版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022屆江蘇省南京市育英外校中考沖刺卷數學試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.-2的絕對值是()A.2 B.-2 C.±2 D.2.若分式有意義,則x的取值范圍是()A.x>3 B.x<3 C.x≠3 D.x=33.由一些大小相同的小正方形搭成的幾何體的左視圖和俯視圖,如圖所示,則搭成該幾何體的小正方形的個數最少是()A.4 B.5 C.6 D.74.如圖,已知,用尺規(guī)作圖作.第一步的作法以點為圓心,任意長為半徑畫弧,分別交,于點,第二步的作法是()A.以點為圓心,長為半徑畫弧,與第1步所畫的弧相交于點B.以點為圓心,長為半徑畫弧,與第1步所畫的弧相交于點C.以點為圓心,長為半徑畫弧,與第1步所畫的弧相交于點D.以點為圓心,長為半徑畫弧,與第1步所畫的弧相交于點5.關于x的方程12x=kA.0或126.如圖,在Rt△ABC中,∠ACB=90°,CD是AB邊上的中線,AC=8,BC=6,則∠ACD的正切值是()A. B. C. D.7.不等式組中兩個不等式的解集,在數軸上表示正確的是A. B.C. D.8.已知二次函數y=ax2+bx+c的圖像經過點(0,m)、(4、m)、(1,n),若n<m,則()A.a>0且4a+b=0 B.a<0且4a+b=0C.a>0且2a+b=0 D.a<0且2a+b=09.下列各數中最小的是()A.0 B.1 C.﹣ D.﹣π10.如圖,點P是∠AOB內任意一點,OP=5cm,點M和點N分別是射線OA和射線OB上的動點,△PMN周長的最小值是5cm,則∠AOB的度數是().A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.若式子在實數范圍內有意義,則x的取值范圍是_______.12.如圖,點E在正方形ABCD的外部,∠DCE=∠DEC,連接AE交CD于點F,∠CDE的平分線交EF于點G,AE=2DG.若BC=8,則AF=_____.13.在平面直角坐標系中,智多星做走棋的游戲,其走法是:棋子從原點出發(fā),第1步向上走1個單位,第2步向上走2個單位,第3步向右走1個單位,第4步向上走1個單位……依此類推,第n步的走法是:當n被3除,余數為2時,則向上走2個單位;當走完第2018步時,棋子所處位置的坐標是_____14.如圖,點P的坐標為(2,2),點A,B分別在x軸,y軸的正半軸上運動,且∠APB=90°.下列結論:①PA=PB;②當OA=OB時四邊形OAPB是正方形;③四邊形OAPB的面積和周長都是定值;④連接OP,AB,則AB>OP.其中正確的結論是_____.(把你認為正確結論的序號都填上)15.函數y=的定義域是________.16.已知一組數據,,,,的平均數是,那么這組數據的方差等于________.三、解答題(共8題,共72分)17.(8分)已知AB是⊙O的直徑,弦CD與AB相交,∠BAC=40°.(1)如圖1,若D為弧AB的中點,求∠ABC和∠ABD的度數;(2)如圖2,過點D作⊙O的切線,與AB的延長線交于點P,若DP∥AC,求∠OCD的度數.18.(8分)某水果基地計劃裝運甲、乙、丙三種水果到外地銷售(每輛汽車規(guī)定滿載,并且只裝一種水果).如表為裝運甲、乙、丙三種水果的重量及利潤.甲乙丙每輛汽車能裝的數量(噸)423每噸水果可獲利潤(千元)574(1)用8輛汽車裝運乙、丙兩種水果共22噸到A地銷售,問裝運乙、丙兩種水果的汽車各多少輛?(2)水果基地計劃用20輛汽車裝運甲、乙、丙三種水果共72噸到B地銷售(每種水果不少于一車),假設裝運甲水果的汽車為m輛,則裝運乙、丙兩種水果的汽車各多少輛?(結果用m表示)(3)在(2)問的基礎上,如何安排裝運可使水果基地獲得最大利潤?最大利潤是多少?19.(8分)在矩形ABCD中,AB=6,AD=8,點E是邊AD上一點,EM⊥EC交AB于點M,點N在射線MB上,且AE是AM和AN的比例中項.如圖1,求證:∠ANE=∠DCE;如圖2,當點N在線段MB之間,聯結AC,且AC與NE互相垂直,求MN的長;連接AC,如果△AEC與以點E、M、N為頂點所組成的三角形相似,求DE的長.20.(8分)如圖,已知△ABC內接于⊙O,BC交直徑AD于點E,過點C作AD的垂線交AB的延長線于點G,垂足為F.連接OC.(1)若∠G=48°,求∠ACB的度數;(1)若AB=AE,求證:∠BAD=∠COF;(3)在(1)的條件下,連接OB,設△AOB的面積為S1,△ACF的面積為S1.若tan∠CAF=,求的值.21.(8分)在“傳箴言”活動中,某班團支部對該班全體團員在一個月內所發(fā)箴言條數的情況進行了統(tǒng)計,并制成了如圖所示的兩幅不完整的統(tǒng)計圖:求該班團員在這一個月內所發(fā)箴言的平均條數是多少?并將該條形統(tǒng)計圖補充完整;如果發(fā)了3條箴言的同學中有兩位男同學,發(fā)了4條箴言的同學中有三位女同學.現要從發(fā)了3條箴言和4條箴言的同學中分別選出一位參加該校團委組織的“箴言”活動總結會,請你用列表法或樹狀圖的方法求出所選兩位同學恰好是一位男同學和一位女同學的概率.22.(10分)先化簡,再求值:,其中x為方程的根.23.(12分)如圖,直角△ABC內接于⊙O,點D是直角△ABC斜邊AB上的一點,過點D作AB的垂線交AC于E,過點C作∠ECP=∠AED,CP交DE的延長線于點P,連結PO交⊙O于點F.(1)求證:PC是⊙O的切線;(2)若PC=3,PF=1,求AB的長.24.如圖,△BAD是由△BEC在平面內繞點B旋轉60°而得,且AB⊥BC,BE=CE,連接DE.(1)求證:△BDE≌△BCE;(2)試判斷四邊形ABED的形狀,并說明理由.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】
根據絕對值的性質進行解答即可【詳解】解:﹣1的絕對值是:1.故選:A.【點睛】此題考查絕對值,難度不大2、C【解析】
試題分析:∵分式有意義,∴x﹣3≠0,∴x≠3;故選C.考點:分式有意義的條件.3、C【解析】試題分析:由題中所給出的左視圖知物體共兩層,每一層都是兩個小正方體;從俯視圖可以可以看出最底層的個數所以圖中的小正方體最少2+4=1.故選C.4、D【解析】
根據作一個角等于已知角的作法即可得出結論.【詳解】解:用尺規(guī)作圖作∠AOC=2∠AOB的第一步是以點O為圓心,以任意長為半徑畫弧①,分別交OA、OB于點E、F,
第二步的作圖痕跡②的作法是以點F為圓心,EF長為半徑畫?。?/p>
故選:D.【點睛】本題考查的是作圖-基本作圖,熟知作一個角等于已知角的步驟是解答此題的關鍵.5、A【解析】方程兩邊同乘2x(x+3),得x+3=2kx,(2k-1)x=3,∵方程無解,∴當整式方程無解時,2k-1=0,k=12當分式方程無解時,①x=0時,k無解,②x=-3時,k=0,∴k=0或12故選A.6、D【解析】
根據直角三角形斜邊上的中線等于斜邊的一半可得CD=AD,再根據等邊對等角的性質可得∠A=∠ACD,然后根據正切函數的定義列式求出∠A的正切值,即為tan∠ACD的值.【詳解】∵CD是AB邊上的中線,∴CD=AD,∴∠A=∠ACD,∵∠ACB=90°,BC=6,AC=8,∴tan∠A=,∴tan∠ACD的值.故選D.【點睛】本題考查了銳角三角函數的定義,直角三角形斜邊上的中線等于斜邊的一半的性質,等邊對等角的性質,求出∠A=∠ACD是解本題的關鍵.7、B【解析】由①得,x<3,由②得,x≥1,所以不等式組的解集為:1≤x<3,在數軸上表示為:,故選B.8、A【解析】
由圖像經過點(0,m)、(4、m)可知對稱軸為x=2,由n<m知x=1時,y的值小于x=0時y的值,根據拋物線的對稱性可知開口方向,即可知道a的取值.【詳解】∵圖像經過點(0,m)、(4、m)∴對稱軸為x=2,則,∴4a+b=0∵圖像經過點(1,n),且n<m∴拋物線的開口方向向上,∴a>0,故選A.【點睛】此題主要考查拋物線的圖像,解題的關鍵是熟知拋物線的對稱性.9、D【解析】
根據任意兩個實數都可以比較大小.正實數都大于0,負實數都小于0,正實數大于一切負實數,兩個負實數絕對值大的反而小即可判斷.【詳解】﹣π<﹣<0<1.則最小的數是﹣π.故選:D.【點睛】本題考查了實數大小的比較,理解任意兩個實數都可以比較大?。龑崝刀即笥?,負實數都小于0,正實數大于一切負實數,兩個負實數絕對值大的反而小是關鍵.10、B【解析】試題分析:作點P關于OA對稱的點P3,作點P關于OB對稱的點P3,連接P3P3,與OA交于點M,與OB交于點N,此時△PMN的周長最?。删€段垂直平分線性質可得出△PMN的周長就是P3P3的長,∵OP=3,∴OP3=OP3=OP=3.又∵P3P3=3,,∴OP3=OP3=P3P3,∴△OP3P3是等邊三角形,∴∠P3OP3=60°,即3(∠AOP+∠BOP)=60°,∠AOP+∠BOP=30°,即∠AOB=30°,故選B.考點:3.線段垂直平分線性質;3.軸對稱作圖.二、填空題(本大題共6個小題,每小題3分,共18分)11、x≠﹣1【解析】
分式有意義的條件是分母不等于零.【詳解】∵式子在實數范圍內有意義,∴x+1≠0,解得:x≠-1.
故答案是:x≠-1.【點睛】考查的是分式有意義的條件,掌握分式有意義的條件是解題的關鍵.12、【解析】
如圖作DH⊥AE于H,連接CG.設DG=x,∵∠DCE=∠DEC,∴DC=DE,∵四邊形ABCD是正方形,∴AD=DC,∠ADF=90°,∴DA=DE,∵DH⊥AE,∴AH=HE=DG,在△GDC與△GDE中,,∴△GDC≌△GDE(SAS),∴GC=GE,∠DEG=∠DCG=∠DAF,∵∠AFD=∠CFG,∴∠ADF=∠CGF=90°,∴2∠GDE+2∠DEG=90°,∴∠GDE+∠DEG=45°,∴∠DGH=45°,在Rt△ADH中,AD=8,AH=x,DH=x,∴82=x2+(x)2,解得:x=,∵△ADH∽△AFD,∴,∴AF==4.故答案為4.13、(672,2019)【解析】分析:按照題目給定的規(guī)則,找到周期,由題意可得每三步是一個循環(huán),所以只需要計算2018被3除,就可以得到棋子的位置.詳解:解:由題意得,每3步為一個循環(huán)組依次循環(huán),且一個循環(huán)組內向右1個單位,向上3個單位,∵2018÷3=672…2,∴走完第2018步,為第673個循環(huán)組的第2步,所處位置的橫坐標為672,縱坐標為672×3+3=2019,∴棋子所處位置的坐標是(672,2019).故答案為:(672,2019).點睛:周期問題解決問題的核心是要找到最小正周期,然后把給定的數(一般是一個很大的數)除以最小正周期,余數是幾,就是第幾步,特別余數是1,就是第一步,余數是0,就是最后一步.14、①②【解析】
過P作PM⊥y軸于M,PN⊥x軸于N,得出四邊形PMON是正方形,推出OM=OM=ON=PN=1,證△APM≌△BPN,可對①進行判斷,推出AM=BN,求出OA+OB=ON+OM=2,當當OA=OB時,OA=OB=1,然后可對②作出判斷,由△APM≌△BPN可對四邊形OAPB的面積作出判斷,由OA+OB=2,然后依據AP和PB的長度變化情況可對四邊形OAPB的周長作出判斷,求得AB的最大值以及OP的長度可對④作出判斷.【詳解】過P作PM⊥y軸于M,PN⊥x軸于N
∵P(1,1),
∴PN=PM=1.
∵x軸⊥y軸,
∴∠MON=∠PNO=∠PMO=90°,
∴∠MPN=360°-90°-90°-90°=90°,則四邊形MONP是正方形,
∴OM=ON=PN=PM=1,
∵∠MPA=∠APB=90°,
∴∠MPA=∠NPB.
∵∠MPA=∠NPB,PM=PN,∠PMA=∠PNB,
∴△MPA≌△NPB,
∴PA=PB,故①正確.
∵△MPA≌△NPB,
∴AM=BN,
∴OA+OB=OA+ON+BN=OA+ON+AM=ON+OM=1+1=2.
當OA=OB時,OA=OB=1,則點A、B分別與點M、N重合,此時四邊形OAPB是正方形,故②正確.
∵△MPA≌△NPB,
∴四邊形OAPB的面積=四邊形AONP的面積+△PNB的面積=四邊形AONP的面積+△PMA的面積=正方形PMON的面積=2.
∵OA+OB=2,PA=PB,且PA和PB的長度會不斷的變化,故周長不是定值,故③錯誤.
,∵∠AOB+∠APB=180°,
∴點A、O、B、P共圓,且AB為直徑,所以
AB≥OP,故④錯誤.
故答案為:①②.【點睛】本題考查了全等三角形的性質和判定,三角形的內角和定理,坐標與圖形性質,正方形的性質的應用,關鍵是推出AM=BN和推出OA+OB=OM+ON15、【解析】分析:根據分式有意義的條件是分母不為0,即可求解.詳解:由題意得:x-2≠0,即.故答案為點睛:本題考查了使函數有意義的自變量的取值范圍的確定.函數是整式型,自變量去全體實數;函數是分式型,自變量是使分母不為0的實數;根式型的函數的自變量去根號下的式子大于或等于0的實數;當函數關系式表示實際問題時,自變量不僅要使函數關系式有意義,還要使實際問題有意義.16、5.2【解析】分析:首先根據平均數求出x的值,然后根據方差的計算法則進行計算即可得出答案.詳解:∵平均數為6,∴(3+4+6+x+9)÷5=6,解得:x=8,∴方差為:.點睛:本題主要考查的是平均數和方差的計算法則,屬于基礎題型.明確計算公式是解決這個問題的關鍵.三、解答題(共8題,共72分)17、(1)45°;(2)26°.【解析】
(1)根據圓周角和圓心角的關系和圖形可以求得∠ABC和∠ABD的大?。唬?)根據題意和平行線的性質、切線的性質可以求得∠OCD的大小.【詳解】(1)∵AB是⊙O的直徑,∠BAC=38°,∴∠ACB=90°,∴∠ABC=∠ACB﹣∠BAC=90°﹣38°=52°,∵D為弧AB的中點,∠AOB=180°,∴∠AOD=90°,∴∠ABD=45°;(2)連接OD,∵DP切⊙O于點D,∴OD⊥DP,即∠ODP=90°,∵DP∥AC,∠BAC=38°,∴∠P=∠BAC=38°,∵∠AOD是△ODP的一個外角,∴∠AOD=∠P+∠ODP=128°,∴∠ACD=64°,∵OC=OA,∠BAC=38°,∴∠OCA=∠BAC=38°,∴∠OCD=∠ACD﹣∠OCA=64°﹣38°=26°.【點睛】本題考查切線的性質、圓周角定理,解答本題的關鍵是明確題意,找出所求問題需要的條件,利用數形結合的思想解答.18、(1)乙種水果的車有2輛、丙種水果的汽車有6輛;(2)乙種水果的汽車是(m﹣12)輛,丙種水果的汽車是(32﹣2m)輛;(3)見解析.【解析】
(1)根據“8輛汽車裝運乙、丙兩種水果共22噸到A地銷售”列出方程組,即可解答;(2)設裝運乙、丙水果的車分別為a輛,b輛,列出方程組即可解答;(3)設總利潤為w千元,表示出w=10m+1.列出不等式組確定m的取值范圍13≤m≤15.5,結合一次函數的性質,即可解答.【詳解】解:(1)設裝運乙、丙水果的車分別為x輛,y輛,得:解得:答:裝運乙種水果的車有2輛、丙種水果的汽車有6輛.(2)設裝運乙、丙水果的車分別為a輛,b輛,得:,解得:答:裝運乙種水果的汽車是(m﹣12)輛,丙種水果的汽車是(32﹣2m)輛.(3)設總利潤為w千元,w=5×4m+7×2(m﹣12)+4×3(32﹣2m)=10m+1.∵∴13≤m≤15.5,∵m為正整數,∴m=13,14,15,在w=10m+1中,w隨m的增大而增大,∴當m=15時,W最大=366(千元),答:當運甲水果的車15輛,運乙水果的車3輛,運丙水果的車2輛,利潤最大,最大利潤為366千元.【點睛】此題主要考查了一次函數的應用,解決本題的關鍵是運用函數性質求最值,需確定自變量的取值范圍.19、(1)見解析;(2);(1)DE的長分別為或1.【解析】
(1)由比例中項知,據此可證△AME∽△AEN得∠AEM=∠ANE,再證∠AEM=∠DCE可得答案;(2)先證∠ANE=∠EAC,結合∠ANE=∠DCE得∠DCE=∠EAC,從而知,據此求得AE=8﹣=,由(1)得∠AEM=∠DCE,據此知,求得AM=,由求得MN=;(1)分∠ENM=∠EAC和∠ENM=∠ECA兩種情況分別求解可得.【詳解】解:(1)∵AE是AM和AN的比例中項∴,∵∠A=∠A,∴△AME∽△AEN,∴∠AEM=∠ANE,∵∠D=90°,∴∠DCE+∠DEC=90°,∵EM⊥BC,∴∠AEM+∠DEC=90°,∴∠AEM=∠DCE,∴∠ANE=∠DCE;(2)∵AC與NE互相垂直,∴∠EAC+∠AEN=90°,∵∠BAC=90°,∴∠ANE+∠AEN=90°,∴∠ANE=∠EAC,由(1)得∠ANE=∠DCE,∴∠DCE=∠EAC,∴tan∠DCE=tan∠DAC,∴,∵DC=AB=6,AD=8,∴DE=,∴AE=8﹣=,由(1)得∠AEM=∠DCE,∴tan∠AEM=tan∠DCE,∴,∴AM=,∵,∴AN=,∴MN=;(1)∵∠NME=∠MAE+∠AEM,∠AEC=∠D+∠DCE,又∠MAE=∠D=90°,由(1)得∠AEM=∠DCE,∴∠AEC=∠NME,當△AEC與以點E、M、N為頂點所組成的三角形相似時①∠ENM=∠EAC,如圖2,∴∠ANE=∠EAC,由(2)得:DE=;②∠ENM=∠ECA,如圖1,過點E作EH⊥AC,垂足為點H,由(1)得∠ANE=∠DCE,∴∠ECA=∠DCE,∴HE=DE,又tan∠HAE=,設DE=1x,則HE=1x,AH=4x,AE=5x,又AE+DE=AD,∴5x+1x=8,解得x=1,∴DE=1x=1,綜上所述,DE的長分別為或1.【點睛】本題是相似三角形的綜合問題,解題的關鍵是掌握相似三角形的判定與性質、三角函數的應用等知識點.20、(1)48°(1)證明見解析(3)【解析】
(1)連接CD,根據圓周角定理和垂直的定義可得結論;
(1)先根據等腰三角形的性質得:∠ABE=∠AEB,再證明∠BCG=∠DAC,可得,則所對的圓周角相等,根據同弧所對的圓周角和圓心角的關系可得結論;
(3)過O作OG⊥AB于G,證明△COF≌△OAG,則OG=CF=x,AG=OF,設OF=a,則OA=OC=1x-a,根據勾股定理列方程得:(1x-a)1=x1+a1,則a=x,代入面積公式可得結論.【詳解】(1)連接CD,∵AD是⊙O的直徑,∴∠ACD=90°,∴∠ACB+∠BCD=90°,∵AD⊥CG,∴∠AFG=∠G+∠BAD=90°,∵∠BAD=∠BCD,∴∠ACB=∠G=48°;(1)∵AB=AE,∴∠ABE=∠AEB,∵∠ABC=∠G+∠BCG,∠AEB=∠ACB+∠DAC,由(1)得:∠G=∠ACB,∴∠BCG=∠DAC,∴,∵AD是⊙O的直徑,AD⊥PC,∴,∴,∴∠BAD=1∠DAC,∵∠COF=1∠DAC,∴∠BAD=∠COF;(3)過O作OG⊥AB于G,設CF=x,∵tan∠CAF==,∴AF=1x,∵OC=OA,由(1)得:∠COF=∠OAG,∵∠OFC=∠AGO=90°,∴△COF≌△OAG,∴OG=CF=x,AG=OF,設OF=a,則OA=OC=1x﹣a,Rt△COF中,CO1=CF1+OF1,∴(1x﹣a)1=x1+a1,a=x,∴OF=AG=x,∵OA=OB,OG⊥AB,∴AB=1AG=x,∴.【點睛】圓的綜合題,考查了三角形的面積、垂徑定理、角平分線的性質、三角形全等的性質和判定以及解直角三角形,解題的關鍵是:(1)根據圓周角定理找出∠ACB+∠BCD=90°;(1)根據外角的性質和圓的性質得:;(3)利用三角函數設未知數,根據勾股定理列方程解決問題.21、(1)3,補圖詳見解析;(2)【解析】
(1)總人數=3÷它所占全體團員的百分比;發(fā)4條的人數=總人數-其余人
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年高端餐廳員工聘用合同示范3篇
- 二零二五版凍豬肉儲備政府采購合同爭議解決與仲裁條款2篇
- 二零二五版商業(yè)地產改造與招商合作合同3篇
- 二零二五年度腳手架施工材料供應與租賃合同3篇
- 二零二五版新型讓與擔保合同-供應鏈金融支持協議2篇
- 二零二五版家政服務員與雇主及家政協會三方合作合同3篇
- 二零二五版公司間股權置換、轉讓與資本運作合同3篇
- 二零二五年教育機構教學質量兜底服務合同范本3篇
- 二零二五版二手房貸款買賣合同范本:適用于房產交易中的擔保合同2篇
- 二零二五年度購物卡電子支付解決方案合同3篇
- 2025年河北供水有限責任公司招聘筆試參考題庫含答案解析
- Unit3 Sports and fitness Discovering Useful Structures 說課稿-2024-2025學年高中英語人教版(2019)必修第一冊
- 農發(fā)行案防知識培訓課件
- 社區(qū)醫(yī)療抗菌藥物分級管理方案
- 安徽大學大學生素質教育學分認定辦法
- 巴布亞新幾內亞離網光儲微網供電方案
- 高度限位裝置類型及原理
- 中文版gcs electrospeed ii manual apri rev8v00印刷稿修改版
- 新生兒預防接種護理質量考核標準
- 除氧器出水溶解氧不合格的原因有哪些
- 沖擊式機組水輪機安裝概述與流程
評論
0/150
提交評論