2022年湖南省株洲市天元區(qū)重點達標名校中考押題數(shù)學預測卷含解析_第1頁
2022年湖南省株洲市天元區(qū)重點達標名校中考押題數(shù)學預測卷含解析_第2頁
2022年湖南省株洲市天元區(qū)重點達標名校中考押題數(shù)學預測卷含解析_第3頁
2022年湖南省株洲市天元區(qū)重點達標名校中考押題數(shù)學預測卷含解析_第4頁
2022年湖南省株洲市天元區(qū)重點達標名校中考押題數(shù)學預測卷含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022年湖南省株洲市天元區(qū)重點達標名校中考押題數(shù)學預測卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(共10小題,每小題3分,共30分)1.一次函數(shù)y=kx+k(k≠0)和反比例函數(shù)在同一直角坐標系中的圖象大致是()A. B. C. D.2.為了開展陽光體育活動,某班計劃購買毽子和跳繩兩種體育用品,共花費35元,毽子單價3元,跳繩單價5元,購買方案有()A.1種 B.2種 C.3種 D.4種3.如圖,△ABC中,AB=4,AC=3,BC=2,將△ABC繞點A順時針旋轉(zhuǎn)60°得到△AED,則BE的長為()A.5 B.4 C.3 D.24.如圖,矩形OABC有兩邊在坐標軸上,點D、E分別為AB、BC的中點,反比例函數(shù)y=(x<0)的圖象經(jīng)過點D、E.若△BDE的面積為1,則k的值是()A.﹣8 B.﹣4 C.4 D.85.如圖是一個由4個相同的正方體組成的立體圖形,它的主視圖是()A. B. C. D.6.如圖所示的幾何體的俯視圖是()A. B. C. D.7.半徑為的正六邊形的邊心距和面積分別是()A., B.,C., D.,8.如圖是某個幾何體的展開圖,該幾何體是()A.三棱柱 B.圓錐 C.四棱柱 D.圓柱9.下列式子成立的有()個①﹣的倒數(shù)是﹣2②(﹣2a2)3=﹣8a5③()=﹣2④方程x2﹣3x+1=0有兩個不等的實數(shù)根A.1 B.2 C.3 D.410.實數(shù)的倒數(shù)是()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,小強和小華共同站在路燈下,小強的身高EF=1.8m,小華的身高MN=1.5m,他們的影子恰巧等于自己的身高,即BF=1.8m,CN=1.5m,且兩人相距4.7m,則路燈AD的高度是___.12.若分式方程有增根,則m的值為______.13.等腰△ABC的底邊BC=8cm,腰長AB=5cm,一動點P在底邊上從點B開始向點C以0.25cm/秒的速度運動,當點P運動到PA與腰垂直的位置時,點P運動的時間應為_____秒.14.有一枚質(zhì)地均勻的骰子,六個面分別表有1到6的點數(shù),任意將它拋擲兩次,并將兩次朝上面的點數(shù)相加,則其和小于6的概率是______.15.如圖,邊長一定的正方形ABCD,Q是CD上一動點,AQ交BD于點M,過M作MN⊥AQ交BC于N點,作NP⊥BD于點P,連接NQ,下列結(jié)論:①AM=MN;②MP=BD;③BN+DQ=NQ;④為定值。其中一定成立的是_______.16.不等式組的解是____.三、解答題(共8題,共72分)17.(8分)為響應國家全民閱讀的號召,某社區(qū)鼓勵居民到社區(qū)閱覽室借閱讀書,并統(tǒng)計每年的借閱人數(shù)和圖書借閱總量(單位:本),該閱覽室在2014年圖書借閱總量是7500本,2016年圖書借閱總量是10800本.(1)求該社區(qū)的圖書借閱總量從2014年至2016年的年平均增長率;(2)已知2016年該社區(qū)居民借閱圖書人數(shù)有1350人,預計2017年達到1440人,如果2016年至2017年圖書借閱總量的增長率不低于2014年至2016年的年平均增長率,那么2017年的人均借閱量比2016年增長a%,求a的值至少是多少?18.(8分)某市A,B兩個蔬菜基地得知四川C,D兩個災民安置點分別急需蔬菜240t和260t的消息后,決定調(diào)運蔬菜支援災區(qū),已知A蔬菜基地有蔬菜200t,B蔬菜基地有蔬菜300t,現(xiàn)將這些蔬菜全部調(diào)運C,D兩個災區(qū)安置點.從A地運往C,D兩處的費用分別為每噸20元和25元,從B地運往C,D兩處的費用分別為每噸15元和18元.設(shè)從B地運往C處的蔬菜為x噸.請?zhí)顚懴卤恚⑶髢蓚€蔬菜基地調(diào)運蔬菜的運費相等時x的值;CD總計/tA200Bx300總計/t240260500(2)設(shè)A,B兩個蔬菜基地的總運費為w元,求出w與x之間的函數(shù)關(guān)系式,并求總運費最小的調(diào)運方案;經(jīng)過搶修,從B地到C處的路況得到進一步改善,縮短了運輸時間,運費每噸減少m元(m>0),其余線路的運費不變,試討論總運費最小的調(diào)動方案.19.(8分)如圖,某同學在測量建筑物AB的高度時,在地面的C處測得點A的仰角為30°,向前走60米到達D處,在D處測得點A的仰角為45°,求建筑物AB的高度.20.(8分)如圖,熱氣球探測器顯示,從熱氣球A處看一棟樓頂部B處的仰角為30°,看這棟樓底部C處的俯角為60°,熱氣球與樓的水平距離AD為100米,試求這棟樓的高度BC.21.(8分)我們定義:如果一個三角形一條邊上的高等于這條邊,那么這個三角形叫做“等高底”三角形,這條邊叫做這個三角形的“等底”.(1)概念理解:如圖1,在△ABC中,AC=6,BC=3,∠ACB=30°,試判斷△ABC是否是”等高底”三角形,請說明理由.(1)問題探究:如圖1,△ABC是“等高底”三角形,BC是”等底”,作△ABC關(guān)于BC所在直線的對稱圖形得到△A'BC,連結(jié)AA′交直線BC于點D.若點B是△AA′C的重心,求的值.(3)應用拓展:如圖3,已知l1∥l1,l1與l1之間的距離為1.“等高底”△ABC的“等底”BC在直線l1上,點A在直線l1上,有一邊的長是BC的倍.將△ABC繞點C按順時針方向旋轉(zhuǎn)45°得到△A'B'C,A′C所在直線交l1于點D.求CD的值.22.(10分)已知,在平面直角坐標系xOy中,拋物線L:y=x2-4x+3與x軸交于A,B兩點(點A在點B的左側(cè)),頂點為C.(1)求點C和點A的坐標.(2)定義“L雙拋圖形”:直線x=t將拋物線L分成兩部分,首先去掉其不含頂點的部分,然后作出拋物線剩余部分關(guān)于直線x=t的對稱圖形,得到的整個圖形稱為拋物線L關(guān)于直線x=t的“L雙拋圖形”(特別地,當直線x=t恰好是拋物線的對稱軸時,得到的“L雙拋圖形”不變),①當t=0時,拋物線L關(guān)于直找x=0的“L雙拋圖形”如圖所示,直線y=3與“L雙拋圖形”有______個交點;②若拋物線L關(guān)于直線x=t的“L雙拋圖形”與直線y=3恰好有兩個交點,結(jié)合圖象,直接寫出t的取值范圍:______;③當直線x=t經(jīng)過點A時,“L雙拋圖形”如圖所示,現(xiàn)將線段AC所在直線沿水平(x軸)方向左右平移,交“L雙拋圖形”于點P,交x軸于點Q,滿足PQ=AC時,求點P的坐標.23.(12分)如圖,二次函數(shù)y=﹣+mx+4﹣m的圖象與x軸交于A、B兩點(A在B的左側(cè)),與),軸交于點C.拋物線的對稱軸是直線x=﹣2,D是拋物線的頂點.(1)求二次函數(shù)的表達式;(2)當﹣<x<1時,請求出y的取值范圍;(3)連接AD,線段OC上有一點E,點E關(guān)于直線x=﹣2的對稱點E'恰好在線段AD上,求點E的坐標.24.已知:如圖,在平行四邊形ABCD中,E、F分別為邊AB、CD的中點,BD是對角線,AG∥DB交CB的延長線于G.求證:△ADE≌△CBF;若四邊形BEDF是菱形,則四邊形AGBD是什么特殊四邊形?并證明你的結(jié)論.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】A、由反比例函數(shù)的圖象在一、三象限可知k>0,由一次函數(shù)的圖象過二、四象限可知k<0,兩結(jié)論相矛盾,故選項錯誤;B、由反比例函數(shù)的圖象在二、四象限可知k<0,由一次函數(shù)的圖象與y軸交點在y軸的正半軸可知k>0,兩結(jié)論相矛盾,故選項錯誤;C、由反比例函數(shù)的圖象在二、四象限可知k<0,由一次函數(shù)的圖象過二、三、四象限可知k<0,兩結(jié)論一致,故選項正確;D、由反比例函數(shù)的圖象在一、三象限可知k>0,由一次函數(shù)的圖象與y軸交點在y軸的負半軸可知k<0,兩結(jié)論相矛盾,故選項錯誤,故選C.2、B【解析】

首先設(shè)毽子能買x個,跳繩能買y根,根據(jù)題意列方程即可,再根據(jù)二元一次方程求解.【詳解】解:設(shè)毽子能買x個,跳繩能買y根,根據(jù)題意可得:3x+5y=35,y=7-x,∵x、y都是正整數(shù),∴x=5時,y=4;x=10時,y=1;∴購買方案有2種.故選B.【點睛】本題主要考查二元一次方程的應用,關(guān)鍵在于根據(jù)題意列方程.3、B【解析】

根據(jù)旋轉(zhuǎn)的性質(zhì)可得AB=AE,∠BAE=60°,然后判斷出△AEB是等邊三角形,再根據(jù)等邊三角形的三條邊都相等可得BE=AB.【詳解】解:∵△ABC繞點A順時針旋轉(zhuǎn)

60°得到△AED,∴AB=AE,∠BAE=60°,∴△AEB是等邊三角形,∴BE=AB,∵AB=1,∴BE=1.故選B.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),等邊三角形的判定與性質(zhì),主要利用了旋轉(zhuǎn)前后對應邊相等以及旋轉(zhuǎn)角的定義.4、B【解析】

根據(jù)反比例函數(shù)的圖象和性質(zhì)結(jié)合矩形和三角形面積解答.【詳解】解:作,連接.∵四邊形AHEB,四邊形ECOH都是矩形,BE=EC,∴故選B.【點睛】此題重點考查學生對反比例函數(shù)圖象和性質(zhì)的理解,熟練掌握反比例函數(shù)圖象和性質(zhì)是解題的關(guān)鍵.5、D【解析】

從正面看,有2層,3列,左側(cè)一列有1層,中間一列有2層,右側(cè)一列有一層,據(jù)此解答即可.【詳解】∵從正面看,有2層,3列,左側(cè)一列有1層,中間一列有2層,右側(cè)一列有一層,∴D是該幾何體的主視圖.故選D.【點睛】本題考查三視圖的知識,從正面看到的圖是正視圖,從上面看到的圖形是俯視圖,從左面看到的圖形是左視圖,能看到的線畫實線,被遮擋的線畫虛線.6、D【解析】

找到從上面看所得到的圖形即可,注意所有看到的棱都應表現(xiàn)在俯視圖中.【詳解】從上往下看,該幾何體的俯視圖與選項D所示視圖一致.故選D.【點睛】本題考查了簡單組合體三視圖的知識,俯視圖是從物體的上面看得到的視圖.7、A【解析】

首先根據(jù)題意畫出圖形,易得△OBC是等邊三角形,繼而可得正六邊形的邊長為R,然后利用解直角三角形求得邊心距,又由S正六邊形=求得正六邊形的面積.【詳解】解:如圖,O為正六邊形外接圓的圓心,連接OB,OC,過點O作OH⊥BC于H,∵六邊形ABCDEF是正六邊形,半徑為,∴∠BOC=,∵OB=OC=R,∴△OBC是等邊三角形,∴BC=OB=OC=R,∵OH⊥BC,∴在中,,即,∴,即邊心距為;∵,∴S正六邊形=,故選:A.【點睛】本題考查了正多邊形和圓的知識;求得正六邊形的中心角為60°,得到等邊三角形是正確解答本題的關(guān)鍵.8、A【解析】

側(cè)面為三個長方形,底邊為三角形,故原幾何體為三棱柱.【詳解】解:觀察圖形可知,這個幾何體是三棱柱.

故選A.【點睛】本題考查的是三棱柱的展開圖,對三棱柱有充分的理解是解題的關(guān)鍵..9、B【解析】

根據(jù)倒數(shù)的定義,冪的乘方、二次根式的混合運算法則以及根的判別式進行判斷.【詳解】解:①﹣的倒數(shù)是﹣2,故正確;②(﹣2a2)3=﹣8a6,故錯誤;③(-)=﹣2,故錯誤;④因為△=(﹣3)2﹣4×1×1=5>0,所以方程x2﹣3x+1=0有兩個不等的實數(shù)根,故正確.故選B.【點睛】考查了倒數(shù)的定義,冪的乘方、二次根式的混合運算法則以及根的判別式,屬于比較基礎(chǔ)的題目,熟記計算法則即可解答.10、D【解析】因為=,所以的倒數(shù)是.故選D.二、填空題(本大題共6個小題,每小題3分,共18分)11、4m【解析】

設(shè)路燈的高度為x(m),根據(jù)題意可得△BEF∽△BAD,再利用相似三角形的對應邊正比例整理得DF=x﹣1.8,同理可得DN=x﹣1.5,因為兩人相距4.7m,可得到關(guān)于x的一元一次方程,然后求解方程即可.【詳解】設(shè)路燈的高度為x(m),∵EF∥AD,∴△BEF∽△BAD,∴EFAD即1.8x解得:DF=x﹣1.8,∵MN∥AD,∴△CMN∽△CAD,∴MNAD即1.5x解得:DN=x﹣1.5,∵兩人相距4.7m,∴FD+ND=4.7,∴x﹣1.8+x﹣1.5=4.7,解得:x=4m,答:路燈AD的高度是4m.12、-1【解析】

增根是分式方程化為整式方程后產(chǎn)生的使分式方程的分母為0的根.把增根代入化為整式方程的方程即可求出m的值.【詳解】方程兩邊都乘(x-1),得x-1(x-1)=-m∵原方程增根為x=1,∴把x=1代入整式方程,得m=-1,故答案為:-1.【點睛】本題考查了分式方程的增根,增根確定后可按如下步驟進行:化分式方程為整式方程;把增根代入整式方程即可求得相關(guān)字母的值.13、7秒或25秒.【解析】考點:勾股定理;等腰三角形的性質(zhì).專題:動點型;分類討論.分析:根據(jù)等腰三角形三線合一性質(zhì)可得到BD的長,由勾股定理可求得AD的長,再分兩種情況進行分析:①PA⊥AC②PA⊥AB,從而可得到運動的時間.解答:解:如圖,作AD⊥BC,交BC于點D,∵BC=8cm,∴BD=CD=12∴AD=AB分兩種情況:當點P運動t秒后有PA⊥AC時,∵AP2=PD2+AD2=PC2-AC2,∴PD2+AD2=PC2-AC2,∴PD2+32=(PD+4)2-52∴PD=2.25,∴BP=4-2.25=1.75=0.25t,∴t=7秒,當點P運動t秒后有PA⊥AB時,同理可證得PD=2.25,∴BP=4+2.25=6.25=0.25t,∴t=25秒,∴點P運動的時間為7秒或25秒.點評:本題利用了等腰三角形的性質(zhì)和勾股定理求解.14、【解析】

列舉出所有情況,看兩個骰子向上的一面的點數(shù)和小于6的情況占總情況的多少即可.【詳解】解:列表得:

兩個骰子向上的一面的點數(shù)和小于6的有10種,

則其和小于6的概率是,

故答案為:.【點睛】本題考查了列表法與樹狀圖法,列表法可以不重復不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件樹狀圖法適用于兩步或兩步以上完成的事件解題時還要注意是放回實驗還是不放回實驗用到的知識點為:概率所求情況數(shù)與總情況數(shù)之比.15、①②③④【解析】①如圖1,作AU⊥NQ于U,交BD于H,連接AN,AC,∵∠AMN=∠ABC=90°,∴A,B,N,M四點共圓,∴∠NAM=∠DBC=45°,∠ANM=∠ABD=45°,∴∠ANM=∠NAM=45°,∴AM=MN;②由同角的余角相等知,∠HAM=∠PMN,∴Rt△AHM≌Rt△MPN,∴MP=AH=AC=BD;③∵∠BAN+∠QAD=∠NAQ=45°,∴在∠NAM作AU=AB=AD,且使∠BAN=∠NAU,∠DAQ=∠QAU,∴△ABN≌△UAN,△DAQ≌△UAQ,有∠UAN=∠UAQ,BN=NU,DQ=UQ,∴點U在NQ上,有BN+DQ=QU+UN=NQ;④如圖2,作MS⊥AB,垂足為S,作MW⊥BC,垂足為W,點M是對角線BD上的點,∴四邊形SMWB是正方形,有MS=MW=BS=BW,∴△AMS≌△NMW∴AS=NW,∴AB+BN=SB+BW=2BW,∵BW:BM=1:,∴.故答案為:①②③④點睛:本題考查了正方形的性質(zhì),四點共圓的判定,圓周角定理,等腰直角三角形的性質(zhì),全等三角形的判定和性質(zhì);熟練掌握正方形的性質(zhì),正確作出輔助線并運用有關(guān)知識理清圖形中西安段間的關(guān)系,證明三角形全等是解決問題的關(guān)鍵.16、【解析】

分別求出各不等式的解集,再求出其公共解集即可.【詳解】解不等式①,得x>1,

解不等式②,得x≤1,

所以不等式組的解集是1<x≤1,

故答案是:1<x≤1.【點睛】考查了一元一次不等式解集的求法,求不等式組解集的口訣:同大取大,同小取小,大小小大中間找,大大小小找不到(無解).三、解答題(共8題,共72分)17、(1)20%;(2)12.1.【解析】試題分析:(1)經(jīng)過兩次增長,求年平均增長率的問題,應該明確原來的基數(shù),增長后的結(jié)果.設(shè)這兩年的年平均增長率為x,則經(jīng)過兩次增長以后圖書館有書7100(1+x)2本,即可列方程求解;(2)先求出2017年圖書借閱總量的最小值,再求出2016年的人均借閱量,2017年的人均借閱量,進一步求得a的值至少是多少.試題解析:(1)設(shè)該社區(qū)的圖書借閱總量從2014年至2016年的年平均增長率為x,根據(jù)題意得7100(1+x)2=10800,即(1+x)2=1.44,解得:x1=0.2,x2=﹣2.2(舍去).答:該社區(qū)的圖書借閱總量從2014年至2016年的年平均增長率為20%;(2)10800(1+0.2)=12960(本)10800÷1310=8(本)12960÷1440=9(本)(9﹣8)÷8×100%=12.1%.故a的值至少是12.1.考點:一元二次方程的應用;一元一次不等式的應用;最值問題;增長率問題.18、(1)見解析;(2)w=2x+9200,方案見解析;(3)0<m<2時,(2)中調(diào)運方案總運費最??;m=2時,在40?x?240的前提下調(diào)運方案的總運費不變;2<m<15時,x=240總運費最小.【解析】

(1)根據(jù)題意可得解.(2)w與x之間的函數(shù)關(guān)系式為:w=20(240?x)+25(x?40)+15x+18(300?x);列不等式組解出40≤x≤240,可由w隨x的增大而增大,得出總運費最小的調(diào)運方案.(3)根據(jù)題意得出w與x之間的函數(shù)關(guān)系式,然后根據(jù)m的取值范圍不同分別分析得出總運費最小的調(diào)運方案.【詳解】解:(1)填表:依題意得:20(240?x)+25(x?40)=15x+18(300?x).解得:x=200.(2)w與x之間的函數(shù)關(guān)系為:w=20(240?x)+25(x?40)+15x+18(300?x)=2x+9200.依題意得:∴40?x?240在w=2x+9200中,∵2>0,∴w隨x的增大而增大,故當x=40時,總運費最小,此時調(diào)運方案為如表.(3)由題意知w=20(240?x)+25(x?40)+(15-m)x+18(300?x)=(2?m)x+9200∴0<m<2時,(2)中調(diào)運方案總運費最小;m=2時,在40?x?240的前提下調(diào)運方案的總運費不變;2<m<15時,x=240總運費最小,其調(diào)運方案如表二.【點睛】此題考查一次函數(shù)的應用,解題關(guān)鍵在于根據(jù)題意列出w與x之間的函數(shù)關(guān)系式,并注意分類討論思想的應用.19、(30+30)米.【解析】

解:設(shè)建筑物AB的高度為x米在Rt△ABD中,∠ADB=45°∴AB=DB=x∴BC=DB+CD=x+60在Rt△ABC中,∠ACB=30°,∴tan∠ACB=∴∴∴x=30+30∴建筑物AB的高度為(30+30)米20、這棟樓的高度BC是米.【解析】試題分析:在直角三角形ADB中和直角三角形ACD中,根據(jù)銳角三角函數(shù)中的正切可以分別求得BD和CD的長,從而可以求得BC的長.試題解析:解:∵°,°,°,AD=100,∴在Rt中,,在Rt中,.∴.點睛:本題考查解直角三角形的應用-仰角俯角問題,解答此類問題的關(guān)鍵是明確已知邊、已知角和未知邊之間的三角函數(shù)關(guān)系.21、(1)△ABC是“等高底”三角形;(1);(3)CD的值為,1,1.【解析】

(1)過A作AD⊥BC于D,則△ADC是直角三角形,∠ADC=90°,根據(jù)30°所對的直角邊等于斜邊的一半可得:根據(jù)“等高底”三角形的概念即可判斷.(1)點B是的重心,得到設(shè)則根據(jù)勾股定理可得即可求出它們的比值.(3)分兩種情況進行討論:①當時和②當時.【詳解】(1)△ABC是“等高底”三角形;理由:如圖1,過A作AD⊥BC于D,則△ADC是直角三角形,∠ADC=90°,∵∠ACB=30°,AC=6,∴∴AD=BC=3,即△ABC是“等高底”三角形;(1)如圖1,∵△ABC是“等高底”三角形,BC是“等底”,∴∵△ABC關(guān)于BC所在直線的對稱圖形是,∴∠ADC=90°,∵點B是的重心,∴設(shè)則由勾股定理得∴(3)①當時,Ⅰ.如圖3,作AE⊥BC于E,DF⊥AC于F,∵“等高底”△ABC的“等底”為BC,l1∥l1,l1與l1之間的距離為1,.∴∴BE=1,即EC=4,∴∵△ABC繞點C按順時針方向旋轉(zhuǎn)45°得到△A'B'C,∴∠DCF=45°,設(shè)∵l1∥l1,∴∴即∴∴Ⅱ.如圖4,此時△ABC等腰直角三角形,∵△ABC繞點C按順時針方向旋轉(zhuǎn)45°得到,∴是等腰直角三角形,∴②當時,Ⅰ.如圖5,此時△ABC是等腰直角三角形,∵△ABC繞點C按順時針方向旋轉(zhuǎn)45°得到△A'B'C,∴∴Ⅱ.如圖6,作于E,則∴∴∴△ABC繞點C按順時針方向旋轉(zhuǎn)45°,得到時,點A'在直線l1上,∴∥l1,即直線與l1無交點,綜上所述,CD的值為【點睛】屬于新定義問題,考查對與等底高三角形概念的理解,勾股定理,等腰直角三角形的性質(zhì)等,掌握等底高三角形的性質(zhì)是解題的關(guān)鍵.22、(1)C(2,-1),A(1,0);(2)①3,②0<t<1,③(+2,1)或(-+2,1)或(-1,0)【解析】

(1)令y=0得:x2-1x+3=0,然后求得方程的解,從而可得到A、B的坐標,然后再求得拋物線的對稱軸為x=2,最后將x=2代入可求得點C的縱坐標;(2)①拋物線與y軸交點坐標為(0,3),然后做出直線y=3,然后找出交點個數(shù)即可;②將y=3代入拋物線的解析式求得對應的x的值,從而可得到直線y=3與“L雙拋圖形”恰好有3個交點時t的取值,然后結(jié)合函數(shù)圖象可得到“L雙拋圖形”與直線y=3恰好有兩個交點時t的取值范圍;③首先證明四邊形ACQP為平行四邊形,由可得到點P的縱坐標為1,然后由函數(shù)解析式可求得點P的橫坐標.【詳解】(1)令y=0得:x2-1x+3=0,解得:x=1或x=3,∴A(1,0),B(3,0),∴拋物線的對稱軸為x=2,將x=2代入拋物線的解析式得:y=-1,∴C(2,-1);(2)①將x=0代入拋物線的解析式得:y=3,∴拋物線與y軸交點坐標為(0,3),如圖所示:作直線y=3,由圖象可知:直線y=3與“L雙拋圖形”有3個交點,故答案為3;②將y=3代入得:x2-1x+3=3,解得:x=0或x=1,由函數(shù)圖象可知:當0<t<1時,拋物線L關(guān)于直線x=t的“L雙拋圖形”與直線y=3恰好有兩個交點,故答案為0<t<1.③如圖2所示:∵PQ∥AC且PQ=AC,∴四邊形ACQP為平行四邊形,又∵點C的縱坐標為-1,∴點P的縱坐標為1,將y=1代入拋物線的解析式得:x2-1x+3=1,解得:x=+2或x=-+2.∴點P

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論