2021-2022學(xué)年陜西西安市愛知中學(xué)中考數(shù)學(xué)最后一模試卷含解析_第1頁
2021-2022學(xué)年陜西西安市愛知中學(xué)中考數(shù)學(xué)最后一模試卷含解析_第2頁
2021-2022學(xué)年陜西西安市愛知中學(xué)中考數(shù)學(xué)最后一模試卷含解析_第3頁
2021-2022學(xué)年陜西西安市愛知中學(xué)中考數(shù)學(xué)最后一模試卷含解析_第4頁
2021-2022學(xué)年陜西西安市愛知中學(xué)中考數(shù)學(xué)最后一模試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2021-2022學(xué)年陜西西安市愛知中學(xué)中考數(shù)學(xué)最后一模試卷注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,在中,,將折疊,使點落在邊上的點處,為折痕,若,則的值為()A. B. C. D.2.不解方程,判別方程2x2﹣3x=3的根的情況()A.有兩個相等的實數(shù)根 B.有兩個不相等的實數(shù)根C.有一個實數(shù)根 D.無實數(shù)根3.某種計算器標(biāo)價240元,若以8折優(yōu)惠銷售,仍可獲利20%,那么這種計算器的進價為()A.152元 B.156元 C.160元 D.190元4.解分式方程,分以下四步,其中,錯誤的一步是()A.方程兩邊分式的最簡公分母是(x﹣1)(x+1)B.方程兩邊都乘以(x﹣1)(x+1),得整式方程2(x﹣1)+3(x+1)=6C.解這個整式方程,得x=1D.原方程的解為x=15.一個盒子內(nèi)裝有大小、形狀相同的四個球,其中紅球1個、綠球1個、白球2個,小明摸出一個球不放回,再摸出一個球,則兩次都摸到白球的概率是()A. B. C. D.6.姜老師給出一個函數(shù)表達(dá)式,甲、乙、丙三位同學(xué)分別正確指出了這個函數(shù)的一個性質(zhì).甲:函數(shù)圖像經(jīng)過第一象限;乙:函數(shù)圖像經(jīng)過第三象限;丙:在每一個象限內(nèi),y值隨x值的增大而減小.根據(jù)他們的描述,姜老師給出的這個函數(shù)表達(dá)式可能是()A. B. C. D.7.小明在學(xué)習(xí)了正方形之后,給同桌小文出了道題,從下列四個條件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中選兩個作為補充條件,使?ABCD為正方形(如圖),現(xiàn)有下列四種選法,你認(rèn)為其中錯誤的是()A.①② B.②③ C.①③ D.②④8.如圖1,一個扇形紙片的圓心角為90°,半徑為1.如圖2,將這張扇形紙片折疊,使點A與點O恰好重合,折痕為CD,圖中陰影為重合部分,則陰影部分的面積為()A. B. C. D.9.下列圖形中,線段MN的長度表示點M到直線l的距離的是()A. B. C. D.10.下列計算正確的是()A.a(chǎn)3?a3=a9B.(a+b)2=a2+b2C.a(chǎn)2÷a2=0D.(a2)3=a6二、填空題(共7小題,每小題3分,滿分21分)11.如圖,在△ABC中,∠C=90°,AC=8,BC=6,點D是AB的中點,點E在邊AC上,將△ADE沿DE翻折,使點A落在點A′處,當(dāng)A′E⊥AC時,A′B=____.12.因式分解:_________________.13.若不等式組的解集是﹣1<x≤1,則a=_____,b=_____.14.對于實數(shù),我們用符號表示兩數(shù)中較小的數(shù),如.因此,________;若,則________.15.一元二次方程有兩個不相等的實數(shù)根,則的取值范圍是________.16.在如圖的正方形方格紙中,每個小的四邊形都是相同的正方形,A,B,C,D都在格點處,AB與CD相交于O,則tan∠BOD的值等于__________.17.如圖,點A為函數(shù)y=(x>0)圖象上一點,連接OA,交函數(shù)y=(x>0)的圖象于點B,點C是x軸上一點,且AO=AC,則△ABC的面積為______.三、解答題(共7小題,滿分69分)18.(10分)如圖,直線與雙曲線相交于、兩點.(1),點坐標(biāo)為.(2)在軸上找一點,在軸上找一點,使的值最小,求出點兩點坐標(biāo)19.(5分)△ABC內(nèi)接于⊙O,AC為⊙O的直徑,∠A=60°,點D在AC上,連接BD作等邊三角形BDE,連接OE.如圖1,求證:OE=AD;如圖2,連接CE,求證:∠OCE=∠ABD;如圖3,在(2)的條件下,延長EO交⊙O于點G,在OG上取點F,使OF=2OE,延長BD到點M使BD=DM,連接MF,若tan∠BMF=,OD=3,求線段CE的長.20.(8分)近幾年購物的支付方式日益增多,某數(shù)學(xué)興趣小組就此進行了抽樣調(diào)查.調(diào)查結(jié)果顯示,支付方式有:A微信、B支付寶、C現(xiàn)金、D其他,該小組對某超市一天內(nèi)購買者的支付方式進行調(diào)查統(tǒng)計,得到如下兩幅不完整的統(tǒng)計圖.請你根據(jù)統(tǒng)計圖提供的信息,解答下列問題:本次一共調(diào)查了多少名購買者?請補全條形統(tǒng)計圖;在扇形統(tǒng)計圖中A種支付方式所對應(yīng)的圓心角為度.若該超市這一周內(nèi)有1600名購買者,請你估計使用A和B兩種支付方式的購買者共有多少名?21.(10分)如圖,在△ABC中,∠BAC=90°,AD⊥BC于點D,BF平分∠ABC交AD于點E,交AC于點F,求證:AE=AF.22.(10分)如圖1,二次函數(shù)y=ax2﹣2ax﹣3a(a<0)的圖象與x軸交于A、B兩點(點A在點B的右側(cè)),與y軸的正半軸交于點C,頂點為D.(1)求頂點D的坐標(biāo)(用含a的代數(shù)式表示);(2)若以AD為直徑的圓經(jīng)過點C.①求拋物線的函數(shù)關(guān)系式;②如圖2,點E是y軸負(fù)半軸上一點,連接BE,將△OBE繞平面內(nèi)某一點旋轉(zhuǎn)180°,得到△PMN(點P、M、N分別和點O、B、E對應(yīng)),并且點M、N都在拋物線上,作MF⊥x軸于點F,若線段MF:BF=1:2,求點M、N的坐標(biāo);③點Q在拋物線的對稱軸上,以Q為圓心的圓過A、B兩點,并且和直線CD相切,如圖3,求點Q的坐標(biāo).23.(12分)((1)計算:;(2)先化簡,再求值:,其中a=.24.(14分)如圖,AD是△ABC的中線,AD=12,AB=13,BC=10,求AC長.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】

根據(jù)折疊的性質(zhì)可知AE=DE=3,然后根據(jù)勾股定理求CD的長,然后利用正弦公式進行計算即可.【詳解】解:由折疊性質(zhì)可知:AE=DE=3∴CE=AC-AE=4-3=1在Rt△CED中,CD=故選:B【點睛】本題考查折疊的性質(zhì),勾股定理解直角三角形及正弦的求法,掌握公式正確計算是本題的解題關(guān)鍵.2、B【解析】一元二次方程的根的情況與根的判別式有關(guān),,方程有兩個不相等的實數(shù)根,故選B3、C【解析】【分析】設(shè)進價為x元,依題意得240×0.8-x=20x℅,解方程可得.【詳解】設(shè)進價為x元,依題意得240×0.8-x=20x℅解得x=160所以,進價為160元.故選C【點睛】本題考核知識點:列方程解應(yīng)用題.解題關(guān)鍵點:找出相等關(guān)系.4、D【解析】

先去分母解方程,再檢驗即可得出.【詳解】方程無解,雖然化簡求得,但是將代入原方程中,可發(fā)現(xiàn)和的分母都為零,即無意義,所以,即方程無解【點睛】本題考查了分式方程的求解與檢驗,在分式方程中,一般求得的x值都需要進行檢驗5、C【解析】

畫樹狀圖求出共有12種等可能結(jié)果,符合題意得有2種,從而求解.【詳解】解:畫樹狀圖得:∵共有12種等可能的結(jié)果,兩次都摸到白球的有2種情況,∴兩次都摸到白球的概率是:.故答案為C.【點睛】本題考查畫樹狀圖求概率,掌握樹狀圖的畫法準(zhǔn)確求出所有的等可能結(jié)果及符合題意的結(jié)果是本題的解題關(guān)鍵.6、B【解析】y=3x的圖象經(jīng)過一三象限過原點的直線,y隨x的增大而增大,故選項A錯誤;y=的圖象在一、三象限,在每個象限內(nèi)y隨x的增大而減小,故選項B正確;y=?的圖象在二、四象限,故選項C錯誤;y=x2的圖象是頂點在原點開口向上的拋物線,在一、二象限,故選項D錯誤;故選B.7、B【解析】

A、∵四邊形ABCD是平行四邊形,當(dāng)①AB=BC時,平行四邊形ABCD是菱形,當(dāng)②∠ABC=90°時,菱形ABCD是正方形,故此選項正確,不合題意;B、∵四邊形ABCD是平行四邊形,∴當(dāng)②∠ABC=90°時,平行四邊形ABCD是矩形,當(dāng)AC=BD時,這是矩形的性質(zhì),無法得出四邊形ABCD是正方形,故此選項錯誤,符合題意;C、∵四邊形ABCD是平行四邊形,當(dāng)①AB=BC時,平行四邊形ABCD是菱形,當(dāng)③AC=BD時,菱形ABCD是正方形,故此選項正確,不合題意;D、∵四邊形ABCD是平行四邊形,∴當(dāng)②∠ABC=90°時,平行四邊形ABCD是矩形,當(dāng)④AC⊥BD時,矩形ABCD是正方形,故此選項正確,不合題意.故選C.8、C【解析】

連接OD,根據(jù)勾股定理求出CD,根據(jù)直角三角形的性質(zhì)求出∠AOD,根據(jù)扇形面積公式、三角形面積公式計算,得到答案.【詳解】解:連接OD,在Rt△OCD中,OC=OD=2,∴∠ODC=30°,CD=∴∠COD=60°,∴陰影部分的面積=,故選:C.【點睛】本題考查的是扇形面積計算、勾股定理,掌握扇形面積公式是解題的關(guān)鍵.9、A【解析】解:圖B、C、D中,線段MN不與直線l垂直,故線段MN的長度不能表示點M到直線l的距離;圖A中,線段MN與直線l垂直,垂足為點N,故線段MN的長度能表示點M到直線l的距離.故選A.10、D.【解析】試題分析:A、原式=a6,不符合題意;B、原式=a2+2ab+b2,不符合題意;C、原式=1,不符合題意;D、原式=a6,符合題意,故選D考點:整式的混合運算二、填空題(共7小題,每小題3分,滿分21分)11、或7【解析】

分兩種情況:①如圖1,作輔助線,構(gòu)建矩形,先由勾股定理求斜邊AB=10,由中點的定義求出AD和BD的長,證明四邊形HFGB是矩形,根據(jù)同角的三角函數(shù)列式可以求DG和DF的長,并由翻折的性質(zhì)得:∠DA'E=∠A,A'D=AD=5,由矩形性質(zhì)和勾股定理可以得出結(jié)論:A'B=;②如圖2,作輔助線,構(gòu)建矩形A'MNF,同理可以求出A'B的長.【詳解】解:分兩種情況:如圖1,過D作DG⊥BC與G,交A'E與F,過B作BH⊥A'E與H,D為AB的中點,BD=AB=AD,∠C=,AC=8,BC=6,AB=10,BD=AD=5,sin∠ABC=,DG=4,由翻折得:∠DA'E=∠A,A'D=AD=5,sin∠DA'E=sin∠A=.DF=3,FG=4-3=1,A'E⊥AC,BC⊥AC,A'E//BC,∠HFG+∠DGB=,∠DGB=,∠HFG=,∠EHB=,四邊形HFGB是矩形,BH=FG=1,同理得:A'E=AE=8-1=7,A'H=A'E-EH=7-6=1,在Rt△AHB中,由勾股定理得:A'B=.如圖2,過D作MN//AC,交BC與于N,過A'作A'F//AC,交BC的延長線于F,延長A'E交直線DN于M,A'E⊥AC,A'M⊥MN,A'E⊥A'F,∠M=∠MA'F=,∠ACB=,∠F=∠ACB=,四邊形MA'FN県矩形,MN=A'F,FN=A'M,由翻折得:A'D=AD=5,Rt△A'MD中,DM=3,A'M=4,FN=A'M=4,Rt△BDN中,BD=5,DN=4,BN=3,A'F=MN=DM+DN=3+4=7,BF=BN+FN=3+4=7,Rt△ABF中,由勾股定理得:A'B=;綜上所述,A'B的長為或.故答案為:或.【點睛】本題主要考查三角形翻轉(zhuǎn)后的性質(zhì),注意不同的情況需分情況討論.12、【解析】

提公因式法和應(yīng)用公式法因式分解.【詳解】解:.故答案為:【點睛】本題考查因式分解,要將一個多項式分解因式的一般步驟是首先看各項有沒有公因式,若有公因式,則把它提取出來,之后再觀察是否是完全平方式或平方差式,若是就考慮用公式法繼續(xù)分解因式.13、-2-3【解析】

先求出每個不等式的解集,再求出不等式組的解集,即可得出關(guān)于a、b的方程,求出即可.【詳解】解:由題意得:解不等式①得:x>1+a,解不等式②得:x≤不等式組的解集為:1+a<x≤不等式組的解集是﹣1<x≤1,..1+a=-1,=1,解得:a=-2,b=-3故答案為:-2,-3.【點睛】本題主要考查解含參數(shù)的不等式組.14、2或-1.【解析】①∵--,∴min{-,-}=-;②∵min{(x?1)2,x2}=1,∴當(dāng)x>0.5時,(x?1)2=1,∴x?1=±1,∴x?1=1,x?1=?1,解得:x1=2,x2=0(不合題意,舍去),當(dāng)x?0.5時,x2=1,解得:x1=1(不合題意,舍去),x2=?1,15、且【解析】

根據(jù)一元二次方程的根與判別式△的關(guān)系,結(jié)合一元二次方程的定義解答即可.【詳解】由題意可得,1?k≠0,△=4+4(1?k)>0,∴k<2且k≠1.故答案為k<2且k≠1.【點睛】本題主要考查了一元二次方程的根的判別式的應(yīng)用,解題中要注意不要漏掉對二次項系數(shù)1-k≠0的考慮.16、3【解析】試題解析:平移CD到C′D′交AB于O′,如圖所示,則∠BO′D′=∠BOD,∴tan∠BOD=tan∠BO′D′,設(shè)每個小正方形的邊長為a,則O′B=,O′D′=,BD′=3a,作BE⊥O′D′于點E,則BE=,∴O′E=,∴tanBO′E=,∴tan∠BOD=3.考點:解直角三角形.17、6.【解析】

作輔助線,根據(jù)反比例函數(shù)關(guān)系式得:S△AOD=,S△BOE=,再證明△BOE∽△AOD,由性質(zhì)得OB與OA的比,由同高兩三角形面積的比等于對應(yīng)底邊的比可以得出結(jié)論.【詳解】如圖,分別作BE⊥x軸,AD⊥x軸,垂足分別為點E、D,∴BE∥AD,

∴△BOE∽△AOD,

∴,

∵OA=AC,

∴OD=DC,

∴S△AOD=S△ADC=S△AOC,

∵點A為函數(shù)y=(x>0)的圖象上一點,

∴S△AOD=,

同理得:S△BOE=,

∴,

∴,

∴,

∴,

∴,

故答案為6.三、解答題(共7小題,滿分69分)18、(1),;(1),.【解析】

(1)由點A在一次函數(shù)圖象上,將A(-1,a)代入y=x+4,求出a的值,得到點A的坐標(biāo),再由點A的坐標(biāo)利用待定系數(shù)法求出反比例函數(shù)解析式,聯(lián)立兩函數(shù)解析式成方程組,解方程組即可求出點B坐標(biāo);

(1)作點A關(guān)于y軸的對稱點A′,作點B作關(guān)于x軸的對稱點B′,連接A′B′,交x軸于點P,交y軸于點Q,連接PB、QA.利用待定系數(shù)法求出直線A′B′的解析式,進而求出P、Q兩點坐標(biāo).【詳解】解:(1)把點A(-1,a)代入一次函數(shù)y=x+4,

得:a=-1+4,解得:a=3,

∴點A的坐標(biāo)為(-1,3).

把點A(-1,3)代入反比例函數(shù)y=,

得:k=-3,

∴反比例函數(shù)的表達(dá)式y(tǒng)=-.

聯(lián)立兩個函數(shù)關(guān)系式成方程組得:解得:或∴點B的坐標(biāo)為(-3,1).

故答案為3,(-3,1);(1)作點A關(guān)于y軸的對稱點A′,作點B作關(guān)于x軸的對稱點B′,連接A′B′,交x軸于點P,交y軸于點Q,連接PB、QA,如圖所示.

∵點B、B′關(guān)于x軸對稱,點B的坐標(biāo)為(-3,1),

∴點B′的坐標(biāo)為(-3,-1),PB=PB′,

∵點A、A′關(guān)于y軸對稱,點A的坐標(biāo)為(-1,3),

∴點A′的坐標(biāo)為(1,3),QA=QA′,

∴BP+PQ+QA=B′P+PQ+QA′=A′B′,值最?。?/p>

設(shè)直線A′B′的解析式為y=mx+n,

把A′,B′兩點代入得:解得:∴直線A′B′的解析式為y=x+1.

令y=0,則x+1=0,解得:x=-1,點P的坐標(biāo)為(-1,0),

令x=0,則y=1,點Q的坐標(biāo)為(0,1).【點睛】本題考查反比例函數(shù)與一次函數(shù)的交點問題、待定系數(shù)法求函數(shù)解析式、軸對稱中的最短線路問題,解題的關(guān)鍵是:(1)聯(lián)立兩函數(shù)解析式成方程組,解方程組求出交點坐標(biāo);(1)根據(jù)軸對稱的性質(zhì)找出點P、Q的位置.本題屬于基礎(chǔ)題,難度適中,解決該題型題目時,聯(lián)立解析式成方程組,解方程組求出交點坐標(biāo)是關(guān)鍵.19、(1)證明見解析;(2)證明見解析;(3)CE=.【解析】

(1)連接OB,證明△ABD≌△OBE,即可證出OE=AD.(2)連接OB,證明△OCE≌△OBE,則∠OCE=∠OBE,由(1)的全等可知∠ABD=∠OBE,則∠OCE=∠ABD.(3)過點M作AB的平行線交AC于點Q,過點D作DN垂直EG于點N,則△ADB≌△MQD,四邊形MQOG為平行四邊形,∠DMF=∠EDN,再結(jié)合特殊角度和已知的線段長度求出CE的長度即可.【詳解】解:(1)如圖1所示,連接OB,∵∠A=60°,OA=OB,∴△AOB為等邊三角形,∴OA=OB=AB,∠A=∠ABO=∠AOB=60°,∵△DBE為等邊三角形,∴DB=DE=BE,∠DBE=∠BDE=∠DEB=60°,∴∠ABD=∠OBE,∴△ADB≌△OBE(SAS),∴OE=AD;(2)如圖2所示,由(1)可知△ADB≌△OBE,∴∠BOE=∠A=60°,∠ABD=∠OBE,∵∠BOA=60°,∴∠EOC=∠BOE=60°,又∵OB=OC,OE=OE,∴△BOE≌△COE(SAS),∴∠OCE=∠OBE,∴∠OCE=∠ABD;(3)如圖3所示,過點M作AB的平行線交AC于點Q,過點D作DN垂直EG于點N,∵BD=DM,∠ADB=∠QDM,∠QMD=∠ABD,∴△ADB≌△MQD(ASA),∴AB=MQ,∵∠A=60°,∠ABC=90°,∴∠ACB=30°,∴AB==AO=CO=OG,∴MQ=OG,∵AB∥GO,∴MQ∥GO,∴四邊形MQOG為平行四邊形,設(shè)AD為x,則OE=x,OF=2x,∵OD=3,∴OA=OG=3+x,GF=3﹣x,∵DQ=AD=x,∴OQ=MG=3﹣x,∴MG=GF,∵∠DOG=60°,∴∠MGF=120°,∴∠GMF=∠GFM=30°,∵∠QMD=∠ABD=∠ODE,∠ODN=30°,∴∠DMF=∠EDN,∵OD=3,∴ON=,DN=,∵tan∠BMF=,∴tan∠NDE=,∴,解得x=1,∴NE=,∴DE=,∴CE=.故答案為(1)證明見解析;(2)證明見解析;(3)CE=.【點睛】本題考查圓的相關(guān)性質(zhì)以及與圓有關(guān)的計算,全等三角形的性質(zhì)和判定,第三問構(gòu)造全等三角形找到與∠BMF相等的角為解題的關(guān)鍵.20、(1)本次一共調(diào)查了200名購買者;(2)補全的條形統(tǒng)計圖見解析,A種支付方式所對應(yīng)的圓心角為108;(3)使用A和B兩種支付方式的購買者共有928名.【解析】分析:(1)根據(jù)B的數(shù)量和所占的百分比可以求得本次調(diào)查的購買者的人數(shù);(2)根據(jù)統(tǒng)計圖中的數(shù)據(jù)可以求得選擇A和D的人數(shù),從而可以將條形統(tǒng)計圖補充完整,求得在扇形統(tǒng)計圖中A種支付方式所對應(yīng)的圓心角的度數(shù);(3)根據(jù)統(tǒng)計圖中的數(shù)據(jù)可以計算出使用A和B兩種支付方式的購買者共有多少名.詳解:(1)56÷28%=200,即本次一共調(diào)查了200名購買者;(2)D方式支付的有:200×20%=40(人),A方式支付的有:200-56-44-40=60(人),補全的條形統(tǒng)計圖如圖所示,在扇形統(tǒng)計圖中A種支付方式所對應(yīng)的圓心角為:360°×=108°,(3)1600×=928(名),答:使用A和B兩種支付方式的購買者共有928名.點睛:本題考查扇形統(tǒng)計圖、條形統(tǒng)計圖、用樣本估計總體,解答本題的關(guān)鍵是明確題意,利用數(shù)形結(jié)合的思想解答.21、見解析【解析】

根據(jù)角平分線的定義可得∠ABF=∠CBF,由已知條件可得∠ABF+∠AFB=∠CBF+∠BED=90°,根據(jù)余角的性質(zhì)可得∠AFB=∠BED,即可求得∠AFE=∠AEF,由等腰三角形的判定即可證得結(jié)論.【詳解】∵BF平分∠ABC,∴∠ABF=∠CBF,∵∠BAC=90°,AD⊥BC,∴∠ABF+∠AFB=∠CBF+∠BED=90°,∴∠AFB=∠BED,∵∠AEF=∠BED,∴∠AFE=∠AEF,∴AE=AF.【點睛】本題考查了等腰三角形的判定、直角三角形的性質(zhì),根據(jù)余角的性質(zhì)證得∠AFB=∠BED是解題的關(guān)鍵.22、(1)(1,﹣4a);(2)①y=﹣x2+2x+3;②M(,)、N(,);③點Q的坐標(biāo)為(1,﹣4+2)或(1,﹣4﹣2).【解析】分析:(1)將二次函數(shù)的解析式進行配方即可得到頂點D的坐標(biāo).(2)①以AD為直徑的圓經(jīng)過點C,即點C在以AD為直徑的圓的圓周上,依據(jù)圓周角定理不難得出△ACD是個直角三角形,且∠ACD=90°,A點坐標(biāo)可得,而C、D的坐標(biāo)可由a表達(dá)出來,在得出AC、CD、AD的長度表達(dá)式后,依據(jù)勾股定理列等式即可求出a的值.②將△OBE繞平面內(nèi)某一點旋轉(zhuǎn)180°得到△PMN,說明了PM正好和x軸平行,且PM=OB=1,所以求M、N的坐標(biāo)關(guān)鍵是求出點M的坐標(biāo);首先根據(jù)①的函數(shù)解析式設(shè)出M點的坐標(biāo),然后根據(jù)題干條件:BF=2MF作為等量關(guān)系進行解答即可.③設(shè)⊙Q與直線CD的切點為G,連接QG,由C、D兩點的坐標(biāo)不難判斷出∠CDQ=45°,那么△QGD為等腰直角三角形,即QD2=2QG2=2QB2,設(shè)出點Q的坐標(biāo),然后用Q點縱坐標(biāo)表達(dá)出QD、QB的長,根據(jù)上面的等式列方程即可求出點Q的坐標(biāo).詳解:(1)∵y=ax2﹣2ax﹣3a=a(x﹣1)2﹣4a,∴D(1,﹣4a).(2)①∵以AD為直徑的圓經(jīng)過點C,∴△ACD為直角三角形,且∠ACD=90°;由y=ax2﹣2ax﹣3a=a(x﹣3)(x+1)知,A(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論