版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
湖北省武漢市蔡甸區(qū)八校聯(lián)盟達標名校2024年中考二模數(shù)學試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖圖形中,既是軸對稱圖形,又是中心對稱圖形的是()A. B. C. D.2.如圖,等腰直角三角形的頂點A、C分別在直線a、b上,若a∥b,∠1=30°,則∠2的度數(shù)為()A.30° B.15° C.10° D.20°3.如右圖是用八塊完全相同的小正方體搭成的幾何體,從正面看幾何體得到的圖形是()A. B.C. D.4.甲、乙兩車從A地出發(fā),勻速駛向B地.甲車以80km/h的速度行駛1h后,乙車才沿相同路線行駛.乙車先到達B地并停留1h后,再以原速按原路返回,直至與甲車相遇.在此過程中,兩車之間的距離y(km)與乙車行駛時間x(h)之間的函數(shù)關(guān)系如圖所示.下列說法:①乙車的速度是120km/h;②m=160;③點H的坐標是(7,80);④n=7.1.其中說法正確的有()A.4個 B.3個 C.2個 D.1個5.如圖是將正方體切去一個角后形成的幾何體,則該幾何體的左視圖為()A. B. C. D.6.如圖,已知是中的邊上的一點,,的平分線交邊于,交于,那么下列結(jié)論中錯誤的是()A.△BAC∽△BDA B.△BFA∽△BECC.△BDF∽△BEC D.△BDF∽△BAE7.如圖,將△ABC繞點C順時針旋轉(zhuǎn),使點B落在AB邊上點B′處,此時,點A的對應點A′恰好落在BC邊的延長線上,下列結(jié)論錯誤的是()A.∠BCB′=∠ACA′ B.∠ACB=2∠BC.∠B′CA=∠B′AC D.B′C平分∠BB′A′8.已知二次函數(shù)y=3(x﹣1)2+k的圖象上有三點A(,y1),B(2,y2),C(﹣,y3),則y1、y2、y3的大小關(guān)系為()A.y1>y2>y3 B.y2>y1>y3 C.y3>y1>y2 D.y3>y2>y19.下列各圖中a、b、c為三角形的邊長,則甲、乙、丙三個三角形和左側(cè)△ABC全等的是()A.甲和乙 B.乙和丙 C.甲和丙 D.只有丙10.如圖,在△ABC中,AC=BC,∠ACB=90°,點D在BC上,BD=3,DC=1,點P是AB上的動點,則PC+PD的最小值為()A.4 B.5 C.6 D.711.某班選舉班干部,全班有1名同學都有選舉權(quán)和被選舉權(quán),他們的編號分別為1,2,…,1.老師規(guī)定:同意某同學當選的記“1”,不同意(含棄權(quán))的記“0”.如果令其中i=1,2,…,1;j=1,2,…,1.則a1,1a1,2+a2,1a2,2+a3,1a3,2+…+a1,1a1,2表示的實際意義是()A.同意第1號或者第2號同學當選的人數(shù)B.同時同意第1號和第2號同學當選的人數(shù)C.不同意第1號或者第2號同學當選的人數(shù)D.不同意第1號和第2號同學當選的人數(shù)12.小亮家1月至10月的用電量統(tǒng)計如圖所示,這組數(shù)據(jù)的眾數(shù)和中位數(shù)分別是()A.30和20B.30和25C.30和22.5D.30和17.5二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,直線經(jīng)過、兩點,則不等式的解集為_______.14.在由乙猜甲剛才想的數(shù)字游戲中,把乙猜的數(shù)字記為b且,a,b是0,1,2,3四個數(shù)中的其中某一個,若|a﹣b|≤1則稱甲乙”心有靈犀”.現(xiàn)任意找兩個人玩這個游戲,得出他們”心有靈犀”的概率為_____.15.已知a、b是方程x2﹣2x﹣1=0的兩個根,則a2﹣a+b的值是_______.16.若正多邊形的一個外角是45°,則該正多邊形的邊數(shù)是_________.17.如圖,在矩形ABCD中,點E是CD的中點,點F是BC上一點,且FC=2BF,連接AE,EF.若AB=2,AD=3,則tan∠AEF的值是_____.18.如圖,一扇形紙扇完全打開后,外側(cè)兩竹條AB和AC的夾角為120°,AB長為25cm,貼紙部分的寬BD為15cm,若紙扇兩面貼紙,則貼紙的面積為_____.(結(jié)果保留π)三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖1,拋物線y=ax2+bx+4過A(2,0)、B(4,0)兩點,交y軸于點C,過點C作x軸的平行線與拋物線上的另一個交點為D,連接AC、BC.點P是該拋物線上一動點,設(shè)點P的橫坐標為m(m>4).(1)求該拋物線的表達式和∠ACB的正切值;(2)如圖2,若∠ACP=45°,求m的值;(3)如圖3,過點A、P的直線與y軸于點N,過點P作PM⊥CD,垂足為M,直線MN與x軸交于點Q,試判斷四邊形ADMQ的形狀,并說明理由.20.(6分)如圖,正方形ABCD的邊長為4,點E,F(xiàn)分別在邊AB,AD上,且∠ECF=45°,CF的延長線交BA的延長線于點G,CE的延長線交DA的延長線于點H,連接AC,EF.,GH.填空:∠AHC∠ACG;(填“>”或“<”或“=”)線段AC,AG,AH什么關(guān)系?請說明理由;設(shè)AE=m,①△AGH的面積S有變化嗎?如果變化.請求出S與m的函數(shù)關(guān)系式;如果不變化,請求出定值.②請直接寫出使△CGH是等腰三角形的m值.21.(6分)如圖,∠BAC的平分線交△ABC的外接圓于點D,交BC于點F,∠ABC的平分線交AD于點E.(1)求證:DE=DB:(2)若∠BAC=90°,BD=4,求△ABC外接圓的半徑;(3)若BD=6,DF=4,求AD的長22.(8分)某市為了解本地七年級學生寒假期間參加社會實踐活動情況,隨機抽查了部分七年級學生寒假參加社會實踐活動的天數(shù)(“A﹣﹣﹣不超過5天”、“B﹣﹣﹣6天”、“C﹣﹣﹣7天”、“D﹣﹣﹣8天”、“E﹣﹣﹣9天及以上”),并將得到的數(shù)據(jù)繪制成如下兩幅不完整的統(tǒng)計圖.請根據(jù)以上的信息,回答下列問題:(1)補全扇形統(tǒng)計圖和條形統(tǒng)計圖;(2)所抽查學生參加社會實踐活動天數(shù)的眾數(shù)是(選填:A、B、C、D、E);(3)若該市七年級約有2000名學生,請你估計參加社會實踐“活動天數(shù)不少于7天”的學生大約有多少人?23.(8分)在平面直角坐標系xOy中,二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過A(0,4),B(2,0),C(-2,0)三點.(1)求二次函數(shù)的表達式;(2)在x軸上有一點D(-4,0),將二次函數(shù)的圖象沿射線DA方向平移,使圖象再次經(jīng)過點B.①求平移后圖象頂點E的坐標;②直接寫出此二次函數(shù)的圖象在A,B兩點之間(含A,B兩點)的曲線部分在平移過程中所掃過的面積.24.(10分)如圖,在△ABC中,AB=AC,以AB為直徑作⊙O交BC于點D.過點D作EF⊥AC,垂足為E,且交AB的延長線于點F.求證:EF是⊙O的切線;已知AB=4,AE=1.求BF的長.25.(10分)如圖,平行四邊形ABCD的對角線AC,BD相交于點O,延長CD到E,使DE=CD,連接AE.(1)求證:四邊形ABDE是平行四邊形;(2)連接OE,若∠ABC=60°,且AD=DE=4,求OE的長.26.(12分)如圖,△ABC是等腰直角三角形,且AC=BC,P是△ABC外接圓⊙O上的一動點(點P與點C位于直線AB的異側(cè))連接AP、BP,延長AP到D,使PD=PB,連接BD.(1)求證:PC∥BD;(2)若⊙O的半徑為2,∠ABP=60°,求CP的長;(3)隨著點P的運動,的值是否會發(fā)生變化,若變化,請說明理由;若不變,請給出證明.27.(12分)某品牌牛奶供應商提供A,B,C,D四種不同口味的牛奶供學生飲用.某校為了了解學生對不同口味的牛奶的喜好,對全校訂牛奶的學生進行了隨機調(diào)查,并根據(jù)調(diào)查結(jié)果繪制了如下兩幅不完整的統(tǒng)計圖.根據(jù)統(tǒng)計圖的信息解決下列問題:(1)本次調(diào)查的學生有多少人?(2)補全上面的條形統(tǒng)計圖;(3)扇形統(tǒng)計圖中C對應的中心角度數(shù)是;(4)若該校有600名學生訂了該品牌的牛奶,每名學生每天只訂一盒牛奶,要使學生能喝到自己喜歡的牛奶,則該牛奶供應商送往該校的牛奶中,A,B口味的牛奶共約多少盒?
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】
根據(jù)軸對稱圖形與中心對稱圖形的概念求解.【詳解】解:A、是軸對稱圖形,不是中心對稱圖形,故A不正確;B、既是軸對稱圖形,又是中心對稱圖形,故B正確;C、是軸對稱圖形,不是中心對稱圖形,故C不正確;D、既不是軸對稱圖形,也不是中心對稱圖形,故D不正確.故選B.【點睛】本題考查了軸對稱圖形和中心對稱圖形的概念,以及對軸對稱圖形和中心對稱圖形的認識.2、B【解析】分析:由等腰直角三角形的性質(zhì)和平行線的性質(zhì)求出∠ACD=60°,即可得出∠2的度數(shù).詳解:如圖所示:∵△ABC是等腰直角三角形,∴∠BAC=90°,∠ACB=45°,∴∠1+∠BAC=30°+90°=120°,∵a∥b,∴∠ACD=180°-120°=60°,∴∠2=∠ACD-∠ACB=60°-45°=15°;故選B.點睛:本題考查了平行線的性質(zhì)、等腰直角三角形的性質(zhì);熟練掌握等腰直角三角形的性質(zhì),由平行線的性質(zhì)求出∠ACD的度數(shù)是解決問題的關(guān)鍵.3、B【解析】
找到從正面看所得到的圖形即可,注意所有從正面看到的棱都應表現(xiàn)在主視圖中.【詳解】解:從正面看該幾何體,有3列正方形,分別有:2個,2個,2個,如圖.故選B.【點睛】本題考查了三視圖的知識,主視圖是從物體的正面看到的視圖,屬于基礎(chǔ)題型.4、B【解析】
根據(jù)題意,兩車距離為函數(shù),由圖象可知兩車起始距離為80,從而得到乙車速度,根據(jù)圖象變化規(guī)律和兩車運動狀態(tài),得到相關(guān)未知量.【詳解】由圖象可知,乙出發(fā)時,甲乙相距80km,2小時后,乙車追上甲.則說明乙每小時比甲快40km,則乙的速度為120km/h.①正確;由圖象第2﹣6小時,乙由相遇點到達B,用時4小時,每小時比甲快40km,則此時甲乙距離4×40=160km,則m=160,②正確;當乙在B休息1h時,甲前進80km,則H點坐標為(7,80),③正確;乙返回時,甲乙相距80km,到兩車相遇用時80÷(120+80)=0.4小時,則n=6+1+0.4=7.4,④錯誤.故選B.【點睛】本題以函數(shù)圖象為背景,考查雙動點條件下,兩點距離與運動時間的函數(shù)關(guān)系,解答時既要注意圖象變化趨勢,又要關(guān)注動點的運動狀態(tài).5、C【解析】看到的棱用實線體現(xiàn).故選C.6、C【解析】
根據(jù)相似三角形的判定,采用排除法,逐項分析判斷.【詳解】∵∠BAD=∠C,∠B=∠B,∴△BAC∽△BDA.故A正確.∵BE平分∠ABC,∴∠ABE=∠CBE,∴△BFA∽△BEC.故B正確.∴∠BFA=∠BEC,∴∠BFD=∠BEA,∴△BDF∽△BAE.故D正確.而不能證明△BDF∽△BEC,故C錯誤.故選C.【點睛】本題考查相似三角形的判定.識別兩三角形相似,除了要掌握定義外,還要注意正確找出兩三角形的對應邊和對應角.7、C【解析】
根據(jù)旋轉(zhuǎn)的性質(zhì)求解即可.【詳解】解:根據(jù)旋轉(zhuǎn)的性質(zhì),A:∠與∠均為旋轉(zhuǎn)角,故∠=∠,故A正確;B:,,又,,故B正確;D:,B′C平分∠BB′A′,故D正確.無法得出C中結(jié)論,故答案:C.【點睛】本題主要考查三角形旋轉(zhuǎn)后具有的性質(zhì),注意靈活運用各條件8、D【解析】試題分析:根據(jù)二次函數(shù)的解析式y(tǒng)=3(x-1)2+k,可知函數(shù)的開口向上,對稱軸為x=1,根據(jù)函數(shù)圖像的對稱性,可得這三點的函數(shù)值的大小為y3>y2>y1.故選D點睛:此題主要考查了二次函數(shù)的圖像與性質(zhì),解題時先根據(jù)頂點式求出開口方向,和對稱軸,然后根據(jù)函數(shù)的增減性比較即可,這是中考??碱},難度有點偏大,注意結(jié)合圖形判斷驗證.9、B【解析】分析:根據(jù)三角形全等的判定方法得出乙和丙與△ABC全等,甲與△ABC不全等.詳解:乙和△ABC全等;理由如下:在△ABC和圖乙的三角形中,滿足三角形全等的判定方法:SAS,所以乙和△ABC全等;在△ABC和圖丙的三角形中,滿足三角形全等的判定方法:AAS,所以丙和△ABC全等;不能判定甲與△ABC全等;故選B.點睛:本題考查了三角形全等的判定方法,判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應相等時,角必須是兩邊的夾角.10、B【解析】試題解析:過點C作CO⊥AB于O,延長CO到C′,使OC′=OC,連接DC′,交AB于P,連接CP.此時DP+CP=DP+PC′=DC′的值最?。逥C=1,BC=4,∴BD=3,連接BC′,由對稱性可知∠C′BE=∠CBE=41°,∴∠CBC′=90°,∴BC′⊥BC,∠BCC′=∠BC′C=41°,∴BC=BC′=4,根據(jù)勾股定理可得DC′===1.故選B.11、B【解析】
先寫出同意第1號同學當選的同學,再寫出同意第2號同學當選的同學,那么同時同意1,2號同學當選的人數(shù)是他們對應相乘再相加.【詳解】第1,2,3,……,1名同學是否同意第1號同學當選依次由a1,1,a2,1,a3,1,…,a1,1來確定,是否同意第2號同學當選依次由a1,2,a2,2,a3,2,…,a1,2來確定,∴a1,1a1,2+a2,1a2,2+a3,1a3,2+…+a1,1a1,2表示的實際意義是同時同意第1號和第2號同學當選的人數(shù),故選B.【點睛】本題考查了推理應用題,題目比較新穎,是基礎(chǔ)題.12、C【解析】
將折線統(tǒng)計圖中的數(shù)據(jù)從小到大重新排列后,根據(jù)中位數(shù)和眾數(shù)的定義求解可得.【詳解】將這10個數(shù)據(jù)從小到大重新排列為:10、15、15、20、20、25、25、30、30、30,所以該組數(shù)據(jù)的眾數(shù)為30、中位數(shù)為20+252故選:C.【點睛】此題考查了眾數(shù)與中位數(shù),眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù);中位數(shù)是將一組數(shù)據(jù)從小到大(或從大到?。┲匦屡帕泻?,最中間的那個數(shù)(最中間兩個數(shù)的平均數(shù)),叫做這組數(shù)據(jù)的中位數(shù),如果中位數(shù)的概念掌握得不好,不把數(shù)據(jù)按要求重新排列,就會出錯.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、-1<X<2【解析】經(jīng)過點A,∴不等式x>kx+b>-2的解集為.14、【解析】
利用P(A)=,進行計算概率.【詳解】從0,1,2,3四個數(shù)中任取兩個則|a﹣b|≤1的情況有0,0;1,1;2,2;3,3;0,1;1,0;1,2;2,1;2,3;3,2;共10種情況,甲乙出現(xiàn)的結(jié)果共有4×4=16,故出他們”心有靈犀”的概率為.故答案是:.【點睛】本題考查了概率的簡單計算能力,是一道列舉法求概率的問題,屬于基礎(chǔ)題,可以直接應用求概率的公式.15、1【解析】
根據(jù)一元二次方程的解及根與系數(shù)的關(guān)系,可得出a2-2a=1、a+b=2,將其代入a2-a+b中即可求出結(jié)論.【詳解】∵a、b是方程x2-2x-1=0的兩個根,∴a2-2a=1,a+b=2,∴a2-a+b=a2-2a+(a+b)=1+2=1.故答案為1.【點睛】本題考查根與系數(shù)的關(guān)系以及一元二次方程的解,牢記兩根之和等于-、兩根之積等于是解題的關(guān)鍵.16、1;【解析】
根據(jù)多邊形外角和是360度,正多邊形的各個內(nèi)角相等,各個外角也相等,直接用360°÷45°可求得邊數(shù).【詳解】∵多邊形外角和是360度,正多邊形的一個外角是45°,∴360°÷45°=1即該正多邊形的邊數(shù)是1.【點睛】本題主要考查了多邊形外角和是360度和正多邊形的性質(zhì)(正多邊形的各個內(nèi)角相等,各個外角也相等).17、1.【解析】
連接AF,由E是CD的中點、FC=2BF以及AB=2、AD=3可知AB=FC,BF=CE,則可證△ABF≌△FCE,進一步可得到△AFE是等腰直角三角形,則∠AEF=45°.【詳解】解:連接AF,∵E是CD的中點,∴CE=,AB=2,∵FC=2BF,AD=3,∴BF=1,CF=2,∴BF=CE,F(xiàn)C=AB,∵∠B=∠C=90°,∴△ABF≌△FCE,∴AF=EF,∠BAF=∠CFE,∠AFB=∠FEC,∴∠AFE=90°,∴△AFE是等腰直角三角形,∴∠AEF=45°,∴tan∠AEF=1.故答案為:1.【點睛】本題結(jié)合三角形全等考查了三角函數(shù)的知識.18、πcm1.【解析】
求出AD,先分別求出兩個扇形的面積,再求出答案即可.【詳解】解:∵AB長為15cm,貼紙部分的寬BD為15cm,∴AD=10cm,∴貼紙的面積為S=S扇形ABC﹣S扇形ADE=(cm1),故答案為πcm1.【點睛】本題考查了扇形的面積計算,能熟記扇形的面積公式是解此題的關(guān)鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)y=x2﹣3x+1;tan∠ACB=;(2)m=;(3)四邊形ADMQ是平行四邊形;理由見解析.【解析】
(1)由點A、B坐標利用待定系數(shù)法求解可得拋物線解析式為y=x2-3x+1,作BG⊥CA,交CA的延長線于點G,證△GAB∽△OAC得=,據(jù)此知BG=2AG.在Rt△ABG中根據(jù)BG2+AG2=AB2,可求得AG=.繼而可得BG=,CG=AC+AG=,根據(jù)正切函數(shù)定義可得答案;(2)作BH⊥CD于點H,交CP于點K,連接AK,易得四邊形OBHC是正方形,應用“全角夾半角”可得AK=OA+HK,設(shè)K(1,h),則BK=h,HK=HB-KB=1-h,AK=OA+HK=2+(1-h)=6-h.在Rt△ABK中,由勾股定理求得h=,據(jù)此求得點K(1,).待定系數(shù)法求出直線CK的解析式為y=-x+1.設(shè)點P的坐標為(x,y)知x是方程x2-3x+1=-x+1的一個解.解之求得x的值即可得出答案;(3)先求出點D坐標為(6,1),設(shè)P(m,m2-3m+1)知M(m,1),H(m,0).及PH=m2-3m+1),OH=m,AH=m-2,MH=1.①當1<m<6時,由△OAN∽△HAP知=.據(jù)此得ON=m-1.再證△ONQ∽△HMQ得=.據(jù)此求得OQ=m-1.從而得出AQ=DM=6-m.結(jié)合AQ∥DM可得答案.②當m>6時,同理可得.【詳解】解:(1)將點A(2,0)和點B(1,0)分別代入y=ax2+bx+1,得,解得:;∴該拋物線的解析式為y=x2﹣3x+1,過點B作BG⊥CA,交CA的延長線于點G(如圖1所示),則∠G=90°.∵∠COA=∠G=90°,∠CAO=∠BAG,∴△GAB∽△OAC.∴=2.∴BG=2AG,在Rt△ABG中,∵BG2+AG2=AB2,∴(2AG)2+AG2=22,解得:AG=.∴BG=,CG=AC+AG=2+=.在Rt△BCG中,tan∠ACB═.(2)如圖2,過點B作BH⊥CD于點H,交CP于點K,連接AK.易得四邊形OBHC是正方形.應用“全角夾半角”可得AK=OA+HK,設(shè)K(1,h),則BK=h,HK=HB﹣KB=1﹣h,AK=OA+HK=2+(1﹣h)=6﹣h,在Rt△ABK中,由勾股定理,得AB2+BK2=AK2,∴22+h2=(6﹣h)2.解得h=,∴點K(1,),設(shè)直線CK的解析式為y=hx+1,將點K(1,)代入上式,得=1h+1.解得h=﹣,∴直線CK的解析式為y=﹣x+1,設(shè)點P的坐標為(x,y),則x是方程x2﹣3x+1=﹣x+1的一個解,將方程整理,得3x2﹣16x=0,解得x1=,x2=0(不合題意,舍去)將x1=代入y=﹣x+1,得y=,∴點P的坐標為(,),∴m=;(3)四邊形ADMQ是平行四邊形.理由如下:∵CD∥x軸,∴yC=yD=1,將y=1代入y=x2﹣3x+1,得1=x2﹣3x+1,解得x1=0,x2=6,∴點D(6,1),根據(jù)題意,得P(m,m2﹣3m+1),M(m,1),H(m,0),∴PH=m2﹣3m+1,OH=m,AH=m﹣2,MH=1,①當1<m<6時,DM=6﹣m,如圖3,∵△OAN∽△HAP,∴,∴=,∴ON===m﹣1,∵△ONQ∽△HMQ,∴,∴,∴,∴OQ=m﹣1,∴AQ=OA﹣OQ=2﹣(m﹣1)=6﹣m,∴AQ=DM=6﹣m,又∵AQ∥DM,∴四邊形ADMQ是平行四邊形.②當m>6時,同理可得:四邊形ADMQ是平行四邊形.綜上,四邊形ADMQ是平行四邊形.【點睛】本題主要考查二次函數(shù)的綜合問題,解題的關(guān)鍵是掌握待定系數(shù)法求函數(shù)解析式、相似三角形的判定與性質(zhì)、平行四邊形的判定與性質(zhì)及勾股定理、三角函數(shù)等知識點.20、(1)=;(2)結(jié)論:AC2=AG?AH.理由見解析;(3)①△AGH的面積不變.②m的值為或2或8﹣4..【解析】
(1)證明∠DAC=∠AHC+∠ACH=43°,∠ACH+∠ACG=43°,即可推出∠AHC=∠ACG;(2)結(jié)論:AC2=AG?AH.只要證明△AHC∽△ACG即可解決問題;(3)①△AGH的面積不變.理由三角形的面積公式計算即可;②分三種情形分別求解即可解決問題.【詳解】(1)∵四邊形ABCD是正方形,∴AB=CB=CD=DA=4,∠D=∠DAB=90°∠DAC=∠BAC=43°,∴AC=,∵∠DAC=∠AHC+∠ACH=43°,∠ACH+∠ACG=43°,∴∠AHC=∠ACG.故答案為=.(2)結(jié)論:AC2=AG?AH.理由:∵∠AHC=∠ACG,∠CAH=∠CAG=133°,∴△AHC∽△ACG,∴,∴AC2=AG?AH.(3)①△AGH的面積不變.理由:∵S△AGH=?AH?AG=AC2=×(4)2=1.∴△AGH的面積為1.②如圖1中,當GC=GH時,易證△AHG≌△BGC,可得AG=BC=4,AH=BG=8,∵BC∥AH,∴,∴AE=AB=.如圖2中,當CH=HG時,易證AH=BC=4,∵BC∥AH,∴=1,∴AE=BE=2.如圖3中,當CG=CH時,易證∠ECB=∠DCF=22.3.在BC上取一點M,使得BM=BE,∴∠BME=∠BEM=43°,∵∠BME=∠MCE+∠MEC,∴∠MCE=∠MEC=22.3°,∴CM=EM,設(shè)BM=BE=m,則CM=EMm,∴m+m=4,∴m=4(﹣1),∴AE=4﹣4(﹣1)=8﹣4,綜上所述,滿足條件的m的值為或2或8﹣4.【點睛】本題屬于四邊形綜合題,考查了正方形的性質(zhì),全等三角形的判定和性質(zhì),相似三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是靈活運用所學知識解決問題.21、(1)見解析;(2)2(3)1【解析】
(1)通過證明∠BED=∠DBE得到DB=DE;
(2)連接CD,如圖,證明△DBC為等腰直角三角形得到BC=BD=4,從而得到△ABC外接圓的半徑;
(3)證明△DBF∽△ADB,然后利用相似比求AD的長.【詳解】(1)證明:∵AD平分∠BAC,BE平分∠ABD,∴∠1=∠2,∠3=∠4,∴∠BED=∠1+∠3=∠2+∠4=∠5+∠4=∠DBE,∴DB=DE;(2)解:連接CD,如圖,∵∠BAC=10°,∴BC為直徑,∴∠BDC=10°,∵∠1=∠2,∴DB=BC,∴△DBC為等腰直角三角形,∴BC=BD=4,∴△ABC外接圓的半徑為2;(3)解:∵∠5=∠2=∠1,∠FDB=∠BDA,∴△DBF∽△ADB,∴=,即=,∴AD=1.【點睛】本題考查了三角形的外接圓與外心:三角形外接圓的圓心是三角形三條邊垂直平分線的交點,叫做三角形的外心.也考查了圓周角定理和相似三角形的判定與性質(zhì).22、(1)見解析;(2)A;(3)800人.【解析】
(1)用A組人數(shù)除以它所占的百分比求出樣本容量,利用360°乘以對應的百分比即可求得扇形圓心角的度數(shù),再求得時間是8天的人數(shù),從而補全扇形統(tǒng)計圖和條形統(tǒng)計圖;(2)根據(jù)眾數(shù)的定義即可求解;(3)利用總?cè)藬?shù)2000乘以對應的百分比即可求解.【詳解】解:(1)∵被調(diào)查的學生人數(shù)為24÷40%=60人,∴D類別人數(shù)為60﹣(24+12+15+3)=6人,則D類別的百分比為×100%=10%,補全圖形如下:(2)所抽查學生參加社會實踐活動天數(shù)的眾數(shù)是A,故答案為:A;(3)估計參加社會實踐“活動天數(shù)不少于7天”的學生大約有2000×(25%+10%+5%)=800人.【點睛】本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關(guān)鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù);扇形統(tǒng)計圖直接反映部分占總體的百分比大小.23、(1)y=﹣x2+4;(2)①E(5,9);②1.【解析】
(1)待定系數(shù)法即可解題,(2)①求出直線DA的解析式,根據(jù)頂點E在直線DA上,設(shè)出E的坐標,帶入即可求解;②AB掃過的面積是平行四邊形ABGE,根據(jù)S四邊形ABGE=S矩形IOKH﹣S△AOB﹣S△AEI﹣S△EHG﹣S△GBK,求出點B(2,0),G(7,5),A(0,4),E(5,9),根據(jù)坐標幾何含義即可解題.【詳解】解:(1)∵A(0,4),B(2,0),C(﹣2,0)∴二次函數(shù)的圖象的頂點為A(0,4),∴設(shè)二次函數(shù)表達式為y=ax2+4,將B(2,0)代入,得4a+4=0,解得,a=﹣1,∴二次函數(shù)表達式y(tǒng)=﹣x2+4;(2)①設(shè)直線DA:y=kx+b(k≠0),將A(0,4),D(﹣4,0)代入,得,解得,,∴直線DA:y=x+4,由題意可知,平移后的拋物線的頂點E在直線DA上,∴設(shè)頂點E(m,m+4),∴平移后的拋物線表達式為y=﹣(x﹣m)2+m+4,又∵平移后的拋物線過點B(2,0),∴將其代入得,﹣(2﹣m)2+m+4=0,解得,m1=5,m2=0(不合題意,舍去),∴頂點E(5,9),②如圖,連接AB,過點B作BL∥AD交平移后的拋物線于點G,連結(jié)EG,∴四邊形ABGE的面積就是圖象A,B兩點間的部分掃過的面積,過點G作GK⊥x軸于點K,過點E作EI⊥y軸于點I,直線EI,GK交于點H.由點A(0,4)平移至點E(5,9),可知點B先向右平移5個單位,再向上平移5個單位至點G.∵B(2,0),∴點G(7,5),∴GK=5,OB=2,OK=7,∴BK=OK﹣OB=7﹣2=5,∵A(0,4),E(5,9),∴AI=9﹣4=5,EI=5,∴EH=7﹣5=2,HG=9﹣5=4,∴S四邊形ABGE=S矩形IOKH﹣S△AOB﹣S△AEI﹣S△EHG﹣S△GBK=7×9﹣×2×4﹣×5×5﹣×2×4﹣×5×5=63﹣8﹣25=1答:圖象A,B兩點間的部分掃過的面積為1.【點睛】本題考查了二次函數(shù)解析式的求法,二次函數(shù)的圖形和性質(zhì),二次函數(shù)的實際應用,難度較大,建立面積之間的等量關(guān)系是解題關(guān)鍵.24、(1)證明見解析;(2)2.【解析】
(1)作輔助線,根據(jù)等腰三角形三線合一得BD=CD,根據(jù)三角形的中位線可得OD∥AC,所以得OD⊥EF,從而得結(jié)論;(2)證明△ODF∽△AEF,列比例式可得結(jié)論.【詳解】(1)證明:連接OD,AD,∵AB是⊙O的直徑,∴AD⊥BC,∵AB=AC,∴BD=CD,∵OA=OB,∴OD∥AC,∵EF⊥AC,∴OD⊥EF,∴EF是⊙O的切線;(2)解:∵OD∥AE,∴△ODF∽△AEF,∴ODAE∵AB=4,AE=1,∴23∴BF=2.【點睛】本題主要考查的是圓的綜合應用,解答本題主要應用了圓周角定理、相似三角形的性質(zhì)和判定,圓的切線的判定,掌握本題的輔助線的作法是解題的關(guān)鍵.25、(1)見解析;(2)2.【解析】
(1)四邊形ABCD是平行四邊形,由平行四邊形的性質(zhì),可得AB=DE,AB//DE,則四邊形ABDE是平行四邊形;(2)因為AD=DE=1,則AD=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 抗癌制劑市場發(fā)展預測和趨勢分析
- 實驗室用離心機產(chǎn)業(yè)規(guī)劃專項研究報告
- LED屏幕市場需求與消費特點分析
- 教育培訓機構(gòu)在線學習平臺方案
- 喇叭狀助聽器市場需求與消費特點分析
- 地鐵建設(shè)施工技術(shù)方案
- 混凝土工程鋼筋綁扎服務協(xié)議
- 定時開關(guān)產(chǎn)業(yè)規(guī)劃專項研究報告
- 化學盥洗室用消毒劑產(chǎn)業(yè)深度調(diào)研及未來發(fā)展現(xiàn)狀趨勢
- 金融理財基礎(chǔ)
- 中低產(chǎn)田類型劃分及改良技術(shù)規(guī)范
- 2024-2030年再生醫(yī)學市場發(fā)展行情監(jiān)測及前景運營態(tài)勢趨向研判研究報告
- 2020年山東煙臺中考滿分作文《就這樣被打動》9
- 國網(wǎng)員工合同模板
- 建設(shè)2臺66000KVA全封閉低碳硅錳礦熱爐項目竣工環(huán)保驗收監(jiān)測調(diào)查報告
- 2024-2030年中國盾構(gòu)機行業(yè)發(fā)展趨勢與投資策略建議報告
- 期中核心素質(zhì)卷(試題)-2024-2025學年數(shù)學六年級上冊北師大版
- 2024年重慶高考化學試題卷(含答案解析)
- 《Photoshop圖像處理》5.《濾鏡特效技巧的學習》試卷
- 堅持人民至上以人民為中心心得體會三篇
- 初中足球運球技術(shù)教案
評論
0/150
提交評論