廣東省中學(xué)山市中學(xué)山紀念中學(xué)2022年中考數(shù)學(xué)模擬試題含解析_第1頁
廣東省中學(xué)山市中學(xué)山紀念中學(xué)2022年中考數(shù)學(xué)模擬試題含解析_第2頁
廣東省中學(xué)山市中學(xué)山紀念中學(xué)2022年中考數(shù)學(xué)模擬試題含解析_第3頁
廣東省中學(xué)山市中學(xué)山紀念中學(xué)2022年中考數(shù)學(xué)模擬試題含解析_第4頁
廣東省中學(xué)山市中學(xué)山紀念中學(xué)2022年中考數(shù)學(xué)模擬試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

廣東省中學(xué)山市中學(xué)山紀念中學(xué)2022年中考數(shù)學(xué)模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.某校九年級“詩歌大會”比賽中,各班代表隊得分如下(單位:分):9,7,8,7,9,7,6,則各代表隊得分的中位數(shù)是(

)A.9分B.8分C.7分D.6分2.如圖,點P是菱形ABCD邊上的一動點,它從點A出發(fā)沿在A→B→C→D路徑勻速運動到點D,設(shè)△PAD的面積為y,P點的運動時間為x,則y關(guān)于x的函數(shù)圖象大致為()A.B.C.D.3.下列各曲線中表示y是x的函數(shù)的是()A. B. C. D.4.如圖,一艘輪船位于燈塔P的北偏東60°方向,與燈塔P的距離為30海里的A處,輪船沿正南方向航行一段時間后,到達位于燈塔P的南偏東30°方向上的B處,則此時輪船所在位置B與燈塔P之間的距離為()A.60海里 B.45海里 C.20海里 D.30海里5.若x=-2是關(guān)于x的一元二次方程x2+ax-a2=0的一個根,則a的值為()A.-1或4 B.-1或-4C.1或-4 D.1或46.如圖,網(wǎng)格中的每個小正方形的邊長是1,點M,N,O均為格點,點N在⊙O上,若過點M作⊙O的一條切線MK,切點為K,則MK=()A.3 B.2 C.5 D.7.如圖,在△ABC中,EF∥BC,,S四邊形BCFE=8,則S△ABC=()A.9 B.10 C.12 D.138.已知關(guān)于x的不等式組﹣1<2x+b<1的解滿足0<x<2,則b滿足的條件是()A.0<b<2 B.﹣3<b<﹣1 C.﹣3≤b≤﹣1 D.b=﹣1或﹣39.的平方根是()A.2 B. C.±2 D.±10.如圖,是直角三角形,,,點在反比例函數(shù)的圖象上.若點在反比例函數(shù)的圖象上,則的值為()A.2 B.-2 C.4 D.-411.如圖是某幾何體的三視圖,則該幾何體的全面積等于()A.112 B.136 C.124 D.8412.鐘鼎文是我國古代的一種文字,是鑄刻在殷周青銅器上的銘文,下列鐘鼎文中,不是軸對稱圖形的是()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.計算的結(jié)果等于__________.14.因式分解:3x2-6xy+3y2=______.15.如圖,在平面直角坐標系中,將△ABO繞點A順時針旋轉(zhuǎn)到△AB1C1的位置,點B、O分別落在點B1、C1處,點B1在x軸上,再將△AB1C1繞點B1順時針旋轉(zhuǎn)到△A1B1C2的位置,點C2在x軸上,將△A1B1C2繞點C2順時針旋轉(zhuǎn)到△A2B2C2的位置,點A2在x軸上,依次進行下去….若點A(,0),B(0,2),則點B2018的坐標為_____.16.如圖,利用標桿測量建筑物的高度,已知標桿高1.2,測得,則建筑物的高是__________.17.如圖,AB是半圓O的直徑,E是半圓上一點,且OE⊥AB,點C為的中點,則∠A=__________°.18.如圖,在正方形ABCD中,等邊三角形AEF的頂點E,F(xiàn)分別在邊BC和CD上,則∠AEB=__________.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)先化簡,再求值:,其中與2,3構(gòu)成的三邊,且為整數(shù).20.(6分)已知一個口袋中裝有7個只有顏色不同的球,其中3個白球,4個黑球.(1)求從中隨機抽取出一個黑球的概率是多少?(2)若往口袋中再放入x個白球和y個黑球,從口袋中隨機取出一個白球的概率是14,求y與x21.(6分)如圖,拋物線與x軸交于點A,B,與軸交于點C,過點C作CD∥x軸,交拋物線的對稱軸于點D,連結(jié)BD,已知點A坐標為(-1,0).求該拋物線的解析式;求梯形COBD的面積.22.(8分)如圖,在平面直角坐標系中,拋物線y=﹣x2+bx+c(a≠0)與x軸交于A、B兩點,與y軸交于點C,點A的坐標為(﹣1,0),拋物線的對稱軸直線x=交x軸于點D.(1)求拋物線的解析式;(2)點E是線段BC上的一個動點,過點E作x軸的垂線與拋物線相交于點F,交x軸于點G,當(dāng)點E運動到什么位置時,四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時E點的坐標;(3)在(2)的條件下,將線段FG繞點G順時針旋轉(zhuǎn)一個角α(0°<α<90°),在旋轉(zhuǎn)過程中,設(shè)線段FG與拋物線交于點N,在線段GB上是否存在點P,使得以P、N、G為頂點的三角形與△ABC相似?如果存在,請直接寫出點P的坐標;如果不存在,請說明理由.23.(8分)如圖,△BAD是由△BEC在平面內(nèi)繞點B旋轉(zhuǎn)60°而得,且AB⊥BC,BE=CE,連接DE.求證:△BDE≌△BCE;試判斷四邊形ABED的形狀,并說明理由.24.(10分)太原雙塔寺又名永祚寺,是國家級文物保護單位,由于雙塔(舍利塔、文峰塔)聳立,被人們稱為“文筆雙塔”,是太原的標志性建筑之一,某校社會實踐小組為了測量舍利塔的高度,在地面上的C處垂直于地面豎立了高度為2米的標桿CD,這時地面上的點E,標桿的頂端點D,舍利塔的塔尖點B正好在同一直線上,測得EC=4米,將標桿CD向后平移到點C處,這時地面上的點F,標桿的頂端點H,舍利塔的塔尖點B正好在同一直線上(點F,點G,點E,點C與塔底處的點A在同一直線上),這時測得FG=6米,GC=53米.請你根據(jù)以上數(shù)據(jù),計算舍利塔的高度AB.25.(10分)先化簡,再求值:(﹣2)÷,其中x滿足x2﹣x﹣4=026.(12分)如圖,在邊長為1個單位長度的小正方形網(wǎng)格中:(1)畫出△ABC向上平移6個單位長度,再向右平移5個單位長度后的△A1B1C1.(2)以點B為位似中心,將△ABC放大為原來的2倍,得到△A2B2C2,請在網(wǎng)格中畫出△A2B2C2.(3)求△CC1C2的面積.27.(12分)先化簡,再求值:a(a﹣3b)+(a+b)2﹣a(a﹣b),其中a=1,b=﹣

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】分析:根據(jù)中位數(shù)的定義,首先將這組數(shù)據(jù)按從小到大的順序排列起來,由于這組數(shù)據(jù)共有7個,故處于最中間位置的數(shù)就是第四個,從而得出答案.詳解:將這組數(shù)據(jù)按從小到大排列為:6<7<7<7<8<9<9,故中位數(shù)為:7分,故答案為:C.點睛:本題主要考查中位數(shù),解題的關(guān)鍵是掌握中位數(shù)的定義:將一組數(shù)據(jù)按照從小到大(或從大到小)的順序排列,如果數(shù)據(jù)的個數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù).如果這組數(shù)據(jù)的個數(shù)是偶數(shù),則中間兩個數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù).2、B【解析】【分析】設(shè)菱形的高為h,即是一個定值,再分點P在AB上,在BC上和在CD上三種情況,利用三角形的面積公式列式求出相應(yīng)的函數(shù)關(guān)系式,然后選擇答案即可.【詳解】分三種情況:①當(dāng)P在AB邊上時,如圖1,設(shè)菱形的高為h,y=12∵AP隨x的增大而增大,h不變,∴y隨x的增大而增大,故選項C不正確;②當(dāng)P在邊BC上時,如圖2,y=12AD和h都不變,∴在這個過程中,y不變,故選項A不正確;③當(dāng)P在邊CD上時,如圖3,y=12∵PD隨x的增大而減小,h不變,∴y隨x的增大而減小,∵P點從點A出發(fā)沿A→B→C→D路徑勻速運動到點D,∴P在三條線段上運動的時間相同,故選項D不正確,故選B.【點睛】本題考查了動點問題的函數(shù)圖象,菱形的性質(zhì),根據(jù)點P的位置的不同,運用分類討論思想,分三段求出△PAD的面積的表達式是解題的關(guān)鍵.3、D【解析】根據(jù)函數(shù)的意義可知:對于自變量x的任何值,y都有唯一的值與之相對應(yīng),故D正確.故選D.4、D【解析】

根據(jù)題意得出:∠B=30°,AP=30海里,∠APB=90°,再利用勾股定理得出BP的長,求出答案.【詳解】解:由題意可得:∠B=30°,AP=30海里,∠APB=90°,故AB=2AP=60(海里),

則此時輪船所在位置B處與燈塔P之間的距離為:BP=(海里)故選:D.【點睛】此題主要考查了勾股定理的應(yīng)用以及方向角,正確應(yīng)用勾股定理是解題關(guān)鍵.5、C【解析】試題解析:∵x=-2是關(guān)于x的一元二次方程的一個根,

∴(-2)2+a×(-2)-a2=0,即a2+3a-2=0,

整理,得(a+2)(a-1)=0,

解得a1=-2,a2=1.

即a的值是1或-2.

故選A.點睛:一元二次方程的解的定義:能使一元二次方程左右兩邊相等的未知數(shù)的值是一元二次方程的解.又因為只含有一個未知數(shù)的方程的解也叫做這個方程的根,所以,一元二次方程的解也稱為一元二次方程的根.6、B【解析】

以O(shè)M為直徑作圓交⊙O于K,利用圓周角定理得到∠MKO=90°.從而得到KM⊥OK,進而利用勾股定理求解.【詳解】如圖所示:MK=.故選:B.【點睛】考查了切線的性質(zhì):圓的切線垂直于經(jīng)過切點的半徑.若出現(xiàn)圓的切線,必連過切點的半徑,構(gòu)造定理圖,得出垂直關(guān)系.7、A【解析】

由在△ABC中,EF∥BC,即可判定△AEF∽△ABC,然后由相似三角形面積比等于相似比的平方,即可求得答案.【詳解】∵,∴.又∵EF∥BC,∴△AEF∽△ABC.∴.∴1S△AEF=S△ABC.又∵S四邊形BCFE=8,∴1(S△ABC﹣8)=S△ABC,解得:S△ABC=1.故選A.8、C【解析】

根據(jù)不等式的性質(zhì)得出x的解集,進而解答即可.【詳解】∵-1<2x+b<1∴,∵關(guān)于x的不等式組-1<2x+b<1的解滿足0<x<2,∴,解得:-3≤b≤-1,故選C.【點睛】此題考查解一元一次不等式組,關(guān)鍵是根據(jù)不等式的性質(zhì)得出x的解集.9、D【解析】

先化簡,然后再根據(jù)平方根的定義求解即可.【詳解】∵=2,2的平方根是±,∴的平方根是±.故選D.【點睛】本題考查了平方根的定義以及算術(shù)平方根,先把正確化簡是解題的關(guān)鍵,本題比較容易出錯.10、D【解析】

要求函數(shù)的解析式只要求出點的坐標就可以,過點、作軸,軸,分別于、,根據(jù)條件得到,得到:,然后用待定系數(shù)法即可.【詳解】過點、作軸,軸,分別于、,設(shè)點的坐標是,則,,,,,,,,,,,,因為點在反比例函數(shù)的圖象上,則,點在反比例函數(shù)的圖象上,點的坐標是,.故選:.【點睛】本題考查了反比例函數(shù)圖象上點的坐標特征,相似三角形的判定與性質(zhì),求函數(shù)的解析式的問題,一般要轉(zhuǎn)化為求點的坐標的問題,求出圖象上點的橫縱坐標的積就可以求出反比例函數(shù)的解析式.11、B【解析】試題解析:該幾何體是三棱柱.如圖:由勾股定理全面積為:故該幾何體的全面積等于1.故選B.12、A【解析】根據(jù)軸對稱圖形的概念求解.解:根據(jù)軸對稱圖形的概念可知:B,C,D是軸對稱圖形,A不是軸對稱圖形,故選A.“點睛”本題考查了軸對稱圖形的概念.軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】

根據(jù)完全平方公式進行展開,然后再進行同類項合并即可.【詳解】解:.故填.【點睛】主要考查的是完全平方公式及二次根式的混合運算,注意最終結(jié)果要化成最簡二次根式的形式.14、3(x﹣y)1【解析】試題分析:原式提取3,再利用完全平方公式分解即可,得到3x1﹣6xy+3y1=3(x1﹣1xy+y1)=3(x﹣y)1.考點:提公因式法與公式法的綜合運用15、(6054,2)【解析】分析:分析題意和圖形可知,點B1、B3、B5、……在x軸上,點B2、B4、B6、……在第一象限內(nèi),由已知易得AB=,結(jié)合旋轉(zhuǎn)的性質(zhì)可得OA+AB1+B1C2=6,從而可得點B2的坐標為(6,2),同理可得點B4的坐標為(12,2),即點B2相當(dāng)于是由點B向右平移6個單位得到的,點B4相當(dāng)于是由點B2向右平移6個單位得到的,由此即可推導(dǎo)得到點B2018的坐標.詳解:∵在△AOB中,∠AOB=90°,OA=,OB=2,∴AB=,∴由旋轉(zhuǎn)的性質(zhì)可得:OA+AB1+B1C2=OA+AB+OB=6,C2B2=OB=2,∴點B2的坐標為(6,2),同理可得點B4的坐標為(12,2),由此可得點B2相當(dāng)于是由點B向右平移6個單位得到的,點B4相當(dāng)于是由點B2向右平移6個單位得到,∴點B2018相當(dāng)于是由點B向右平移了:個單位得到的,∴點B2018的坐標為(6054,2).故答案為:(6054,2).點睛:讀懂題意,結(jié)合旋轉(zhuǎn)的性質(zhì)求出點B2和點B4的坐標,分析找到其中點B的坐標的變化規(guī)律,是正確解答本題的關(guān)鍵.16、10.5【解析】

先證△AEB∽△ABC,再利用相似的性質(zhì)即可求出答案.【詳解】解:由題可知,BE⊥AC,DC⊥AC∵BE//DC,∴△AEB∽△ADC,∴,即:,∴CD=10.5(m).故答案為10.5.【點睛】本題考查了相似的判定和性質(zhì).利用相似的性質(zhì)列出含所求邊的比例式是解題的關(guān)鍵.17、22.5【解析】

連接半徑OC,先根據(jù)點C為的中點,得∠BOC=45°,再由同圓的半徑相等和等腰三角形的性質(zhì)得:∠A=∠ACO=×45°,可得結(jié)論.【詳解】連接OC,

∵OE⊥AB,

∴∠EOB=90°,

∵點C為的中點,

∴∠BOC=45°,

∵OA=OC,

∴∠A=∠ACO=×45°=22.5°,

故答案為:22.5°.【點睛】本題考查了圓周角定理與等腰三角形的性質(zhì).解題的關(guān)鍵是注意掌握數(shù)形結(jié)合思想的應(yīng)用.18、75【解析】因為△AEF是等邊三角形,所以∠EAF=60°,AE=AF,因為四邊形ABCD是正方形,所以AB=AD,∠B=∠D=∠BAD=90°.所以Rt△ABE≌Rt△ADF(HL),所以∠BAE=∠DAF.所以∠BAE+∠DAF=∠BAD-∠EAF=90°-60°=30°,所以∠BAE=15°,所以∠AEB=90°-15°=75°.故答案為75.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、1【解析】試題分析:先進行分式的除法運算,再進行分式的加減法運算,根據(jù)三角形三邊的關(guān)系確定出a的值,然后代入進行計算即可.試題解析:原式=,∵a與2、3構(gòu)成△ABC的三邊,∴3?2<a<3+2,即1<a<5,又∵a為整數(shù),∴a=2或3或4,∵當(dāng)x=2或3時,原分式無意義,應(yīng)舍去,∴當(dāng)a=4時,原式==120、(1)47.(2)y=3x+5【解析】試題分析:(1)根據(jù)取出黑球的概率=黑球的數(shù)量÷球的總數(shù)量得出答案;(2)根據(jù)概率的計算方法得出方程,從求出函數(shù)關(guān)系式.試題解析:(1)取出一個黑球的概率P=(2)∵取出一個白球的概率P=∴∴12+4x=7+x+y∴y與x的函數(shù)關(guān)系式為:y=3x+5.考點:概率21、(1)(2)【解析】

(1)將A坐標代入拋物線解析式,求出a的值,即可確定出解析式.(2)拋物線解析式令x=0求出y的值,求出OC的長,根據(jù)對稱軸求出CD的長,令y=0求出x的值,確定出OB的長,根據(jù)梯形面積公式即可求出梯形COBD的面積.【詳解】(1)將A(―1,0)代入中,得:0=4a+4,解得:a=-1.∴該拋物線解析式為.(2)對于拋物線解析式,令x=0,得到y(tǒng)=2,即OC=2,∵拋物線的對稱軸為直線x=1,∴CD=1.∵A(-1,0),∴B(2,0),即OB=2.∴.22、(1);(1),E(1,1);(3)存在,P點坐標可以為(1+,5)或(3,5).【解析】

(1)設(shè)B(x1,5),由已知條件得,進而得到B(2,5).又由對稱軸求得b.最終得到拋物線解析式.(1)先求出直線BC的解析式,再設(shè)E(m,=﹣m+1.),F(xiàn)(m,﹣m1+m+1.)求得FE的值,得到S△CBF﹣m1+2m.又由S四邊形CDBF=S△CBF+S△CDB,得S四邊形CDBF最大值,最終得到E點坐標.(3)設(shè)N點為(n,﹣n1+n+1),1<n<2.過N作NO⊥x軸于點P,得PG=n﹣1.又由直角三角形的判定,得△ABC為直角三角形,由△ABC∽△GNP,得n=1+或n=1﹣(舍去),求得P點坐標.又由△ABC∽△GNP,且時,得n=3或n=﹣2(舍去).求得P點坐標.【詳解】解:(1)設(shè)B(x1,5).由A(﹣1,5),對稱軸直線x=.∴解得,x1=2.∴B(2,5).又∵∴b=.∴拋物線解析式為y=,(1)如圖1,∵B(2,5),C(5,1).∴直線BC的解析式為y=﹣x+1.由E在直線BC上,則設(shè)E(m,=﹣m+1.),F(xiàn)(m,﹣m1+m+1.)∴FE=﹣m1+m+1﹣(﹣n+1)=﹣m1+1m.由S△CBF=EF?OB,∴S△CBF=(﹣m1+1m)×2=﹣m1+2m.又∵S△CDB=BD?OC=×(2﹣)×1=∴S四邊形CDBF=S△CBF+S△CDB═﹣m1+2m+.化為頂點式得,S四邊形CDBF=﹣(m﹣1)1+.當(dāng)m=1時,S四邊形CDBF最大,為.此時,E點坐標為(1,1).(3)存在.如圖1,由線段FG繞點G順時針旋轉(zhuǎn)一個角α(5°<α<95°),設(shè)N(n,﹣n1+n+1),1<n<2.過N作NO⊥x軸于點P(n,5).∴NP=﹣n1+n+1,PG=n﹣1.又∵在Rt△AOC中,AC1=OA1+OC1=1+2=5,在Rt△BOC中,BC1=OB1+OC1=16+2=15.AB1=51=15.∴AC1+BC1=AB1.∴△ABC為直角三角形.當(dāng)△ABC∽△GNP,且時,即,整理得,n1﹣1n﹣6=5.解得,n=1+或n=1﹣(舍去).此時P點坐標為(1+,5).當(dāng)△ABC∽△GNP,且時,即,整理得,n1+n﹣11=5.解得,n=3或n=﹣2(舍去).此時P點坐標為(3,5).綜上所述,滿足題意的P點坐標可以為,(1+,5),(3,5).【點睛】本題考查求拋物線,三角形的性質(zhì)和面積的求法,直角三角形的判定,以及三角形相似的性質(zhì),屬于較難題.23、證明見解析.【解析】

(1)根據(jù)旋轉(zhuǎn)的性質(zhì)可得DB=CB,∠ABD=∠EBC,∠ABE=60°,然后根據(jù)垂直可得出∠DBE=∠CBE=30°,繼而可根據(jù)SAS證明△BDE≌△BCE;(2)根據(jù)(1)以及旋轉(zhuǎn)的性質(zhì)可得,△BDE≌△BCE≌△BDA,繼而得出四條棱相等,證得四邊形ABED為菱形.【詳解】(1)證明:∵△BAD是由△BEC在平面內(nèi)繞點B旋轉(zhuǎn)60°而得,∴DB=CB,∠ABD=∠EBC,∠ABE=60°,∵AB⊥EC,∴∠ABC=90°,∴∠DBE=∠CBE=30°,在△BDE和△BCE中,∵,∴△BDE≌△BCE

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論