版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
課程:高等數(shù)學(xué)(一)(二)
(經(jīng)濟(jì)類班級(jí)使用)教材:高等數(shù)學(xué)(第三版)主編:方桂英,崔克儉出版社:科學(xué)出版社普通高等教育“十二五”國(guó)家規(guī)劃教材江西省優(yōu)秀教材一等獎(jiǎng)高等數(shù)學(xué)(一)第一章函數(shù)與極限第二章導(dǎo)數(shù)與微分第三章微分中值定理與導(dǎo)數(shù)的應(yīng)用第四章不定積分第五章定積分及其應(yīng)用高等數(shù)學(xué)(二)第六章多元函數(shù)微積分第七章微分方程與差分方程第八章無(wú)窮級(jí)數(shù)第一章分析基礎(chǔ)函數(shù)極限連續(xù)—研究對(duì)象—研究方法—研究橋梁函數(shù)與極限
第一章二、函數(shù)的性質(zhì)三、反函數(shù)、復(fù)合函數(shù)一、函數(shù)的概念第1節(jié)函數(shù)(復(fù)習(xí))四、初等函數(shù)元素a
屬于集合M,記作元素a
不屬于集合M,記作*一、集合(略講)1.定義及表示法定義1.
具有某種特定性質(zhì)的事物的總體稱為集合.組成集合的事物稱為元素.不含任何元素的集合稱為空集,記作
.
(或).注:
M
為數(shù)集表示M
中排除0的集;表示M
中排除0與負(fù)數(shù)的集.簡(jiǎn)稱集簡(jiǎn)稱元表示法:(1)列舉法:按某種方式列出集合中的全體元素.例:有限集合自然數(shù)集(2)描述法:
x
所具有的特征例:
整數(shù)集合或有理數(shù)集
p與q
互質(zhì)實(shí)數(shù)集合
x
為有理數(shù)或無(wú)理數(shù)開(kāi)區(qū)間閉區(qū)間無(wú)限區(qū)間點(diǎn)a的
鄰域其中,a
稱為鄰域中心,
稱為鄰域半徑.半開(kāi)區(qū)間去心
鄰域左
鄰域:右
鄰域:是B的子集
,或稱B包含A,2.集合之間的關(guān)系及運(yùn)算定義2
.則稱A若且則稱A
與B
相等,例如,顯然有下列關(guān)系:,,
若設(shè)有集合記作記作必有定義3.
給定兩個(gè)集合A,B,并集交集且差集且定義下列運(yùn)算:余集直積特例:記為平面上的全體點(diǎn)集或定義域二、函數(shù)定義5.設(shè)數(shù)集如果對(duì)D中每一個(gè)記為稱為值域函數(shù)圖形:自變量因變量
定義域
對(duì)應(yīng)規(guī)律的表示方法:解析法、圖像法、列表法使表達(dá)式或?qū)嶋H問(wèn)題有意義的自變量集合.如,絕對(duì)值函數(shù)定義域值域?qū)o(wú)實(shí)際背景的函數(shù),書(shū)寫(xiě)時(shí)可以省略定義域.對(duì)實(shí)際問(wèn)題,書(shū)寫(xiě)函數(shù)時(shí)必須寫(xiě)出定義域;自變量因變量對(duì)應(yīng)法則f函數(shù)的兩要素:定義域與對(duì)應(yīng)法則.約定:定義域是自變量所能取的使算式有意義的一切實(shí)數(shù)值.在自變量的不同變化范圍中,
對(duì)應(yīng)法則用不同的式子來(lái)表示的函數(shù),稱為分段函數(shù).例1.已知函數(shù)解:及寫(xiě)出f(x)的定義域及值域,并求f(x)的定義域值域2.函數(shù)的幾種特性設(shè)函數(shù)且有區(qū)間(1)有界性使稱使稱說(shuō)明:
還可定義有上界、有下界、無(wú)界.(2)單調(diào)性為有界函數(shù).在I
上有界.使若對(duì)任意正數(shù)M,均存在則稱f(x)
無(wú)界.稱為有上界稱為有下界當(dāng)稱為I
上的稱為I
上的單調(diào)增函數(shù);單調(diào)減函數(shù).(3)奇偶性且有若則稱
f(x)為偶函數(shù);若則稱f(x)為奇函數(shù).
說(shuō)明:若在x=0有定義,為奇函數(shù)時(shí),則當(dāng)必有例如,
偶函數(shù)雙曲余弦記又如,奇函數(shù)雙曲正弦記再如,奇函數(shù)雙曲正切記說(shuō)明:
給定則偶函數(shù)奇函數(shù)(4)周期性且則稱為周期函數(shù)
,若稱
l
為周期(一般指最小正周期
).周期為
周期為注:
周期函數(shù)不一定存在最小正周期.例如,常量函數(shù)狄利克雷函數(shù)x
為有理數(shù)x為無(wú)理數(shù)3.反函數(shù)
反函數(shù)的概念及性質(zhì)若函數(shù)為單調(diào)的,則存在一新函數(shù)習(xí)慣上,的反函數(shù)記成稱此函數(shù)為f
的反函數(shù).,其反函數(shù)(減)(減).1)y=f(x)單調(diào)遞增且也單調(diào)遞增性質(zhì):使其中2)函數(shù)與其反函數(shù)的圖形關(guān)于直線對(duì)稱.例如,對(duì)數(shù)函數(shù)互為反函數(shù),它們都單調(diào)遞增,其圖形關(guān)于直線對(duì)稱.指數(shù)函數(shù)*4.復(fù)合函數(shù)則設(shè)有函數(shù)鏈稱為由①,②確定的復(fù)合函數(shù)
,①②u
稱為中間變量.注意:
構(gòu)成復(fù)合函數(shù)的條件不可少.例如,
函數(shù)鏈:但可定義復(fù)合函數(shù)時(shí),雖不能在自然域R下構(gòu)成復(fù)合函數(shù),可定義復(fù)合函數(shù)當(dāng)改兩個(gè)以上函數(shù)也可構(gòu)成復(fù)合函數(shù).例如,可定義復(fù)合函數(shù):約定:為簡(jiǎn)單計(jì),書(shū)寫(xiě)復(fù)合函數(shù)時(shí)不一定寫(xiě)出其定義域,
默認(rèn)對(duì)應(yīng)的函數(shù)鏈順次滿足構(gòu)成復(fù)合函數(shù)的條件.*5.初等函數(shù)(詳見(jiàn)補(bǔ)充word)(1)基本初等函數(shù)(6種):常量函數(shù)、冪函數(shù)、指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、三角函數(shù)、反三角函數(shù)(2)初等函數(shù)由基本初等函數(shù)否則稱為非初等函數(shù)
.例如,并可用一個(gè)式子表示的函數(shù),經(jīng)過(guò)有限次四則運(yùn)算和復(fù)合步驟所構(gòu)成,稱為初等函數(shù).可表為故為初等函數(shù).都為初等函數(shù).非初等函數(shù)舉例:符號(hào)函數(shù)當(dāng)x>0當(dāng)x=0當(dāng)x<0取整函數(shù)當(dāng)常見(jiàn)基本初等函數(shù)圖像1.冪函數(shù)2.指數(shù)函數(shù)3.對(duì)數(shù)函數(shù)4.三角函數(shù)正弦函數(shù)余弦函數(shù)正切函數(shù)余切函數(shù)正割函數(shù)余割函數(shù)5.反三角函數(shù)
冪函數(shù),指數(shù)函數(shù),對(duì)數(shù)函數(shù),三角函數(shù)和反三角函數(shù)統(tǒng)稱為基本初等函數(shù).
冪函數(shù),指數(shù)函數(shù),對(duì)數(shù)函數(shù),三角函數(shù)和反三角函數(shù)統(tǒng)稱為基本初等函數(shù).
設(shè)函數(shù)
x
換為f(x)例5.解:*例6.求的反函數(shù)及其定義域.解:當(dāng)時(shí),則當(dāng)時(shí),則當(dāng)時(shí),則反函數(shù)定義域?yàn)閮?nèi)容小結(jié)1.集合的概念
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度高空作業(yè)安全生產(chǎn)施工合同集2篇
- 二零二五年度綠色環(huán)保木工支模項(xiàng)目合同4篇
- 2025版木箱紙箱包裝設(shè)計(jì)創(chuàng)新與市場(chǎng)推廣合同4篇
- 2025年度個(gè)人購(gòu)房合同產(chǎn)權(quán)轉(zhuǎn)移登記流程4篇
- 危險(xiǎn)品運(yùn)輸車輛駕駛員崗前培訓(xùn)考核試卷
- 2025版二零二五年度現(xiàn)代木工清工分包合同模板4篇
- 【新課標(biāo)Ⅲ卷】高三第二次全國(guó)大聯(lián)考語(yǔ)文試卷(含答案)
- 愛(ài)學(xué)習(xí)有自信幼兒舞蹈創(chuàng)編15課件講解
- 2025年專業(yè)期刊發(fā)行協(xié)議
- 2025年合伙勞動(dòng)分工協(xié)議
- 2024公路瀝青路面結(jié)構(gòu)內(nèi)部狀況三維探地雷達(dá)快速檢測(cè)規(guī)程
- 2024年高考真題-地理(河北卷) 含答案
- 中國(guó)高血壓防治指南(2024年修訂版)解讀課件
- 食材配送服務(wù)方案投標(biāo)方案(技術(shù)方案)
- 足療店?duì)I銷策劃方案
- 封條(標(biāo)準(zhǔn)A4打印封條)
- 2024年北京控股集團(tuán)有限公司招聘筆試參考題庫(kù)含答案解析
- 延遲交稿申請(qǐng)英文
- 運(yùn)動(dòng)技能學(xué)習(xí)與控制課件第十章動(dòng)作技能的指導(dǎo)與示范
- 石油天然氣建設(shè)工程交工技術(shù)文件編制規(guī)范(SYT68822023年)交工技術(shù)文件表格儀表自動(dòng)化安裝工程
- 中醫(yī)治療“濕疹”醫(yī)案72例
評(píng)論
0/150
提交評(píng)論