江蘇省泰州市海陵區(qū)重點(diǎn)名校2022年中考三模數(shù)學(xué)試題含解析_第1頁(yè)
江蘇省泰州市海陵區(qū)重點(diǎn)名校2022年中考三模數(shù)學(xué)試題含解析_第2頁(yè)
江蘇省泰州市海陵區(qū)重點(diǎn)名校2022年中考三模數(shù)學(xué)試題含解析_第3頁(yè)
江蘇省泰州市海陵區(qū)重點(diǎn)名校2022年中考三模數(shù)學(xué)試題含解析_第4頁(yè)
江蘇省泰州市海陵區(qū)重點(diǎn)名校2022年中考三模數(shù)學(xué)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩21頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

江蘇省泰州市海陵區(qū)重點(diǎn)名校2022年中考三模數(shù)學(xué)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書(shū)寫(xiě),字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.如圖是一個(gè)由5個(gè)相同的正方體組成的立體圖形,它的三視圖是()A. B.C. D.2.如果菱形的一邊長(zhǎng)是8,那么它的周長(zhǎng)是()A.16 B.32 C.163 D.3233.如圖,AB是一垂直于水平面的建筑物,某同學(xué)從建筑物底端B出發(fā),先沿水平方向向右行走20米到達(dá)點(diǎn)C,再經(jīng)過(guò)一段坡度(或坡比)為i=1:0.75、坡長(zhǎng)為10米的斜坡CD到達(dá)點(diǎn)D,然后再沿水平方向向右行走40米到達(dá)點(diǎn)E(A,B,C,D,E均在同一平面內(nèi)).在E處測(cè)得建筑物頂端A的仰角為24°,則建筑物AB的高度約為(參考數(shù)據(jù):sin24°≈0.41,cos24°≈0.91,tan24°=0.45)()A.21.7米 B.22.4米 C.27.4米 D.28.8米4.將一把直尺與一塊三角板如圖所示放置,若則∠2的度數(shù)為()A.50° B.110° C.130° D.150°5.小明早上從家騎自行車(chē)去上學(xué),先走平路到達(dá)點(diǎn)A,再走上坡路到達(dá)點(diǎn)B,最后走下坡路到達(dá)學(xué)校,小明騎自行車(chē)所走的路程s(單位:千米)與他所用的時(shí)間t(單位:分鐘)的關(guān)系如圖所示,放學(xué)后,小明沿原路返回,且走平路、上坡路、下坡路的速度分別保持和去上學(xué)時(shí)一致,下列說(shuō)法:①小明家距學(xué)校4千米;②小明上學(xué)所用的時(shí)間為12分鐘;③小明上坡的速度是0.5千米/分鐘;④小明放學(xué)回家所用時(shí)間為15分鐘.其中正確的個(gè)數(shù)是()A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)6.如圖,四邊形ABCD中,AC⊥BC,AD∥BC,BC=3,AC=4,AD=1.M是BD的中點(diǎn),則CM的長(zhǎng)為()A. B.2 C. D.37.如圖,將邊長(zhǎng)為8㎝的正方形ABCD折疊,使點(diǎn)D落在BC邊的中點(diǎn)E處,點(diǎn)A落在F處,折痕為MN,則線段CN的長(zhǎng)是()A.3cm B.4cm C.5cm D.6cm8.若m,n是一元二次方程x2﹣2x﹣1=0的兩個(gè)不同實(shí)數(shù)根,則代數(shù)式m2﹣m+n的值是()A.﹣1 B.3 C.﹣3 D.19.下列各數(shù)中,為無(wú)理數(shù)的是()A. B. C. D.10.如圖,在菱形紙片ABCD中,AB=4,∠A=60°,將菱形紙片翻折,使點(diǎn)A落在CD的中點(diǎn)E處,折痕為FG,點(diǎn)F、G分別在邊AB、AD上.則sin∠AFG的值為()A. B. C. D.11.在一次體育測(cè)試中,10名女生完成仰臥起坐的個(gè)數(shù)如下:38,52,47,46,50,50,61,72,45,48,則這10名女生仰臥起坐個(gè)數(shù)不少于50個(gè)的頻率為()A.0.3 B.0.4 C.0.5 D.0.612.下列圖標(biāo)中,既是軸對(duì)稱(chēng)圖形,又是中心對(duì)稱(chēng)圖形的是()A. B. C. D.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.若關(guān)于x的方程x2-x+sinα=0有兩個(gè)相等的實(shí)數(shù)根,則銳角α的度數(shù)為_(kāi)__.14.若a,b互為相反數(shù),則a2﹣b2=_____.15.分式方程=1的解為_(kāi)____16.如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與軸相交于點(diǎn)A、B,若其對(duì)稱(chēng)軸為直線x=2,則OB–OA的值為_(kāi)______.17.如圖,在Rt△AOB中,∠AOB=90°,OA=2,OB=1,將Rt△AOB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°后得到Rt△FOE,將線段EF繞點(diǎn)E逆時(shí)針旋轉(zhuǎn)90°后得到線段ED,分別以O(shè)、E為圓心,OA、ED長(zhǎng)為半徑畫(huà)弧AF和弧DF,連接AD,則圖中陰影部分的面積是__.18.如圖,一艘海輪位于燈塔P的北偏東方向60°,距離燈塔為4海里的點(diǎn)A處,如果海輪沿正南方向航行到燈塔的正東位置,海輪航行的距離AB長(zhǎng)_____海里.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.19.(6分)近年來(lái),共享單車(chē)服務(wù)的推出(如圖1),極大的方便了城市公民綠色出行,圖2是某品牌某型號(hào)單車(chē)的車(chē)架新投放時(shí)的示意圖(車(chē)輪半徑約為30cm),其中BC∥直線l,∠BCE=71°,CE=54cm.(1)求單車(chē)車(chē)座E到地面的高度;(結(jié)果精確到1cm)(2)根據(jù)經(jīng)驗(yàn),當(dāng)車(chē)座E到CB的距離調(diào)整至等于人體胯高(腿長(zhǎng))的0.85時(shí),坐騎比較舒適.小明的胯高為70cm,現(xiàn)將車(chē)座E調(diào)整至座椅舒適高度位置E′,求EE′的長(zhǎng).(結(jié)果精確到0.1cm)(參考數(shù)據(jù):sin71°≈0.95,cos71°≈0.33,tan71°≈2.90)20.(6分)如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=的圖象在第一象限交于點(diǎn)A(4,3),與y軸的負(fù)半軸交于點(diǎn)B,且OA=OB.(1)求一次函數(shù)y=kx+b和y=的表達(dá)式;(2)已知點(diǎn)C在x軸上,且△ABC的面積是8,求此時(shí)點(diǎn)C的坐標(biāo);(3)反比例函數(shù)y=(1≤x≤4)的圖象記為曲線C1,將C1向右平移3個(gè)單位長(zhǎng)度,得曲線C2,則C1平移至C2處所掃過(guò)的面積是_________.(直接寫(xiě)出答案)21.(6分)用A4紙復(fù)印文件,在甲復(fù)印店不管一次復(fù)印多少頁(yè),每頁(yè)收費(fèi)0.1元.在乙復(fù)印店復(fù)印同樣的文件,一次復(fù)印頁(yè)數(shù)不超過(guò)20時(shí),每頁(yè)收費(fèi)0.12元;一次復(fù)印頁(yè)數(shù)超過(guò)20時(shí),超過(guò)部分每頁(yè)收費(fèi)0.09元.設(shè)在同一家復(fù)印店一次復(fù)印文件的頁(yè)數(shù)為x(x為非負(fù)整數(shù)).(1)根據(jù)題意,填寫(xiě)下表:一次復(fù)印頁(yè)數(shù)(頁(yè))5102030…甲復(fù)印店收費(fèi)(元)0.52…乙復(fù)印店收費(fèi)(元)0.62.4…(2)設(shè)在甲復(fù)印店復(fù)印收費(fèi)y1元,在乙復(fù)印店復(fù)印收費(fèi)y2元,分別寫(xiě)出y1,y2關(guān)于x的函數(shù)關(guān)系式;(3)當(dāng)x>70時(shí),顧客在哪家復(fù)印店復(fù)印花費(fèi)少?請(qǐng)說(shuō)明理由.22.(8分)在平面直角坐標(biāo)系中,△ABC的頂點(diǎn)坐標(biāo)是A(﹣2,3),B(﹣4,﹣1),C(2,0).點(diǎn)P(m,n)為△ABC內(nèi)一點(diǎn),平移△ABC得到△A1B1C1,使點(diǎn)P(m,n)移到P(m+6,n+1)處.(1)畫(huà)出△A1B1C1(2)將△ABC繞坐標(biāo)點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°得到△A2B2C,畫(huà)出△A2B2C;(3)在(2)的條件下求BC掃過(guò)的面積.23.(8分)如圖1,拋物線y=ax2+bx﹣2與x軸交于點(diǎn)A(﹣1,0),B(4,0)兩點(diǎn),與y軸交于點(diǎn)C,經(jīng)過(guò)點(diǎn)B的直線交y軸于點(diǎn)E(0,2).(1)求該拋物線的解析式;(2)如圖2,過(guò)點(diǎn)A作BE的平行線交拋物線于另一點(diǎn)D,點(diǎn)P是拋物線上位于線段AD下方的一個(gè)動(dòng)點(diǎn),連結(jié)PA,EA,ED,PD,求四邊形EAPD面積的最大值;(3)如圖3,連結(jié)AC,將△AOC繞點(diǎn)O逆時(shí)針?lè)较蛐D(zhuǎn),記旋轉(zhuǎn)中的三角形為△A′OC′,在旋轉(zhuǎn)過(guò)程中,直線OC′與直線BE交于點(diǎn)Q,若△BOQ為等腰三角形,請(qǐng)直接寫(xiě)出點(diǎn)Q的坐標(biāo).24.(10分)如圖,已知直線AB與軸交于點(diǎn)C,與雙曲線交于A(3,)、B(-5,)兩點(diǎn).AD⊥軸于點(diǎn)D,BE∥軸且與軸交于點(diǎn)E.求點(diǎn)B的坐標(biāo)及直線AB的解析式;判斷四邊形CBED的形狀,并說(shuō)明理由.25.(10分)某工廠準(zhǔn)備用圖甲所示的A型正方形板材和B型長(zhǎng)方形板材,制作成圖乙所示的豎式和橫式兩種無(wú)蓋箱子.若該工廠準(zhǔn)備用不超過(guò)10000元的資金去購(gòu)買(mǎi)A,B兩種型號(hào)板材,并全部制作豎式箱子,已知A型板材每張30元,B型板材每張90元,求最多可以制作豎式箱子多少只?若該工廠倉(cāng)庫(kù)里現(xiàn)有A型板材65張、B型板材110張,用這批板材制作兩種類(lèi)型的箱子,問(wèn)制作豎式和橫式兩種箱子各多少只,恰好將庫(kù)存的板材用完?若該工廠新購(gòu)得65張規(guī)格為的C型正方形板材,將其全部切割成A型或B型板材不計(jì)損耗,用切割成的板材制作兩種類(lèi)型的箱子,要求豎式箱子不少于20只,且材料恰好用完,則能制作兩種箱子共______只26.(12分)已知平行四邊形.尺規(guī)作圖:作的平分線交直線于點(diǎn),交延長(zhǎng)線于點(diǎn)(要求:尺規(guī)作圖,保留作圖痕跡,不寫(xiě)作法);在(1)的條件下,求證:.27.(12分)已知,關(guān)于x的方程x2+2x-k=0有兩個(gè)不相等的實(shí)數(shù)根.(1)求k的取值范圍;(2)若x1,x2是這個(gè)方程的兩個(gè)實(shí)數(shù)根,求的值;(3)根據(jù)(2)的結(jié)果你能得出什么結(jié)論?

參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、D【解析】

找到從正面、左面、上看所得到的圖形即可,注意所有的看到的棱都應(yīng)表現(xiàn)在視圖中.【詳解】解:此幾何體的主視圖有兩排,從上往下分別有1,3個(gè)正方形;

左視圖有二列,從左往右分別有2,1個(gè)正方形;

俯視圖有三列,從上往下分別有3,1個(gè)正方形,

故選A.【點(diǎn)睛】本題考查了三視圖的知識(shí),關(guān)鍵是掌握三視圖所看的位置.掌握定義是關(guān)鍵.此題主要考查了簡(jiǎn)單組合體的三視圖,準(zhǔn)確把握觀察角度是解題關(guān)鍵.2、B【解析】

根據(jù)菱形的四邊相等,可得周長(zhǎng)【詳解】菱形的四邊相等∴菱形的周長(zhǎng)=4×8=32故選B.【點(diǎn)睛】本題考查了菱形的性質(zhì),并靈活掌握及運(yùn)用菱形的性質(zhì)3、A【解析】

作BM⊥ED交ED的延長(zhǎng)線于M,CN⊥DM于N.首先解直角三角形Rt△CDN,求出CN,DN,再根據(jù)tan24°=,構(gòu)建方程即可解決問(wèn)題.【詳解】作BM⊥ED交ED的延長(zhǎng)線于M,CN⊥DM于N.在Rt△CDN中,∵,設(shè)CN=4k,DN=3k,∴CD=10,∴(3k)2+(4k)2=100,∴k=2,∴CN=8,DN=6,∵四邊形BMNC是矩形,∴BM=CN=8,BC=MN=20,EM=MN+DN+DE=66,在Rt△AEM中,tan24°=,∴0.45=,∴AB=21.7(米),故選A.【點(diǎn)睛】本題考查的是解直角三角形的應(yīng)用-仰角俯角問(wèn)題,根據(jù)題意作出輔助線,構(gòu)造出直角三角形是解答此題的關(guān)鍵.4、C【解析】

如圖,根據(jù)長(zhǎng)方形的性質(zhì)得出EF∥GH,推出∠FCD=∠2,代入∠FCD=∠1+∠A求出即可.【詳解】∵EF∥GH,∴∠FCD=∠2,∵∠FCD=∠1+∠A,∠1=40°,∠A=90°,∴∠2=∠FCD=130°,故選C.【點(diǎn)睛】本題考查了平行線的性質(zhì),三角形外角的性質(zhì)等,準(zhǔn)確識(shí)圖是解題的關(guān)鍵.5、C【解析】

從開(kāi)始到A是平路,是1千米,用了3分鐘,則從學(xué)校到家門(mén)口走平路仍用3分鐘,根據(jù)圖象求得上坡(AB段)、下坡(B到學(xué)校段)的路程與速度,利用路程除以速度求得每段所用的時(shí)間,相加即可求解.【詳解】解:①小明家距學(xué)校4千米,正確;②小明上學(xué)所用的時(shí)間為12分鐘,正確;③小明上坡的速度是千米/分鐘,錯(cuò)誤;④小明放學(xué)回家所用時(shí)間為3+2+10=15分鐘,正確;故選:C.【點(diǎn)睛】本題考查利用函數(shù)的圖象解決實(shí)際問(wèn)題,正確理解函數(shù)圖象橫縱坐標(biāo)表示的意義,理解問(wèn)題的過(guò)程,就能夠通過(guò)圖象得到函數(shù)問(wèn)題的相應(yīng)解決.需注意計(jì)算單位的統(tǒng)一.6、C【解析】

延長(zhǎng)BC到E使BE=AD,利用中點(diǎn)的性質(zhì)得到CM=DE=AB,再利用勾股定理進(jìn)行計(jì)算即可解答.【詳解】解:延長(zhǎng)BC到E使BE=AD,∵BC//AD,∴四邊形ACED是平行四邊形,∴DE=AB,∵BC=3,AD=1,∴C是BE的中點(diǎn),∵M(jìn)是BD的中點(diǎn),∴CM=DE=AB,∵AC⊥BC,∴AB==,∴CM=,故選:C.【點(diǎn)睛】此題考查平行四邊形的性質(zhì),勾股定理,解題關(guān)鍵在于作輔助線.7、A【解析】分析:根據(jù)折疊的性質(zhì),只要求出DN就可以求出NE,在直角△CEN中,若設(shè)CN=x,則DN=NE=8﹣x,CE=4cm,根據(jù)勾股定理就可以列出方程,從而解出CN的長(zhǎng).詳解:設(shè)CN=xcm,則DN=(8﹣x)cm,由折疊的性質(zhì)知EN=DN=(8﹣x)cm,而EC=BC=4cm,在Rt△ECN中,由勾股定理可知EN2=EC2+CN2,即(8﹣x)2=16+x2,整理得16x=48,所以x=1.故選:A.點(diǎn)睛:此題主要考查了折疊問(wèn)題,明確折疊問(wèn)題其實(shí)質(zhì)是軸對(duì)稱(chēng),對(duì)應(yīng)線段相等,對(duì)應(yīng)角相等,通常用勾股定理解決折疊問(wèn)題.8、B【解析】

把m代入一元二次方程,可得,再利用兩根之和,將式子變形后,整理代入,即可求值.【詳解】解:∵若,是一元二次方程的兩個(gè)不同實(shí)數(shù)根,∴,∴∴故選B.【點(diǎn)睛】本題考查了一元二次方程根與系數(shù)的關(guān)系,及一元二次方程的解,熟記根與系數(shù)關(guān)系的公式.9、D【解析】A.=2,是有理數(shù);B.=2,是有理數(shù);C.,是有理數(shù);D.,是無(wú)理數(shù),故選D.10、B【解析】

如圖:過(guò)點(diǎn)E作HE⊥AD于點(diǎn)H,連接AE交GF于點(diǎn)N,連接BD,BE.由題意可得:DE=1,∠HDE=60°,△BCD是等邊三角形,即可求DH的長(zhǎng),HE的長(zhǎng),AE的長(zhǎng),

NE的長(zhǎng),EF的長(zhǎng),則可求sin∠AFG的值.【詳解】解:如圖:過(guò)點(diǎn)E作HE⊥AD于點(diǎn)H,連接AE交GF于點(diǎn)N,連接BD,BE.

∵四邊形ABCD是菱形,AB=4,∠DAB=60°,

∴AB=BC=CD=AD=4,∠DAB=∠DCB=60°,DC∥AB

∴∠HDE=∠DAB=60°,

∵點(diǎn)E是CD中點(diǎn)

∴DE=CD=1

在Rt△DEH中,DE=1,∠HDE=60°

∴DH=1,HE=

∴AH=AD+DH=5

在Rt△AHE中,AE==1

∴AN=NE=,AE⊥GF,AF=EF

∵CD=BC,∠DCB=60°

∴△BCD是等邊三角形,且E是CD中點(diǎn)

∴BE⊥CD,

∵BC=4,EC=1

∴BE=1

∵CD∥AB

∴∠ABE=∠BEC=90°

在Rt△BEF中,EF1=BE1+BF1=11+(AB-EF)1.

∴EF=由折疊性質(zhì)可得∠AFG=∠EFG,

∴sin∠EFG=sin∠AFG=,故選B.【點(diǎn)睛】本題考查了折疊問(wèn)題,菱形的性質(zhì),勾股定理,添加恰當(dāng)?shù)妮o助線構(gòu)造直角三角形,利用勾股定理求線段長(zhǎng)度是本題的關(guān)鍵.11、C【解析】

用仰臥起坐個(gè)數(shù)不少于10個(gè)的頻數(shù)除以女生總?cè)藬?shù)10計(jì)算即可得解.【詳解】仰臥起坐個(gè)數(shù)不少于10個(gè)的有12、10、10、61、72共1個(gè),所以,頻率==0.1.故選C.【點(diǎn)睛】本題考查了頻數(shù)與頻率,頻率=.12、D【解析】試題分析:根據(jù)軸對(duì)稱(chēng)圖形和中心對(duì)稱(chēng)圖形的概念,可知:A既不是軸對(duì)稱(chēng)圖形,也不是中心對(duì)稱(chēng)圖形,故不正確;B不是軸對(duì)稱(chēng)圖形,但是中心對(duì)稱(chēng)圖形,故不正確;C是軸對(duì)稱(chēng)圖形,但不是中心對(duì)稱(chēng)圖形,故不正確;D即是軸對(duì)稱(chēng)圖形,也是中心對(duì)稱(chēng)圖形,故正確.故選D.考點(diǎn):軸對(duì)稱(chēng)圖形和中心對(duì)稱(chēng)圖形識(shí)別二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、30°【解析】試題解析:∵關(guān)于x的方程有兩個(gè)相等的實(shí)數(shù)根,∴解得:∴銳角α的度數(shù)為30°;故答案為30°.14、1【解析】【分析】直接利用平方差公式分解因式進(jìn)而結(jié)合相反數(shù)的定義分析得出答案.【詳解】∵a,b互為相反數(shù),∴a+b=1,∴a2﹣b2=(a+b)(a﹣b)=1,故答案為1.【點(diǎn)睛】本題考查了公式法分解因式以及相反數(shù)的定義,正確分解因式是解題關(guān)鍵.15、x=0.1【解析】分析:方程兩邊都乘以最簡(jiǎn)公分母,化為整式方程,然后解方程,再進(jìn)行檢驗(yàn).詳解:方程兩邊都乘以2(x2﹣1)得,8x+2﹣1x﹣1=2x2﹣2,解得x1=1,x2=0.1,檢驗(yàn):當(dāng)x=0.1時(shí),x﹣1=0.1﹣1=﹣0.1≠0,當(dāng)x=1時(shí),x﹣1=0,所以x=0.1是方程的解,故原分式方程的解是x=0.1.故答案為:x=0.1點(diǎn)睛:本題考查了解分式方程,(1)解分式方程的基本思想是“轉(zhuǎn)化思想”,把分式方程轉(zhuǎn)化為整式方程求解.(2)解分式方程一定注意要驗(yàn)根.16、4【解析】試題分析:設(shè)OB的長(zhǎng)度為x,則根據(jù)二次函數(shù)的對(duì)稱(chēng)性可得:點(diǎn)B的坐標(biāo)為(x+2,0),點(diǎn)A的坐標(biāo)為(2-x,0),則OB-OA=x+2-(x-2)=4.點(diǎn)睛:本題主要考查的就是二次函數(shù)的性質(zhì).如果二次函數(shù)與x軸的兩個(gè)交點(diǎn)坐標(biāo)為(,0)和(,0),則函數(shù)的對(duì)稱(chēng)軸為直線:x=.在解決二次函數(shù)的題目時(shí),我們一定要注意區(qū)分點(diǎn)的坐標(biāo)和線段的長(zhǎng)度之間的區(qū)別,如果點(diǎn)在x的正半軸,則點(diǎn)的橫坐標(biāo)就是線段的長(zhǎng)度,如果點(diǎn)在x的負(fù)半軸,則點(diǎn)的橫坐標(biāo)的相反數(shù)就是線段的長(zhǎng)度.17、.【解析】

作DH⊥AE于H,根據(jù)勾股定理求出AB,根據(jù)陰影部分面積=△ADE的面積+△EOF的面積+扇形AOF的面積-扇形DEF的面積,利用扇形面積公式計(jì)算即可.【詳解】解:如圖作DH⊥AE于H,AOB=,OA=2,OB=1,AB=,由旋轉(zhuǎn)的性質(zhì)可知OE=OB=1,DE=EF=AB=,可得△DHE≌△BOA,DH=OB=1,陰影部分面積=△ADE的面積+△EOF的面積+扇形AOF的面積-扇形DEF的面積==,故答案:.【點(diǎn)睛】本題主要考查扇形的計(jì)算公式,正確表示出陰影部分的面積是計(jì)算的關(guān)鍵.18、1【解析】分析:首先由方向角的定義及已知條件得出∠NPA=60°,AP=4海里,∠ABP=90°,再由AB∥NP,根據(jù)平行線的性質(zhì)得出∠A=∠NPA=60°.然后解Rt△ABP,得出AB=AP?cos∠A=1海里.詳解:如圖,由題意可知∠NPA=60°,AP=4海里,∠ABP=90°.∵AB∥NP,∴∠A=∠NPA=60°.在Rt△ABP中,∵∠ABP=90°,∠A=60°,AP=4海里,∴AB=AP?cos∠A=4×cos60°=4×=1海里.故答案為1.點(diǎn)睛:本題考查了解直角三角形的應(yīng)用-方向角問(wèn)題,平行線的性質(zhì),三角函數(shù)的定義,正確理解方向角的定義是解題的關(guān)鍵.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.19、(1)81cm;(2)8.6cm;【解析】

(1)作EM⊥BC于點(diǎn)M,由EM=ECsin∠BCE可得答案;(2)作E′H⊥BC于點(diǎn)H,先根據(jù)E′C=求得E′C的長(zhǎng)度,再根據(jù)EE′=CE′﹣CE可得答案.【詳解】(1)如圖1,過(guò)點(diǎn)E作EM⊥BC于點(diǎn)M.由題意知∠BCE=71°、EC=54,∴EM=ECsin∠BCE=54sin71°≈51.3,則單車(chē)車(chē)座E到地面的高度為51.3+30≈81cm;(2)如圖2所示,過(guò)點(diǎn)E′作E′H⊥BC于點(diǎn)H.由題意知E′H=70×0.85=59.5,則E′C==≈62.6,∴EE′=CE′﹣CE=62.6﹣54=8.6(cm).【點(diǎn)睛】本題考查了解直角三角形的應(yīng)用,解題的關(guān)鍵是明確題意,利用銳角三角函數(shù)進(jìn)行解答.20、(1),;(2)點(diǎn)C的坐標(biāo)為或;(3)2.【解析】試題分析:(1)由點(diǎn)A的坐標(biāo)利用反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征即可求出a值,從而得出反比例函數(shù)解析式;由勾股定理得出OA的長(zhǎng)度從而得出點(diǎn)B的坐標(biāo),由點(diǎn)A、B的坐標(biāo)利用待定系數(shù)法即可求出直線AB的解析式;

(2)設(shè)點(diǎn)C的坐標(biāo)為(m,0),令直線AB與x軸的交點(diǎn)為D,根據(jù)三角形的面積公式結(jié)合△ABC的面積是8,可得出關(guān)于m的含絕對(duì)值符號(hào)的一元一次方程,解方程即可得出m值,從而得出點(diǎn)C的坐標(biāo);

(3)設(shè)點(diǎn)E的橫坐標(biāo)為1,點(diǎn)F的橫坐標(biāo)為6,點(diǎn)M、N分別對(duì)應(yīng)點(diǎn)E、F,根據(jù)反比例函數(shù)解析式以及平移的性質(zhì)找出點(diǎn)E、F、M、N的坐標(biāo),根據(jù)EM∥FN,且EM=FN,可得出四邊形EMNF為平行四邊形,再根據(jù)平行四邊形的面積公式求出平行四邊形EMNF的面積S,根據(jù)平移的性質(zhì)即可得出C1平移至C2處所掃過(guò)的面積正好為S.試題解析:(1)∵點(diǎn)A(4,3)在反比例函數(shù)y=的圖象上,∴a=4×3=12,∴反比例函數(shù)解析式為y=;∵OA==1,OA=OB,點(diǎn)B在y軸負(fù)半軸上,∴點(diǎn)B(0,﹣1).把點(diǎn)A(4,3)、B(0,﹣1)代入y=kx+b中,得:,解得:,∴一次函數(shù)的解析式為y=2x﹣1.(2)設(shè)點(diǎn)C的坐標(biāo)為(m,0),令直線AB與x軸的交點(diǎn)為D,如圖1所示.令y=2x﹣1中y=0,則x=,∴D(,0),∴S△ABC=CD?(yA﹣yB)=|m﹣|×[3﹣(﹣1)]=8,解得:m=或m=.故當(dāng)△ABC的面積是8時(shí),點(diǎn)C的坐標(biāo)為(,0)或(,0).(3)設(shè)點(diǎn)E的橫坐標(biāo)為1,點(diǎn)F的橫坐標(biāo)為6,點(diǎn)M、N分別對(duì)應(yīng)點(diǎn)E、F,如圖2所示.令y=中x=1,則y=12,∴E(1,12),;令y=中x=4,則y=3,∴F(4,3),∵EM∥FN,且EM=FN,∴四邊形EMNF為平行四邊形,∴S=EM?(yE﹣yF)=3×(12﹣3)=2.C1平移至C2處所掃過(guò)的面積正好為平行四邊形EMNF的面積.故答案為2.【點(diǎn)睛】運(yùn)用了反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征、待定系數(shù)法求函數(shù)解析式、三角形的面積以及平行四邊形的面積,解題的關(guān)鍵是:(1)利用待定系數(shù)法求出函數(shù)解析式;(2)找出關(guān)于m的含絕對(duì)值符號(hào)的一元一次方程;(3)求出平行四邊形EMNF的面積.本題屬于中檔題,難度不小,解決(3)時(shí),巧妙的借助平行四邊的面積公式求出C1平移至C2處所掃過(guò)的面積,此處要注意數(shù)形結(jié)合的重要性.21、(1)1,3;1.2,3.3;(2)見(jiàn)解析;(3)顧客在乙復(fù)印店復(fù)印花費(fèi)少.【解析】

(1)根據(jù)收費(fèi)標(biāo)準(zhǔn),列代數(shù)式求得即可;

(2)根據(jù)收費(fèi)等于每頁(yè)收費(fèi)乘以頁(yè)數(shù)即可求得y1=0.1x(x≥0);當(dāng)一次復(fù)印頁(yè)數(shù)不超過(guò)20時(shí),根據(jù)收費(fèi)等于每頁(yè)收費(fèi)乘以頁(yè)數(shù)即可求得y2=0.12x,當(dāng)一次復(fù)印頁(yè)數(shù)超過(guò)20時(shí),根據(jù)題意求得y2=0.09x+0.6;

(3)設(shè)y=y1-y2,得到y(tǒng)與x的函數(shù)關(guān)系,根據(jù)y與x的函數(shù)關(guān)系式即可作出判斷.【詳解】解:(1)當(dāng)x=10時(shí),甲復(fù)印店收費(fèi)為:0,1×10=1;乙復(fù)印店收費(fèi)為:0.12×10=1.2;當(dāng)x=30時(shí),甲復(fù)印店收費(fèi)為:0,1×30=3;乙復(fù)印店收費(fèi)為:0.12×20+0.09×10=3.3;故答案為1,3;1.2,3.3;(2)y1=0.1x(x≥0);y2=;(3)顧客在乙復(fù)印店復(fù)印花費(fèi)少;當(dāng)x>70時(shí),y1=0.1x,y2=0.09x+0.6,設(shè)y=y1﹣y2,∴y1﹣y2=0.1x﹣(0.09x+0.6)=0.01x﹣0.6,設(shè)y=0.01x﹣0.6,由0.01>0,則y隨x的增大而增大,當(dāng)x=70時(shí),y=0.1∴x>70時(shí),y>0.1,∴y1>y2,∴當(dāng)x>70時(shí),顧客在乙復(fù)印店復(fù)印花費(fèi)少.【點(diǎn)睛】本題考查了一次函數(shù)的應(yīng)用,讀懂題目信息,列出函數(shù)關(guān)系式是解題的關(guān)鍵.22、(1)見(jiàn)解析;(2)見(jiàn)解析;(3).【解析】

(1)根據(jù)P(m,n)移到P(m+6,n+1)可知△ABC向右平移6個(gè)單位,向上平移了一個(gè)單位,由圖形平移的性質(zhì)即可得出點(diǎn)A1,B1,C1的坐標(biāo),再順次連接即可;(2)根據(jù)圖形旋轉(zhuǎn)的性質(zhì)畫(huà)出旋轉(zhuǎn)后的圖形即可;(3)先求出BC長(zhǎng),再利用扇形面積公式,列式計(jì)算即可得解.【詳解】解:(1)平移△ABC得到△A1B1C1,點(diǎn)P(m,n)移到P(m+6,n+1)處,∴△ABC向右平移6個(gè)單位,向上平移了一個(gè)單位,∴A1(4,4),B1(2,0),C1(8,1);順次連接A1,B1,C1三點(diǎn)得到所求的△A1B1C1(2)如圖所示:△A2B2C即為所求三角形.(3)BC的長(zhǎng)為:BC掃過(guò)的面積【點(diǎn)睛】本題考查了利用旋轉(zhuǎn)變換作圖,利用平移變換作圖,比較簡(jiǎn)單,熟練掌握網(wǎng)格結(jié)構(gòu),準(zhǔn)確找出對(duì)應(yīng)點(diǎn)的位置是解題的關(guān)鍵.23、(1)y=x2﹣x﹣2;(2)9;(3)Q坐標(biāo)為(﹣)或(4﹣)或(2,1)或(4+,﹣).【解析】試題分析:把點(diǎn)代入拋物線,求出的值即可.先用待定系數(shù)法求出直線BE的解析式,進(jìn)而求得直線AD的解析式,設(shè)則表示出,用配方法求出它的最大值,聯(lián)立方程求出點(diǎn)的坐標(biāo),最大值=,進(jìn)而計(jì)算四邊形EAPD面積的最大值;分兩種情況進(jìn)行討論即可.試題解析:(1)∵在拋物線上,∴解得∴拋物線的解析式為(2)過(guò)點(diǎn)P作軸交AD于點(diǎn)G,∵∴直線BE的解析式為∵AD∥BE,設(shè)直線AD的解析式為代入,可得∴直線AD的解析式為設(shè)則則∴當(dāng)x=1時(shí),PG的值最大,最大值為2,由解得或∴∴最大值=∵AD∥BE,∴∴S四邊形APDE最大=S△ADP最大+(3)①如圖3﹣1中,當(dāng)時(shí),作于T.∵∴∴∴可得②如圖3﹣2中,當(dāng)時(shí),當(dāng)時(shí),當(dāng)時(shí),Q3綜上所述,滿足條件點(diǎn)點(diǎn)Q坐標(biāo)為或或或24、(1)點(diǎn)B的坐標(biāo)是(-5,-4);直線AB的解析式為:(2)四邊形CBED是菱形.理由見(jiàn)解析【解析】

(1)根據(jù)反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征,將點(diǎn)A代入雙曲線方程求得k值,即利用待定系數(shù)法求得雙曲線方程;然后將B點(diǎn)代入其中,從而求得a值;設(shè)直線AB的解析式為y=mx+n,將A、B兩點(diǎn)的坐標(biāo)代入,利用待定系數(shù)法解答;(2)由點(diǎn)C、D的坐標(biāo)、已知條件“BE∥x軸”及兩點(diǎn)間的距離公式求得,CD=5,BE=5,且BE∥CD,從而可以證明四邊形CBED是平行四邊形;然后在Rt△OED中根據(jù)勾股定理求得ED=5,所以ED=CD,從而證明四邊形CBED是菱形.【詳解】解:(1)∵雙曲線過(guò)A(3,),∴.把B(-5,)代入,得.∴點(diǎn)B

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論