版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022屆天津市五區(qū)縣達(dá)標(biāo)名校中考數(shù)學(xué)模擬預(yù)測(cè)試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.甲、乙兩人沿相同的路線由A地到B地勻速前進(jìn),A、B兩地間的路程為40km.他們前進(jìn)的路程為s(km),甲出發(fā)后的時(shí)間為t(h),甲、乙前進(jìn)的路程與時(shí)間的函數(shù)圖象如圖所示.根據(jù)圖象信息,下列說法不正確的是()A.甲的速度是10km/h B.乙的速度是20km/hC.乙出發(fā)h后與甲相遇 D.甲比乙晚到B地2h2.在武漢市舉辦的“讀好書、講禮儀”活動(dòng)中,某學(xué)校積極行動(dòng),各班圖書角的新書、好書不斷增多,除學(xué)校購(gòu)買外,還有師生捐獻(xiàn)的圖書.下面是七年級(jí)(1)班全體同學(xué)捐獻(xiàn)圖書的情況統(tǒng)計(jì)圖,根據(jù)圖中信息,該班平均每人捐書的冊(cè)數(shù)是()A.3B.3.2C.4D.4.53.如圖,把一張矩形紙片ABCD沿EF折疊后,點(diǎn)A落在CD邊上的點(diǎn)A′處,點(diǎn)B落在點(diǎn)B′處,若∠2=40°,則圖中∠1的度數(shù)為()A.115° B.120° C.130° D.140°4.如圖,直線l是一次函數(shù)y=kx+b的圖象,若點(diǎn)A(3,m)在直線l上,則m的值是()A.﹣5 B. C. D.75.如圖,在平面直角坐標(biāo)系中,A(1,2),B(1,-1),C(2,2),拋物線y=ax2(a≠0)經(jīng)過△ABC區(qū)域(包括邊界),則a的取值范圍是()A.
或
B.
或
C.
或D.6.在下列函數(shù)中,其圖象與x軸沒有交點(diǎn)的是()A.y=2x B.y=﹣3x+1 C.y=x2 D.y=7.下列計(jì)算或化簡(jiǎn)正確的是()A. B.C. D.8.點(diǎn)P(1,﹣2)關(guān)于y軸對(duì)稱的點(diǎn)的坐標(biāo)是()A.(1,2) B.(﹣1,2) C.(﹣1,﹣2) D.(﹣2,1)9.如圖,在菱形ABCD中,AB=BD,點(diǎn)E、F分別是AB、AD上任意的點(diǎn)(不與端點(diǎn)重合),且AE=DF,連接BF與DE相交于點(diǎn)G,連接CG與BD相交于點(diǎn)H.給出如下幾個(gè)結(jié)論:①△AED≌△DFB;②S四邊形BCDG=32其中正確的結(jié)論個(gè)數(shù)為()A.4 B.3 C.2 D.110.下列各圖中,∠1與∠2互為鄰補(bǔ)角的是()A. B.C. D.11.已知,則的值為A. B. C. D.12.下列關(guān)于x的方程中,屬于一元二次方程的是()A.x﹣1=0 B.x2+3x﹣5=0 C.x3+x=3 D.a(chǎn)x2+bx+c=0二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.已知二次函數(shù)與一次函數(shù)的圖象相交于點(diǎn),如圖所示,則能使成立的x的取值范圍是______.14.如圖,有一塊邊長(zhǎng)為4的正方形塑料模板ABCD,將一塊足夠大的直角三角板的直角頂點(diǎn)落在A點(diǎn),兩條直角邊分別與CD交于點(diǎn)F,與CB延長(zhǎng)線交于點(diǎn)E.則四邊形AECF的面積是.15.如圖,△ABC中,過重心G的直線平行于BC,且交邊AB于點(diǎn)D,交邊AC于點(diǎn)E,如果設(shè)=,=,用,表示,那么=___.16.如圖,邊長(zhǎng)為4的正方形ABCD內(nèi)接于⊙O,點(diǎn)E是弧AB上的一動(dòng)點(diǎn)(不與點(diǎn)A、B重合),點(diǎn)F是弧BC上的一點(diǎn),連接OE,OF,分別與交AB,BC于點(diǎn)G,H,且∠EOF=90°,連接GH,有下列結(jié)論:①弧AE=弧BF;②△OGH是等腰直角三角形;③四邊形OGBH的面積隨著點(diǎn)E位置的變化而變化;④△GBH周長(zhǎng)的最小值為4+2.其中正確的是_____.(把你認(rèn)為正確結(jié)論的序號(hào)都填上)17.拋物線y=x2﹣2x+3的對(duì)稱軸是直線_____.18.若一次函數(shù)y=﹣x+b(b為常數(shù))的圖象經(jīng)過點(diǎn)(1,2),則b的值為_____.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)對(duì)于平面直角坐標(biāo)系中的點(diǎn),將它的縱坐標(biāo)與橫坐標(biāo)的比稱為點(diǎn)的“理想值”,記作.如的“理想值”.(1)①若點(diǎn)在直線上,則點(diǎn)的“理想值”等于_______;②如圖,,的半徑為1.若點(diǎn)在上,則點(diǎn)的“理想值”的取值范圍是_______.(2)點(diǎn)在直線上,的半徑為1,點(diǎn)在上運(yùn)動(dòng)時(shí)都有,求點(diǎn)的橫坐標(biāo)的取值范圍;(3),是以為半徑的上任意一點(diǎn),當(dāng)時(shí),畫出滿足條件的最大圓,并直接寫出相應(yīng)的半徑的值.(要求畫圖位置準(zhǔn)確,但不必尺規(guī)作圖)20.(6分)如圖,直線l是線段MN的垂直平分線,交線段MN于點(diǎn)O,在MN下方的直線l上取一點(diǎn)P,連接PN,以線段PN為邊,在PN上方作正方形NPAB,射線MA交直線l于點(diǎn)C,連接BC.(1)設(shè)∠ONP=α,求∠AMN的度數(shù);(2)寫出線段AM、BC之間的等量關(guān)系,并證明.21.(6分)解不等式組,請(qǐng)結(jié)合題意填空,完成本題的解答.(1)解不等式①,得;(2)解不等式②,得;(3)把不等式①和②的解集在數(shù)軸上表示出來:(4)原不等式的解集為.22.(8分)如圖①,在Rt△ABC中,∠ABC=90o,AB是⊙O的直徑,⊙O交AC于點(diǎn)D,過點(diǎn)D的直線交BC于點(diǎn)E,交AB的延長(zhǎng)線于點(diǎn)P,∠A=∠PDB.(1)求證:PD是⊙O的切線;(2)若AB=4,DA=DP,試求弧BD的長(zhǎng);(3)如圖②,點(diǎn)M是弧AB的中點(diǎn),連結(jié)DM,交AB于點(diǎn)N.若tanA=12,求DN23.(8分)如圖,已知平行四邊形OBDC的對(duì)角線相交于點(diǎn)E,其中O(0,0),B(3,4),C(m,0),反比例函數(shù)y=(k≠0)的圖象經(jīng)過點(diǎn)B.求反比例函數(shù)的解析式;若點(diǎn)E恰好落在反比例函數(shù)y=上,求平行四邊形OBDC的面積.24.(10分)端午節(jié)“賽龍舟,吃粽子”是中華民族的傳統(tǒng)習(xí)俗.節(jié)日期間,小邱家包了三種不同餡的粽子,分別是:紅棗粽子(記為A),豆沙粽子(記為B),肉粽子(記為C),這些粽子除了餡不同,其余均相同.粽子煮好后,小邱的媽媽給一個(gè)白盤中放入了兩個(gè)紅棗粽子,一個(gè)豆沙粽子和一個(gè)肉粽子;給一個(gè)花盤中放入了兩個(gè)肉粽子,一個(gè)紅棗粽子和一個(gè)豆沙粽子.根據(jù)以上情況,請(qǐng)你回答下列問題:假設(shè)小邱從白盤中隨機(jī)取一個(gè)粽子,恰好取到紅棗粽子的概率是多少?若小邱先從白盤里的四個(gè)粽子中隨機(jī)取一個(gè)粽子,再?gòu)幕ūP里的四個(gè)粽子中隨機(jī)取一個(gè)粽子,請(qǐng)用列表法或畫樹狀圖的方法,求小邱取到的兩個(gè)粽子中一個(gè)是紅棗粽子、一個(gè)是豆沙粽子的概率.25.(10分)已知P是的直徑BA延長(zhǎng)線上的一個(gè)動(dòng)點(diǎn),∠P的另一邊交于點(diǎn)C、D,兩點(diǎn)位于AB的上方,=6,OP=m,,如圖所示.另一個(gè)半徑為6的經(jīng)過點(diǎn)C、D,圓心距.(1)當(dāng)m=6時(shí),求線段CD的長(zhǎng);(2)設(shè)圓心O1在直線上方,試用n的代數(shù)式表示m;(3)△POO1在點(diǎn)P的運(yùn)動(dòng)過程中,是否能成為以O(shè)O1為腰的等腰三角形,如果能,試求出此時(shí)n的值;如果不能,請(qǐng)說明理由.26.(12分)某居民小區(qū)一處圓柱形的輸水管道破裂,維修人員為更換管道,需確定管道圓形截面的半徑,下面是水平放置的破裂管道有水部分的截面.若這個(gè)輸水管道有水部分的水面寬,水面最深地方的高度為4cm,求這個(gè)圓形截面的半徑.27.(12分)已知是上一點(diǎn),.如圖①,過點(diǎn)作的切線,與的延長(zhǎng)線交于點(diǎn),求的大小及的長(zhǎng);如圖②,為上一點(diǎn),延長(zhǎng)線與交于點(diǎn),若,求的大小及的長(zhǎng).
參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、B【解析】由圖可知,甲用4小時(shí)走完全程40km,可得速度為10km/h;乙比甲晚出發(fā)一小時(shí),用1小時(shí)走完全程,可得速度為40km/h.故選B2、B【解析】七年級(jí)(1)班捐獻(xiàn)圖書的同學(xué)人數(shù)為9÷18%=50人,捐獻(xiàn)4冊(cè)的人數(shù)為50×30%=15人,捐獻(xiàn)3冊(cè)的人數(shù)為50-6-9-15-8=12人,所以該班平均每人捐書的冊(cè)數(shù)為(6+9×2+12×3+15×4+8×5)÷50=3.2冊(cè),故選B.3、A【解析】解:∵把一張矩形紙片ABCD沿EF折疊后,點(diǎn)A落在CD邊上的點(diǎn)A′處,點(diǎn)B落在點(diǎn)B′處,∴∠BFE=∠EFB',∠B'=∠B=90°.∵∠2=40°,∴∠CFB'=50°,∴∠1+∠EFB'﹣∠CFB'=180°,即∠1+∠1﹣50°=180°,解得:∠1=115°,故選A.4、C【解析】
把(-2,0)和(0,1)代入y=kx+b,求出解析式,再將A(3,m)代入,可求得m.【詳解】把(-2,0)和(0,1)代入y=kx+b,得,解得所以,一次函數(shù)解析式y(tǒng)=x+1,再將A(3,m)代入,得m=×3+1=.故選C.【點(diǎn)睛】本題考核知識(shí)點(diǎn):考查了待定系數(shù)法求一次函數(shù)的解析式,根據(jù)解析式再求函數(shù)值.5、B【解析】試題解析:如圖所示:分兩種情況進(jìn)行討論:當(dāng)時(shí),拋物線經(jīng)過點(diǎn)時(shí),拋物線的開口最小,取得最大值拋物線經(jīng)過△ABC區(qū)域(包括邊界),的取值范圍是:當(dāng)時(shí),拋物線經(jīng)過點(diǎn)時(shí),拋物線的開口最小,取得最小值拋物線經(jīng)過△ABC區(qū)域(包括邊界),的取值范圍是:故選B.點(diǎn)睛:二次函數(shù)二次項(xiàng)系數(shù)決定了拋物線開口的方向和開口的大小,開口向上,開口向下.的絕對(duì)值越大,開口越小.6、D【解析】
依據(jù)一次函數(shù)的圖象,二次函數(shù)的圖象以及反比例函數(shù)的圖象進(jìn)行判斷即可.【詳解】A.正比例函數(shù)y=2x與x軸交于(0,0),不合題意;B.一次函數(shù)y=-3x+1與x軸交于(,0),不合題意;C.二次函數(shù)y=x2與x軸交于(0,0),不合題意;D.反比例函數(shù)y=與x軸沒有交點(diǎn),符合題意;故選D.7、D【解析】解:A.不是同類二次根式,不能合并,故A錯(cuò)誤;B.
,故B錯(cuò)誤;C.,故C錯(cuò)誤;D.,正確.故選D.8、C【解析】關(guān)于y軸對(duì)稱的點(diǎn),縱坐標(biāo)相同,橫坐標(biāo)互為相反數(shù),由此可得P(1,﹣2)關(guān)于y軸對(duì)稱的點(diǎn)的坐標(biāo)是(﹣1,﹣2),故選C.【點(diǎn)睛】本題考查了關(guān)于坐標(biāo)軸對(duì)稱的點(diǎn)的坐標(biāo),正確地記住關(guān)于坐標(biāo)軸對(duì)稱的點(diǎn)的坐標(biāo)特征是關(guān)鍵.關(guān)于x軸對(duì)稱的點(diǎn)的坐標(biāo)特點(diǎn):橫坐標(biāo)不變,縱坐標(biāo)互為相反數(shù);關(guān)于y軸對(duì)稱的點(diǎn)的坐標(biāo)特點(diǎn):縱坐標(biāo)不變,橫坐標(biāo)互為相反數(shù).9、B【解析】試題分析:①∵ABCD為菱形,∴AB=AD,∵AB=BD,∴△ABD為等邊三角形,∴∠A=∠BDF=60°,又∵AE=DF,AD=BD,∴△AED≌△DFB,故本選項(xiàng)正確;②∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°=∠BCD,即∠BGD+∠BCD=180°,∴點(diǎn)B、C、D、G四點(diǎn)共圓,∴∠BGC=∠BDC=60°,∠DGC=∠DBC=60°,∴∠BGC=∠DGC=60°,過點(diǎn)C作CM⊥GB于M,CN⊥GD于N(如圖1),則△CBM≌△CDN(AAS),∴S四邊形BCDG=S四邊形CMGN,S四邊形CMGN=2S△CMG,∵∠CGM=60°,∴GM=12CG,CM=32CG,∴S四邊形CMGN=2S△CMG=2×12×12CG×③過點(diǎn)F作FP∥AE于P點(diǎn)(如圖2),∵AF=2FD,∴FP:AE=DF:DA=1:3,∵AE=DF,AB=AD,∴BE=2AE,∴FP:BE=FP:12④當(dāng)點(diǎn)E,F(xiàn)分別是AB,AD中點(diǎn)時(shí)(如圖3),由(1)知,△ABD,△BDC為等邊三角形,∵點(diǎn)E,F(xiàn)分別是AB,AD中點(diǎn),∴∠BDE=∠DBG=30°,∴DG=BG,在△GDC與△BGC中,∵DG=BG,CG=CG,CD=CB,∴△GDC≌△BGC,∴∠DCG=∠BCG,∴CH⊥BD,即CG⊥BD,故本選項(xiàng)錯(cuò)誤;⑤∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°,為定值,故本選項(xiàng)正確;綜上所述,正確的結(jié)論有①③⑤,共3個(gè),故選B.考點(diǎn):四邊形綜合題.10、D【解析】根據(jù)鄰補(bǔ)角的定義可知:只有D圖中的是鄰補(bǔ)角,其它都不是.故選D.11、C【解析】由題意得,4?x?0,x?4?0,解得x=4,則y=3,則=,故選:C.12、B【解析】
根據(jù)一元二次方程必須同時(shí)滿足三個(gè)條件:①整式方程,即等號(hào)兩邊都是整式;方程中如果有分母,那么分母中無未知數(shù);②只含有一個(gè)未知數(shù);③未知數(shù)的最高次數(shù)是2進(jìn)行分析即可.【詳解】A.未知數(shù)的最高次數(shù)不是2
,不是一元二次方程,故此選項(xiàng)錯(cuò)誤;
B.
是一元二次方程,故此選項(xiàng)正確;
C.
未知數(shù)的最高次數(shù)是3,不是一元二次方程,故此選項(xiàng)錯(cuò)誤;
D.
a=0時(shí),不是一元二次方程,故此選項(xiàng)錯(cuò)誤;
故選B.【點(diǎn)睛】本題考查一元二次方程的定義,解題的關(guān)鍵是明白:一元二次方程必須同時(shí)滿足三個(gè)條件:①整式方程,即等號(hào)兩邊都是整式;方程中如果有分母,那么分母中無未知數(shù);②只含有一個(gè)未知數(shù);③未知數(shù)的最高次數(shù)是2.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、x<-2或x>1【解析】試題分析:根據(jù)函數(shù)圖象可得:當(dāng)時(shí),x<-2或x>1.考點(diǎn):函數(shù)圖象的性質(zhì)14、1【解析】
∵四邊形ABCD為正方形,∴∠D=∠ABC=90°,AD=AB,∴∠ABE=∠D=90°,∵∠EAF=90°,∴∠DAF+∠BAF=90°,∠BAE+∠BAF=90°,∴∠DAF=∠BAE,∴△AEB≌△AFD,∴S△AEB=S△AFD,∴它們都加上四邊形ABCF的面積,可得到四邊形AECF的面積=正方形的面積=1.15、【解析】
連接AG,延長(zhǎng)AG交BC于F.首先證明DG=GE,再利用三角形法則求出即可解決問題.【詳解】連接AG,延長(zhǎng)AG交BC于F.
∵G是△ABC的重心,DE∥BC,
∴BF=CF,
,
∵,,
∴,
∵BF=CF,
∴DG=GE,
∵,,
∴,
∴,
故答案為.【點(diǎn)睛】本題考查三角形的重心,平行線的性質(zhì),平面向量等知識(shí),解題的關(guān)鍵是熟練掌握基本知識(shí),屬于中考??碱}型.16、①②④【解析】
①根據(jù)ASA可證△BOE≌△COF,根據(jù)全等三角形的性質(zhì)得到BE=CF,根據(jù)等弦對(duì)等弧得到,可以判斷①;
②根據(jù)SAS可證△BOG≌△COH,根據(jù)全等三角形的性質(zhì)得到∠GOH=90°,OG=OH,根據(jù)等腰直角三角形的判定得到△OGH是等腰直角三角形,可以判斷②;
③通過證明△HOM≌△GON,可得四邊形OGBH的面積始終等于正方形ONBM的面積,可以判斷③;
④根據(jù)△BOG≌△COH可知BG=CH,則BG+BH=BC=4,設(shè)BG=x,則BH=4-x,根據(jù)勾股定理得到GH==,可以求得其最小值,可以判斷④.【詳解】解:①如圖所示,
∵∠BOE+∠BOF=90°,∠COF+∠BOF=90°,
∴∠BOE=∠COF,
在△BOE與△COF中,,
∴△BOE≌△COF,
∴BE=CF,
∴,①正確;
②∵OC=OB,∠COH=∠BOG,∠OCH=∠OBG=45°,
∴△BOG≌△COH;
∴OG=OH,∵∠GOH=90°,
∴△OGH是等腰直角三角形,②正確.③如圖所示,
∵△HOM≌△GON,
∴四邊形OGBH的面積始終等于正方形ONBM的面積,③錯(cuò)誤;
④∵△BOG≌△COH,
∴BG=CH,
∴BG+BH=BC=4,
設(shè)BG=x,則BH=4-x,
則GH==,
∴其最小值為4+2,④正確.
故答案為:①②④【點(diǎn)睛】考查了圓的綜合題,關(guān)鍵是熟練掌握全等三角形的判定和性質(zhì),等弦對(duì)等弧,等腰直角三角形的判定,勾股定理,面積的計(jì)算,綜合性較強(qiáng).17、x=1【解析】
把解析式化為頂點(diǎn)式可求得答案.【詳解】解:∵y=x2-2x+3=(x-1)2+2,∴對(duì)稱軸是直線x=1,故答案為x=1.【點(diǎn)睛】本題主要考查二次函數(shù)的性質(zhì),掌握二次函數(shù)的頂點(diǎn)式是解題的關(guān)鍵,即在y=a(x-h)2+k中,對(duì)稱軸為x=h,頂點(diǎn)坐標(biāo)為(h,k).18、3【解析】
把點(diǎn)(1,2)代入解析式解答即可.【詳解】解:把點(diǎn)(1,2)代入解析式y(tǒng)=-x+b,可得:2=-1+b,解得:b=3,故答案為3【點(diǎn)睛】本題考查的是一次函數(shù)的圖象點(diǎn)的關(guān)系,關(guān)鍵是把點(diǎn)(1,2)代入解析式解答.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)①﹣3;②;(2);(3)【解析】
(1)①把Q(1,a)代入y=x-4,可求出a值,根據(jù)理想值定義即可得答案;②由理想值越大,點(diǎn)與原點(diǎn)連線與軸夾角越大,可得直線與相切時(shí)理想值最大,與x中相切時(shí),理想值最小,即可得答案;(2)根據(jù)題意,討論與軸及直線相切時(shí),LQ取最小值和最大值,求出點(diǎn)橫坐標(biāo)即可;(3)根據(jù)題意將點(diǎn)轉(zhuǎn)化為直線,點(diǎn)理想值最大時(shí)點(diǎn)在上,分析圖形即可.【詳解】(1)①∵點(diǎn)在直線上,∴,∴點(diǎn)的“理想值”=-3,故答案為:﹣3.②當(dāng)點(diǎn)在與軸切點(diǎn)時(shí),點(diǎn)的“理想值”最小為0.當(dāng)點(diǎn)縱坐標(biāo)與橫坐標(biāo)比值最大時(shí),的“理想值”最大,此時(shí)直線與切于點(diǎn),設(shè)點(diǎn)Q(x,y),與x軸切于A,與OQ切于Q,∵C(,1),∴tan∠COA==,∴∠COA=30°,∵OQ、OA是的切線,∴∠QOA=2∠COA=60°,∴=tan∠QOA=tan60°=,∴點(diǎn)的“理想值”為,故答案為:.(2)設(shè)直線與軸、軸的交點(diǎn)分別為點(diǎn),點(diǎn),當(dāng)x=0時(shí),y=3,當(dāng)y=0時(shí),x+3=0,解得:x=,∴,.∴,,∴tan∠OAB=,∴.∵,∴①如圖,作直線.當(dāng)與軸相切時(shí),LQ=0,相應(yīng)的圓心滿足題意,其橫坐標(biāo)取到最大值.作軸于點(diǎn),∴,∴.∵的半徑為1,∴.∴,∴.∴.②如圖當(dāng)與直線相切時(shí),LQ=,相應(yīng)的圓心滿足題意,其橫坐標(biāo)取到最小值.作軸于點(diǎn),則.設(shè)直線與直線的交點(diǎn)為.∵直線中,k=,∴,∴,點(diǎn)F與Q重合,則.∵的半徑為1,∴.∴.∴,∴.∴.由①②可得,的取值范圍是.(3)∵M(jìn)(2,m),∴M點(diǎn)在直線x=2上,∵,∴LQ取最大值時(shí),=,∴作直線y=x,與x=2交于點(diǎn)N,當(dāng)M與ON和x軸同時(shí)相切時(shí),半徑r最大,根據(jù)題意作圖如下:M與ON相切于Q,與x軸相切于E,把x=2代入y=x得:y=4,∴NE=4,OE=2,ON==6,∴∠MQN=∠NEO=90°,又∵∠ONE=∠MNQ,∴,∴,即,解得:r=.∴最大半徑為.【點(diǎn)睛】本題是一次函數(shù)和圓的綜合題,主要考查了一次函數(shù)和圓的切線的性質(zhì),解答時(shí)要注意做好數(shù)形結(jié)合,根據(jù)圖形進(jìn)行分類討論.20、(1)45°(2),理由見解析【解析】
(1)由線段的垂直平分線的性質(zhì)可得PM=PN,PO⊥MN,由等腰三角形的性質(zhì)可得∠PMN=∠PNM=α,由正方形的性質(zhì)可得AP=PN,∠APN=90°,可得∠APO=α,由三角形內(nèi)角和定理可求∠AMN的度數(shù);(2)由等腰直角三角形的性質(zhì)和正方形的性質(zhì)可得,,∠MNC=∠ANB=45°,可證△CBN∽△MAN,可得.【詳解】解:(1)如圖,連接MP,∵直線l是線段MN的垂直平分線,∴PM=PN,PO⊥MN∴∠PMN=∠PNM=α∴∠MPO=∠NPO=90°-α,∵四邊形ABNP是正方形∴AP=PN,∠APN=90°∴AP=MP,∠APO=90°-(90°-α)=α∴∠APM=∠MPO-∠APO=(90°-α)-α=90°-2α,∵AP=PM∴,∴∠AMN=∠AMP-∠PMN=45°+α-α=45°(2)理由如下:如圖,連接AN,CN,∵直線l是線段MN的垂直平分線,∴CM=CN,∴∠CMN=∠CNM=45°,∴∠MCN=90°∴,∵四邊形APNB是正方形∴∠ANB=∠BAN=45°∴,∠MNC=∠ANB=45°∴∠ANM=∠BNC又∵∴△CBN∽△MAN∴∴【點(diǎn)睛】本題考查了正方形的性質(zhì),線段垂直平分線的性質(zhì),相似三角形的判定和性質(zhì),添加恰當(dāng)輔助線構(gòu)造相似三角形是本題的關(guān)鍵.21、(1)x≤1;(1)x≥﹣1;(3)見解析;(4)﹣1≤x≤1.【解析】
先求出不等式的解集,再求出不等式組的解集即可.【詳解】解:(1)解不等式①,得x≤1,(1)解不等式②,得x≥﹣1,(3)把不等式①和②的解集在數(shù)軸上表示出來:;(4)原不等式組的解集為﹣1≤x≤1,故答案為x≤1,x≥﹣1,﹣1≤x≤1.【點(diǎn)睛】本題考查了解一元一次不等式組,能根據(jù)不等式的解集找出不等式組的解集是解此題的關(guān)鍵.22、(1)見解析;(2)23π;(3)【解析】
(1)連結(jié)OD;由AB是⊙O的直徑,得到∠ADB=90°,根據(jù)等腰三角形的性質(zhì)得到∠ADO=∠A,∠BDO=∠ABD;得到∠PDO=90°,且D在圓上,于是得到結(jié)論;(2)設(shè)∠A=x,則∠A=∠P=x,∠DBA=2x,在△ABD中,根據(jù)∠A+∠ABD=90o列方程求出x的值,進(jìn)而可得到∠DOB=60o,然后根據(jù)弧長(zhǎng)公式計(jì)算即可;(3)連結(jié)OM,過D作DF⊥AB于點(diǎn)F,然后證明△OMN∽△FDN,根據(jù)相似三角形的性質(zhì)求解即可.【詳解】(1)連結(jié)OD,∵AB是⊙O的直徑,∴∠ADB=90o,∠A+∠ABD=90o,又∵OA=OB=OD,∴∠BDO=∠ABD,又∵∠A=∠PDB,∴∠PDB+∠BDO=90o,即∠PDO=90o,且D在圓上,∴PD是⊙O的切線.(2)設(shè)∠A=x,∵DA=DP,∴∠A=∠P=x,∴∠DBA=∠P+∠BDP=x+x=2x,在△ABD中,∠A+∠ABD=90o,x=2x=90o,即x=30o,∴∠DOB=60o,∴弧BD長(zhǎng)l=60·π·2(3)連結(jié)OM,過D作DF⊥AB于點(diǎn)F,∵點(diǎn)M是的中點(diǎn),∴OM⊥AB,設(shè)BD=x,則AD=2x,AB=5x=2OM,即OM=5在Rt△BDF中,DF=25由△OMN∽△FDN得DNMN【點(diǎn)睛】本題是圓的綜合題,考查了切線的判定,圓周角定理及其推論,三角形外角的性質(zhì),含30°角的直角三角形的性質(zhì),弧長(zhǎng)的計(jì)算,弧弦圓心角的關(guān)系,相似三角形的判定與性質(zhì).熟練掌握切線的判定方法是解(1)的關(guān)鍵,求出∠A=30o是解(2)的關(guān)鍵,證明△OMN∽△FDN是解(3)的關(guān)鍵.23、(1)y=;(2)1;【解析】
(1)把點(diǎn)B的坐標(biāo)代入反比例解析式求得k值,即可求得反比例函數(shù)的解析式;(2)根據(jù)點(diǎn)B(3,4)、C(m,0)的坐標(biāo)求得邊BC的中點(diǎn)E坐標(biāo)為(,2),將點(diǎn)E的坐標(biāo)代入反比例函數(shù)的解析式求得m的值,根據(jù)平行四邊形的面積公式即可求解.【詳解】(1)把B坐標(biāo)代入反比例解析式得:k=12,則反比例函數(shù)解析式為y=;(2)∵B(3,4),C(m,0),∴邊BC的中點(diǎn)E坐標(biāo)為(,2),將點(diǎn)E的坐標(biāo)代入反比例函數(shù)得2=,解得:m=9,則平行四邊形OBCD的面積=9×4=1.【點(diǎn)睛】本題為反比例函數(shù)的綜合應(yīng)用,考查的知識(shí)點(diǎn)有待定系數(shù)法、平行四邊形的性質(zhì)、中點(diǎn)的求法.在(1)中注意待定系數(shù)法的應(yīng)用,在(2)中用m表示出E點(diǎn)的坐標(biāo)是解題的關(guān)鍵.24、(1);(2)【解析】
(1)由題意知,共有4種等可能的結(jié)果,而取到紅棗粽子的結(jié)果有2種則P(恰好取到紅棗粽子)=.(2)由題意可得,出現(xiàn)的所有可能性是:(A,A)、(A,B)、(A,C)、(A,C)、(A,A)、(A,B)、(A,C)、(A,C)、(B,A)、(B,B)、(B,C)、(B,C)、(C,A)、(C,B)、(C,C)、(C,C),∴由上表可知,取到的兩個(gè)粽子共有16種等可能的結(jié)果,而一個(gè)是紅棗粽子,一個(gè)是豆沙粽子的結(jié)果有3種,則P(取到一個(gè)紅棗粽子,一個(gè)豆沙粽子)=.考點(diǎn):列表法與樹狀圖法;概率公式.25、(1)CD=;(2)m=;(3)n的值為或【解析】分析:(1)過點(diǎn)作⊥,垂足為點(diǎn),連接.解Rt△,得到的長(zhǎng).由勾股定理得的長(zhǎng),再由垂徑定理即可得到結(jié)論;(2)解Rt△,得到和Rt△中,由勾股定理即可
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024活動(dòng)策劃執(zhí)行合同
- 直播基地技術(shù)團(tuán)隊(duì)及管理
- 灌裝機(jī)技能考試1
- 英語周假練習(xí)(Jan.20)
- 陽東區(qū)人民醫(yī)院新員工崗前培訓(xùn)法律法規(guī)考試試題
- 濰坊東廠區(qū)C22車間安全考核試題(A、B線)
- 陸上石油天然氣開采企業(yè)主要負(fù)責(zé)人試卷【樣卷1】
- 廣告制作設(shè)計(jì)策劃制作合同(2024年版)
- 致員工家屬慰問信(32篇)
- 森林防火聯(lián)防聯(lián)控機(jī)制方案范文(3篇)
- 幕墻施工重難點(diǎn)分析及解決措施
- 《Python程序設(shè)計(jì)案例教程》 課件 4.3字典
- 環(huán)境測(cè)評(píng)行業(yè)分析
- 2024年武警部隊(duì)招聘專業(yè)技能類文職人員1824人高頻考題難、易錯(cuò)點(diǎn)模擬試題(共500題)附帶答案詳解
- 人工智能行業(yè)的創(chuàng)新思維培訓(xùn)與發(fā)展
- 國(guó)家開放大學(xué)《數(shù)據(jù)結(jié)構(gòu)》課程實(shí)驗(yàn)報(bào)告(實(shí)驗(yàn)5-圖的存儲(chǔ)方式和應(yīng)用)參考答案
- 肝穿刺病人術(shù)后的護(hù)理措施
- 初二(四)班感恩主題
- 貸款業(yè)務(wù)三查培訓(xùn)課件
- 幼兒園嘔吐培訓(xùn)課件
- 【川教版】《生命 生態(tài) 安全》三年級(jí)上冊(cè) 第13課《情緒氣象圖》課件
評(píng)論
0/150
提交評(píng)論