AE=∴S四邊形ODEF=S△AOF-S△ADE=×3×4-××=.故答案為.【點睛】本題考查的知識點是三角形的旋轉,解題的關鍵是熟練的掌握三角形的旋轉.15、a<2且a≠1【解析】
將a看做已知數,表示出分式方程的解,根據解為非負數列出關于a的不等式,求出不等式的解集即可得到a的范圍.【詳解】分式方程去分母得:x+a-2a=2(x-1),解得:x=2-a,∵分式方程的解為正實數,∴2-a>0,且2-a≠1,解得:a<2且a≠1.故答案為:a<2且a≠1.【點睛】分式方程的解.16、2【解析】
過P作關于AC和AD的對稱點,連接和,過P作,和,M,N共線時最短,根據對稱性得知△PMN的周長的最小值為.因為四邊形ABCD是菱形,AD是對角線,可以求得,根據特殊三角形函數值求得,,再根據線段相加勾股定理即可求解.【詳解】過P作關于AC和AD的對稱點,連接和,過P作,四邊形ABCD是菱形,AD是對角線,,,,,又由題意得【點睛】本題主要考查對稱性質,菱形性質,內角和定理和勾股定理,熟悉掌握定理是關鍵.三、解答題(共8題,共72分)17、(1)詳見解析;(2)詳見解析.【解析】
(1)根據平行線的性質結合角平分線的性質可得出∠BCA=∠BAC,進而可得出BA=BC,根據等角的余角相等結合等角對等邊,即可得出AB=BE,進而可得出BE=BA=BC,此題得證;(2)根據AC2=DC?EC結合∠ACD=∠ECA可得出△ACD∽△ECA,根據相似三角形的性質可得出∠ADC=∠EAC=90°,進而可得出∠FDA=∠FAC=90°,結合∠AFD=∠CFA可得出△AFD∽△CFA,再利用相似三角形的性質可證出AD:AF=AC:FC.【詳解】(1)∵DC∥AB,∴∠DCA=∠BAC.∵AC平分∠BCD,∴∠BCA=∠BAC=∠DCA,∴BA=BC.∵∠BAC+∠BAE=90°,∠ACB+∠E=90°,∴∠BAE=∠E,∴AB=BE,∴BE=BA=BC,∴B是EC的中點;(2)∵AC2=DC?EC,∴.∵∠ACD=∠ECA,∴△ACD∽△ECA,∴∠ADC=∠EAC=90°,∴∠FDA=∠FAC=90°.又∵∠AFD=∠CFA,∴△AFD∽△CFA,∴AD:AF=AC:FC.【點睛】本題考查了相似三角形的判定與性質、角平分線的性質以及等腰三角形的性質,解題的關鍵是:(1)利用等角對等邊找出BA=BC、BE=BA;(2)利用相似三角形的判定定理找出△AFD∽△CFA.18、(1)(c-4)(c-2);(2)①(a-b+1)2;②(m+n-1)(m+n-3).【解析】
(1)根據材料1,可以對c2-6c+8分解因式;(2)①根據材料2的整體思想可以對(a-b)2+2(a-b)+1分解因式;②根據材料1和材料2可以對(m+n)(m+n-4)+3分解因式.【詳解】(1)c2-6c+8=c2-6c+32-32+8=(c-3)2-1=(c-3+1)(c-3+1)=(c-4)(c-2);(2)①(a-b)2+2(a-b)+1設a-b=t,則原式=t2+2t+1=(t+1)2,則(a-b)2+2(a-b)+1=(a-b+1)2;②(m+n)(m+n-4)+3設m+n=t,則t(t-4)+3=t2-4t+3=t2-4t+22-22+3=(t-2)2-1=(t-2+1)(t-2-1)=(t-1)(t-3),則(m+n)(m+n-4)+3=(m+n-1)(m+n-3).【點睛】本題考查因式分解的應用,解題的關鍵是明確題意,可以根據材料中的例子對所求的式子進行因式分解.19、(1)、y=-+x+4;(2)、不存在,理由見解析.【解析】試題分析:(1)、首先設拋物線的解析式為一般式,將點C和點A意見對稱軸代入求出函數解析式;(2)、本題利用假設法來進行證明,假設存在這樣的點,然后設出點F的坐標求出FH和FG的長度,然后得出面積與t的函數關系式,根據方程無解得出結論.試題解析:(1)、∵拋物線y=a+bx+c(a≠0)過點C(0,4)∴C=4①∵-=1∴b=-2a②∵拋物線過點A(-2,0)∴4a-2b+c="0"③由①②③解得:a=-,b=1,c=4∴拋物線的解析式為:y=-+x+4(2)、不存在假設存在滿足條件的點F,如圖所示,連結BF、CF、OF,過點F作FH⊥x軸于點H,FG⊥y軸于點G.設點F的坐標為(t,+t+4),其中0<t<4則FH=+t+4FG=t∴△OBF的面積=OB·FH=×4×(+t+4)=-+2t+8△OFC的面積=OC·FG=2t∴四邊形ABFC的面積=△AOC的面積+△OBF的面積+△OFC的面積=-+4t+12令-+4t+12=17即-+4t-5=0△=16-20=-4<0∴方程無解∴不存在滿足條件的點F考點:二次函數的應用20、(1)畫圖見解析;(2)A1(0,6);(3)弧BB1=.【解析】
(1)根據旋轉圖形的性質首先得出各點旋轉后的點的位置,然后順次連接各點得出圖形;(2)根據圖形得出點的坐標;(3)根據弧長的計算公式求出答案.【詳解】解:(1)△A1B1C如圖所示.(2)A1(0,6).(3).【點睛】本題考查了旋轉作圖和弧長的計算.21、(1)y=﹣x2+2x+3;(2)當t=或t=時,△PCQ為直角三角形;(3)當t=2時,△ACQ的面積最大,最大值是1.【解析】
(1)根據拋物線的對稱軸與矩形的性質可得點A的坐標,根據待定系數法可得拋物線的解析式;(2)先根據勾股定理可得CE,再分兩種情況:當∠QPC=90°時;當∠PQC=90°時;討論可得△PCQ為直角三角形時t的值;(3)根據待定系數法可得直線AC的解析式,根據S△ACQ=S△AFQ+S△CPQ可得S△ACQ==﹣(t﹣2)2+1,依此即可求解.【詳解】解:(1)∵拋物線的對稱軸為x=1,矩形OCDE的三個頂點分別是C(3,0),D(3,4),E(0,4),點A在DE上,∴點A坐標為(1,4),設拋物線的解析式為y=a(x﹣1)2+4,把C(3,0)代入拋物線的解析式,可得a(3﹣1)2+4=0,解得a=﹣1.故拋物線的解析式為y=﹣(x﹣1)2+4,即y=﹣x2+2x+3;(2)依題意有:OC=3,OE=4,∴CE===5,當∠QPC=90°時,∵cos∠QPC=,∴,解得t=;當∠PQC=90°時,∵cos∠QCP=,∴,解得t=.∴當t=或t=時,△PCQ為直角三角形;(3)∵A(1,4),C(3,0),設直線AC的解析式為y=kx+b,則有:,解得.故直線AC的解析式為y=﹣2x+2.∵P(1,4﹣t),將y=4﹣t代入y=﹣2x+2中,得x=1+,∴Q點的橫坐標為1+,將x=1+代入y=﹣(x﹣1)2+4中,得y=4﹣.∴Q點的縱坐標為4﹣,∴QF=(4﹣)﹣(4﹣t)=t﹣,∴S△ACQ=S△AFQ+S△CFQ=FQ?AG+FQ?DG,=FQ(AG+DG),=FQ?AD,=×2(t﹣),=﹣(t﹣2)2+1,∴當t=2時,△ACQ的面積最大,最大值是1.【點睛】考查了二次函數綜合題,涉及的知識點有:拋物線的對稱軸,矩形的性質,待定系數法求拋物線的解析式,待定系數法求直線的解析式,勾股定理,銳角三角函數,三角形面積,二次函數的最值,方程思想以及分類思想的運用.22、(1);(2)80米/分;(3)6分鐘【解析】
(1)根據圖示,設線段AB的表達式為:y=kx+b,把把(4,240),(16,0)代入得到關于k,b的二元一次方程組,解之,即可得到答案,
(2)根據線段OA,求出甲的速度,根據圖示可知:乙在點B處追上甲,根據速度=路程÷時間,計算求值即可,
(3)根據圖示,求出二者相遇時與出發(fā)點的距離,進而求出與終點的距離,結合(2)的結果,分別計算出相遇后,到達終點甲和乙所用的時間,二者的時間差即可所求答案.【詳解】(1)根據題意得:
設線段AB的表達式為:y=kx+b(4≤x≤16),
把(4,240),(16,0)代入得:,
解得:,
即線段AB的表達式為:y=-20x+320(4≤x≤16),
(2)又線段OA可知:甲的速度為:=60(米/分),
乙的步行速度為:=80(米/分),
答:乙的步行速度為80米/分,
(3)在B處甲乙相遇時,與出發(fā)點的距離為:240+(16
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年新品試用授權合同
- 大學生實習面試自我介紹15篇
- 小學語文老師家長會講話稿
- 2025公司居間合同
- 先進個人工作總結8篇
- 高二語文教學工作反思
- 2025天津市限價商品住房買賣合同
- 2024幼兒園食堂個人工作計劃范文15篇大全
- 2024至2030年中國聚氨酯黑白料行業(yè)投資前景及策略咨詢研究報告
- 提取公因式法、公式法(學)
- 2024年中國中化集團限公司招聘高頻難、易錯點500題模擬試題附帶答案詳解
- 食材配送方案及質量保障措施
- 實驗室安全準入考試題庫答案
- 低空經濟重大產業(yè)項目招商引資方案
- 2輸變電工程施工質量驗收統(tǒng)一表式(變電工程土建專業(yè))-2024年版
- 中學科學教育活動三年發(fā)展規(guī)劃(2024-2026)
- 2025年高考語文復習備考復習策略講座
- 2024-2030年中國給水排水管行業(yè)市場發(fā)展趨勢與前景展望戰(zhàn)略分析報告
- 護理研究試題答案
- 儲能行業(yè)-市場前景及投資研究報告-移動式儲能電源應用技術發(fā)展-培訓課件
- 【金融模擬交易實踐報告書3700字(論文)】
評論
0/150
提交評論