




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
PopulationGrowthandLimits(Ch.52)Populationgrowth:(Pg.1158) Whatispopulationgrowth?Populationgrowth:(Pg.1158)Whatispopulationgrowth? Thechangeinthenumberofindividuals inapopulationthroughtime.Populationgrowth:(Pg.1158)Twomajorfactorsthataffectpopulationgrowth: 1)Birthrates 2)DeathratesDescribingPopulationGrowthwithMathematicalModels(Pg.1158-1163)DescribingPopulationGrowthwithMathematicalModels(Pg.1158-1163)Weconsiderchangesinpopulationsizeover time-therefore,therehastobeatimeinterval2)Forsimplicity,wewillassumeimmigrationandemigrationareequal3)BirthratesanddeathratesareourvariablesSimpleVerbalModel:(Pg.1159)Changeinpopulation Birthsduring DeathsduringSizeduringtimeinterval=timeinterval-timeintervalSimpleVerbalModel:(Pg.1159)Changeinpopulation Birthsduring DeathsduringSizeduringtimeinterval=timeinterval-timeintervalN=PopulationSize
N=changeinpopulation sizet=time
t=timeinterval (appropriatetolifespan andgenerationtimeof species)changeSimpleVerbalModel:(Pg.1159)Changeinpopulation Birthsduring DeathsduringSizeduringtimeinterval=timeinterval-timeintervalRewriteVerbalmodelas,N/t=B-D B=absolute D=absolute #ofbirths #ofdeaths intimeintervalintime intervalN/t=B-DB=bNwhereb=thenumberofoffspring producedperyearbyan averagememberofthe population =(theannualpercapitabirthrate)Absolute#ofbirthsPopulationsizeN/t=B-DB=bNEx. 1)Ifpopulationsize=1000 2)thispopulationexperiences34births/year Whatisthepercapitabirthrate?
B=bNEx. 1)Ifpopulationsize=1000 2)thispopulationexperiences34births/yearPlugintoequation: B=bN
34=(b)1000 34/1000=b
b=0.034percapita birthrateN/t=B-D
IfB=bN,
WhatdoesDequal?
N/t=B-DB=bN WhatdoesDequal? D=dN
wheredisthepercapita deathrateAbsolute#ofdeathsN/t=B-DGivenB=bN andD=dNWecanwrite…N/t=bN -dN
N/t=B-DGivenB=bN andD=dNWecanwrite…N/t=bN -dN
Howcouldwesimplifythisexpression?
N/t=B-DN/t=bN -dN
Howcouldwesimplifythisexpression?
PullNout,N(b–d)
N/t=bN -dNPullNout,N(b–d) r=b-d
r=differenceinpercapita birthanddeathrates
(r=percapitapopulationgrowth)Ecologistsareinterestedinoverallchangesinpopulationsize,so“r”isusedinmodelsr=b-d r=differenceinpercapita birthanddeathrates (r=percapitapopulationgrowth)“r”tellsuswhetherapopulationisgrowing(+values)ordeclining(-values)Zeropopulationgrowth(ZPG)iswhenb=d.Rewritepopulationgrowthequationas…N/t=bN -dNN/t=
N(b–d) usingr=b–dN/t=rNN/t=rNEcologistsusuallyusethedifferentialcalculusexpression
dN/dt=rNwhichexpressesinstantaneousgrowthrates=growthrateatanygivenpointintime.Draw–slopedN/dt=rNThemaximumpopulationgrowthrateiscalledthe
Intrinsicrateofincrease(rmax)Themaximumpopulationgrowthrateiscalledthe Intrinsicrateofincrease(rmax)Populationgrowthatrmaxiscalled
exponentialpopulationgrowthIfresourcesarenotlimited,anidealpopulationgrowsexponentiallyrmax=1rmax=0.5Pg.1160J-shapedcurvermaxisinfluencedbylifehistoryfeatures: 1)Ageatfirstreproduction 2)numberofoffspringproduced 3)howwelloffspringsurvivermaxisinverselyproportionaltogenerationtimeDosmallerorlargerorganismshavehigherrmax?Dosmallerorlargerorganismshavehigherrmax?SMALLERExponentialgrowthischaracteristicofpopulations…thatareintroducedintoneworunfilledenvironmentsthatarereboundingfromacatastrophiceventButwhataboutallotherpopulations? Dotheygrowexponentially?Butwhataboutallotherpopulations? Dotheygrowexponentially?
NONextModelofpopulationgrowth:(Pg.1160) “Logisticpopulationgrowth”which incorporatescarryingcapacityNextModelofpopulationgrowth: Logisticpopulationgrowthwhich incorporatescarryingcapacityCarryingcapacity(K)–themaximumpopulationsizethataparticularenvironmentcansupportwithnonetincreaseordecreaseoverarelativelylongperiodoftime(Pg.1160)“K”isnotanabsolute;Itvariesovertimeandspacewiththeabundanceoflimitingresources(ENVIRONMENTDEPENDENT!!!)Logisticpopulationgrowth: 1)incorporateschangesin“r”asNapproachesK 2)allowsrtovaryfromrmaxtozero 3)populationgrowthisrapidwhenN<<K 4)populationgrowthslowswhenNisclosetoKBuildingthemathematicalmodel:Startwith:
dN/dt=rNNewexpressions:IfK=maximumpopulationsizeforagivenenvironmentthen,K–N=the#ofadditionalindividualstheenvironmentcansustain
Buildingthemathematicalmodel:
Startwith:
dN/dt=rNNewexpressions: K–NTherefore,(K–N)/Ktellsuswhatfraction
ofKisstillavailableforpopulationgrowth
ex.Using(K–N)/KEx. IfK=1000,andN=10, ThenwhatfractionofKis stillavailableforpopulation growth?Using(K–N)/KEx. IfK=1000,andN=10, ThenwhatfractionofKis stillavailableforpopulation growth? (1000–10)/1000=.99or99%
ex.Using(K–N)/KEx. IfK=1000,andN=900,
ThenwhatfractionofKis stillavailableforpopulation growth?Using(K–N)/KEx. IfK=1000,andN=900,
ThenwhatfractionofKis stillavailableforpopulation growth?
(1000–900)/1000=.10or10%Using(K–N)/Kin
dN/dt=rN
Weget… Pg.1161
dN/dt=rN(K–N)/KThismodelreducesrasNincreasetowardK
ex.Pg.1161x=Pg.1161x=PercapitagrowthrateLogisticPopulationGrowth(Pg.1162):S-shapedcurveNaturalorlaboratorypopulationsfitthismodelreasonablywellHowever,thismodeldoesnotconsidertheeffectsofpredatorsandcompetitors,somanynaturalpopulationsdeviatefromthismodelSomeassumptionsofthelogisticmodel:1)populationsapproachKsmoothly–thereisusuallyaLAGTIMEinbetweenresourcedepletionanddecreasedbirthrates,somostpopulationsovershootK.ThisresultsinpopulationsoscillatingaroundKTimeNKovershootoscillationsSomeassumptionsofthelogisticmodel:1)populationsapproachKsmoothly–thereisusuallyaLAGTIMEinbetweenresourcedepletionanddecreasedbirthrates,somostpopulationsovershootK.ThisresultsinpopulationsoscillatingaroundK2)NotallpopulationreachorexistnearK.Manyinsectsandothersmall,rapidlyreproducingorganismsthataresensitivetoenvironmentalfluctuationsareinfluencedbyphysicalvariablesliketemperatureandmoisturewellbeforetheyreachKPopulationgrowthmodelsinfluencelifehistorycharacteristics(generalguidelinesasmostorganismsexhibitintermediatetraits) (Pg.1163)K–selectedpopulations:equilibriumpopulationsr-selectedpopulations:opportunisticpopulationsKnowTableNKKNK-selectedr-selectedWhatlimitspopulations?(Pg.1163)Whatlimitspopulations?Twobasictypesoffactors: 1)densitydependent
2)densityindependentdensitydependentfactors=populationregulationfactorsthatintensifyaspopulationdensityincreases (Pg.1164)Intraspecificcompetition–therelianceofindividualsofthesamespeciesonthesamelimitedresourcesSo,aspopulationsizeincreases,theavailableresourcesdecrease,andcompetitionforresourcesincreasesEx.CompetitionforresourcesCompetitioninfluencessurvivalCompetitionincreasesHighDensitycanresultin: 1)crowding 2)fewerresourcesforeachindividual 3)weakoffspring(duetoresourcesputintotheirproduction) 4)Build-upoftoxinsandwasteinenvironmentwhich negativelyinfluencesindividuals 5)Increase
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 建筑行業(yè)安全生產(chǎn)合同
- 合同制員工福利待遇調(diào)整趨勢
- 代理區(qū)域銷售合同書
- 【課件】串聯(lián)電路與并聯(lián)電路+課件-高二上學(xué)期物理人教版(2019)必修第三冊
- 2025年度IT服務(wù)外包合同范本
- 云南省元馬中學(xué)重點中學(xué)2025年初三下學(xué)期第一次質(zhì)量抽測數(shù)學(xué)試題含解析
- 供水供電合同
- 天津天獅學(xué)院《機械制圖上》2023-2024學(xué)年第二學(xué)期期末試卷
- 蘇州科技大學(xué)天平學(xué)院《幼兒歌曲彈唱》2023-2024學(xué)年第一學(xué)期期末試卷
- 浙江海洋大學(xué)《半導(dǎo)體制造與工藝》2023-2024學(xué)年第二學(xué)期期末試卷
- 人格障礙患者的護理
- 人工智能大模型
- 1輸變電工程施工質(zhì)量驗收統(tǒng)一表式(線路工程)-2024年版
- 2024年全國鄉(xiāng)村振興職業(yè)技能大賽“育嬰”賽項考試題庫(決賽用)
- 《內(nèi)在強大:應(yīng)變?nèi)f難的力量》記錄
- TSHJX 067-2024 基于TACS的全自動運行線路綜合聯(lián)調(diào)技術(shù)規(guī)范
- 2024至2030年中國擦窗機器人產(chǎn)業(yè)競爭現(xiàn)狀及投資決策建議報告
- 益母草顆粒的保肝作用機制
- 中國經(jīng)濟史教學(xué)課件第八章近代農(nóng)業(yè)經(jīng)濟的發(fā)展
- 2024年東南亞生化需氧量(BOD)分析儀市場深度研究及預(yù)測報告
評論
0/150
提交評論