版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
山東省濱州市陽信縣2023-2024學(xué)年中考猜題數(shù)學(xué)試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.一次函數(shù)y1=kx+1﹣2k(k≠0)的圖象記作G1,一次函數(shù)y2=2x+3(﹣1<x<2)的圖象記作G2,對于這兩個(gè)圖象,有以下幾種說法:①當(dāng)G1與G2有公共點(diǎn)時(shí),y1隨x增大而減小;②當(dāng)G1與G2沒有公共點(diǎn)時(shí),y1隨x增大而增大;③當(dāng)k=2時(shí),G1與G2平行,且平行線之間的距離為65下列選項(xiàng)中,描述準(zhǔn)確的是()A.①②正確,③錯(cuò)誤 B.①③正確,②錯(cuò)誤C.②③正確,①錯(cuò)誤 D.①②③都正確2.已知:如圖,AD是△ABC的角平分線,且AB:AC=3:2,則△ABD與△ACD的面積之比為()A.3:2 B.9:4 C.2:3 D.4:93.一元二次方程的根是()A. B.C. D.4.下列判斷正確的是()A.任意擲一枚質(zhì)地均勻的硬幣10次,一定有5次正面向上B.天氣預(yù)報(bào)說“明天的降水概率為40%”,表示明天有40%的時(shí)間都在降雨C.“籃球隊(duì)員在罰球線上投籃一次,投中”為隨機(jī)事件D.“a是實(shí)數(shù),|a|≥0”是不可能事件5.滿足不等式組的整數(shù)解是()A.﹣2 B.﹣1 C.0 D.16.已知如圖,△ABC為直角三角形,∠C=90°,若沿圖中虛線剪去∠C,則∠1+∠2等于()A.315° B.270° C.180° D.135°7.如圖所示的幾何體的俯視圖是()A. B. C. D.8.已知,C是線段AB的黃金分割點(diǎn),AC<BC,若AB=2,則BC=()A.3﹣ B.(+1) C.﹣1 D.(﹣1)9.如圖,四邊形ABCD是菱形,對角線AC,BD交于點(diǎn)O,,,于點(diǎn)H,且DH與AC交于G,則OG長度為A. B. C. D.10.哥哥與弟弟的年齡和是18歲,弟弟對哥哥說:“當(dāng)我的年齡是你現(xiàn)在年齡的時(shí)候,你就是18歲”.如果現(xiàn)在弟弟的年齡是x歲,哥哥的年齡是y歲,下列方程組正確的是()A.x=y-18y-x=18-yB.C.x+y=18y-x=18+yD.二、填空題(共7小題,每小題3分,滿分21分)11.邊長為6的正六邊形外接圓半徑是_____.12.如圖,扇形的半徑為,圓心角為120°,用這個(gè)扇形圍成一個(gè)圓錐的側(cè)面,所得的圓錐的高為______.13.如圖,設(shè)△ABC的兩邊AC與BC之和為a,M是AB的中點(diǎn),MC=MA=5,則a的取值范圍是_____.14.如圖,利用標(biāo)桿測量建筑物的高度,已知標(biāo)桿高1.2,測得,則建筑物的高是__________.15.若一次函數(shù)y=﹣x+b(b為常數(shù))的圖象經(jīng)過點(diǎn)(1,2),則b的值為_____.16.如圖,A、B、C是⊙O上的三點(diǎn),若∠C=30°,OA=3,則弧AB的長為______.(結(jié)果保留π)17.若式子有意義,則x的取值范圍是.三、解答題(共7小題,滿分69分)18.(10分)黃巖某校搬遷后,需要增加教師和學(xué)生的寢室數(shù)量,寢室有三類,分別為單人間(供一個(gè)人住宿),雙人間(供兩個(gè)人住宿),四人間(供四個(gè)人住宿).因?qū)嶋H需要,單人間的數(shù)量在20至30之間(包括20和30),且四人間的數(shù)量是雙人間的5倍.(1)若2018年學(xué)校寢室數(shù)為64個(gè),以后逐年增加,預(yù)計(jì)2020年寢室數(shù)達(dá)到121個(gè),求2018至2020年寢室數(shù)量的年平均增長率;(2)若三類不同的寢室的總數(shù)為121個(gè),則最多可供多少師生住宿?19.(5分)如圖,⊙O是△ABC的外接圓,點(diǎn)O在BC邊上,∠BAC的平分線交⊙O于點(diǎn)D,連接BD、CD,過點(diǎn)D作BC的平行線與AC的延長線相交于點(diǎn)P.求證:PD是⊙O的切線;求證:△ABD∽△DCP;當(dāng)AB=5cm,AC=12cm時(shí),求線段PC的長.20.(8分)已知:二次函數(shù)圖象的頂點(diǎn)坐標(biāo)是(3,5),且拋物線經(jīng)過點(diǎn)A(1,3).(1)求此拋物線的表達(dá)式;(2)如果點(diǎn)A關(guān)于該拋物線對稱軸的對稱點(diǎn)是B點(diǎn),且拋物線與y軸的交點(diǎn)是C點(diǎn),求△ABC的面積.21.(10分)計(jì)算:﹣12+﹣(3.14﹣π)0﹣|1﹣|.22.(10分)如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=(x-a)(x-3)(0<a<3)的圖象與x軸交于點(diǎn)A、B(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)D,過其頂點(diǎn)C作直線CP⊥x軸,垂足為點(diǎn)P,連接AD、BC.(1)求點(diǎn)A、B、D的坐標(biāo);(2)若△AOD與△BPC相似,求a的值;(3)點(diǎn)D、O、C、B能否在同一個(gè)圓上,若能,求出a的值,若不能,請說明理由.23.(12分)已知拋物線經(jīng)過點(diǎn),.把拋物線與線段圍成的封閉圖形記作.(1)求此拋物線的解析式;(2)點(diǎn)為圖形中的拋物線上一點(diǎn),且點(diǎn)的橫坐標(biāo)為,過點(diǎn)作軸,交線段于點(diǎn).當(dāng)為等腰直角三角形時(shí),求的值;(3)點(diǎn)是直線上一點(diǎn),且點(diǎn)的橫坐標(biāo)為,以線段為邊作正方形,且使正方形與圖形在直線的同側(cè),當(dāng),兩點(diǎn)中只有一個(gè)點(diǎn)在圖形的內(nèi)部時(shí),請直接寫出的取值范圍.24.(14分)先化簡,再求值:x(x+1)﹣(x+1)(x﹣1),其中x=1.
參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、D【解析】
畫圖,找出G2的臨界點(diǎn),以及G1的臨界直線,分析出G1過定點(diǎn),根據(jù)k的正負(fù)與函數(shù)增減變化的關(guān)系,結(jié)合函數(shù)圖象逐個(gè)選項(xiàng)分析即可解答.【詳解】解:一次函數(shù)y2=2x+3(﹣1<x<2)的函數(shù)值隨x的增大而增大,如圖所示,N(﹣1,2),Q(2,7)為G2的兩個(gè)臨界點(diǎn),易知一次函數(shù)y1=kx+1﹣2k(k≠0)的圖象過定點(diǎn)M(2,1),直線MN與直線MQ為G1與G2有公共點(diǎn)的兩條臨界直線,從而當(dāng)G1與G2有公共點(diǎn)時(shí),y1隨x增大而減??;故①正確;當(dāng)G1與G2沒有公共點(diǎn)時(shí),分三種情況:一是直線MN,但此時(shí)k=0,不符合要求;二是直線MQ,但此時(shí)k不存在,與一次函數(shù)定義不符,故MQ不符合題意;三是當(dāng)k>0時(shí),此時(shí)y1隨x增大而增大,符合題意,故②正確;當(dāng)k=2時(shí),G1與G2平行正確,過點(diǎn)M作MP⊥NQ,則MN=3,由y2=2x+3,且MN∥x軸,可知,tan∠PNM=2,∴PM=2PN,由勾股定理得:PN2+PM2=MN2∴(2PN)2+(PN)2=9,∴PN=35∴PM=65故③正確.綜上,故選:D.【點(diǎn)睛】本題是一次函數(shù)中兩條直線相交或平行的綜合問題,需要數(shù)形結(jié)合,結(jié)合一次函數(shù)的性質(zhì)逐條分析解答,難度較大.2、A【解析】試題解析:過點(diǎn)D作DE⊥AB于E,DF⊥AC于F.∵AD為∠BAC的平分線,∴DE=DF,又AB:AC=3:2,故選A.點(diǎn)睛:角平分線上的點(diǎn)到角兩邊的距離相等.3、D【解析】試題分析:此題考察一元二次方程的解法,觀察發(fā)現(xiàn)可以采用提公因式法來解答此題.原方程可化為:,因此或,所以.故選D.考點(diǎn):一元二次方程的解法——因式分解法——提公因式法.4、C【解析】
直接利用概率的意義以及隨機(jī)事件的定義分別分析得出答案.【詳解】A、任意擲一枚質(zhì)地均勻的硬幣10次,一定有5次正面向上,錯(cuò)誤;B、天氣預(yù)報(bào)說“明天的降水概率為40%”,表示明天有40%的時(shí)間都在降雨,錯(cuò)誤;C、“籃球隊(duì)員在罰球線上投籃一次,投中”為隨機(jī)事件,正確;D、“a是實(shí)數(shù),|a|≥0”是必然事件,故此選項(xiàng)錯(cuò)誤.故選C.【點(diǎn)睛】此題主要考查了概率的意義以及隨機(jī)事件的定義,正確把握相關(guān)定義是解題關(guān)鍵.5、C【解析】
先求出每個(gè)不等式的解集,再根據(jù)不等式的解集求出不等式組的解集即可.【詳解】∵解不等式①得:x≤0.5,解不等式②得:x>-1,∴不等式組的解集為-1<x≤0.5,∴不等式組的整數(shù)解為0,故選C.【點(diǎn)睛】本題考查了解一元一次不等式組和不等式組的整數(shù)解,能根據(jù)不等式的解集找出不等式組的解集是解此題的關(guān)鍵.6、B【解析】
利用三角形內(nèi)角與外角的關(guān)系:三角形的任一外角等于和它不相鄰的兩個(gè)內(nèi)角之和解答.【詳解】如圖,∵∠1、∠2是△CDE的外角,∴∠1=∠4+∠C,∠2=∠3+∠C,即∠1+∠2=2∠C+(∠3+∠4),∵∠3+∠4=180°-∠C=90°,∴∠1+∠2=2×90°+90°=270°.故選B.【點(diǎn)睛】此題主要考查了三角形內(nèi)角與外角的關(guān)系:三角形的任一外角等于和它不相鄰的兩個(gè)內(nèi)角之和.7、D【解析】試題分析:根據(jù)俯視圖的作法即可得出結(jié)論.從上往下看該幾何體的俯視圖是D.故選D.考點(diǎn):簡單幾何體的三視圖.8、C【解析】
根據(jù)黃金分割點(diǎn)的定義,知BC為較長線段;則BC=AB,代入數(shù)據(jù)即可得出BC的值.【詳解】解:由于C為線段AB=2的黃金分割點(diǎn),且AC<BC,BC為較長線段;
則BC=2×=-1.
故答案為:-1.【點(diǎn)睛】本題考查了黃金分割,應(yīng)該識(shí)記黃金分割的公式:較短的線段=原線段的倍,較長的線段=原線段的倍.9、B【解析】試題解析:在菱形中,,,所以,,在中,,因?yàn)椋?,則,在中,由勾股定理得,,由可得,,即,所以.故選B.10、D【解析】試題解析:設(shè)現(xiàn)在弟弟的年齡是x歲,哥哥的年齡是y歲,由題意得y=18-x18-y=y-x故選D.考點(diǎn):由實(shí)際問題抽象出二元一次方程組二、填空題(共7小題,每小題3分,滿分21分)11、6【解析】
根據(jù)正六邊形的外接圓半徑和正六邊形的邊長將組成一個(gè)等邊三角形,即可求解.【詳解】解:正6邊形的中心角為360°÷6=60°,那么外接圓的半徑和正六邊形的邊長將組成一個(gè)等邊三角形,∴邊長為6的正六邊形外接圓半徑是6,故答案為:6.【點(diǎn)睛】本題考查了正多邊形和圓,得出正六邊形的外接圓半徑和正六邊形的邊長將組成一個(gè)等邊三角形是解題的關(guān)鍵.12、4cm【解析】
求出扇形的弧長,除以2π即為圓錐的底面半徑,然后利用勾股定理求得圓錐的高即可.【詳解】扇形的弧長==4π,
圓錐的底面半徑為4π÷2π=2,
故圓錐的高為:=4,
故答案為4cm.【點(diǎn)睛】本題考查了圓錐的計(jì)算,重點(diǎn)考查了扇形的弧長公式;圓的周長公式;用到的知識(shí)點(diǎn)為:圓錐的弧長等于底面周長.13、10<a≤10.【解析】
根據(jù)題設(shè)知三角形ABC是直角三角形,由勾股定理求得AB的長度及由三角形的三邊關(guān)系求得a的取值范圍;然后根據(jù)題意列出二元二次方程組,通過方程組求得xy的值,再把該值依據(jù)根與系數(shù)的關(guān)系置于一元二次方程z2-az+=0中,最后由根的判別式求得a的取值范圍.【詳解】∵M(jìn)是AB的中點(diǎn),MC=MA=5,∴△ABC為直角三角形,AB=10;∴a=AC+BC>AB=10;令A(yù)C=x、BC=y.∴,∴xy=,∴x、y是一元二次方程z2-az+=0的兩個(gè)實(shí)根,∴△=a2-4×≥0,即a≤10.綜上所述,a的取值范圍是10<a≤10.故答案為10<a≤10.【點(diǎn)睛】本題綜合考查了勾股定理、直角三角形斜邊上的中線及根的判別式.此題的綜合性比較強(qiáng),解題時(shí),還利用了一元二次方程的根與系數(shù)的關(guān)系、根的判別式的知識(shí)點(diǎn).14、10.5【解析】
先證△AEB∽△ABC,再利用相似的性質(zhì)即可求出答案.【詳解】解:由題可知,BE⊥AC,DC⊥AC∵BE//DC,∴△AEB∽△ADC,∴,即:,∴CD=10.5(m).故答案為10.5.【點(diǎn)睛】本題考查了相似的判定和性質(zhì).利用相似的性質(zhì)列出含所求邊的比例式是解題的關(guān)鍵.15、3【解析】
把點(diǎn)(1,2)代入解析式解答即可.【詳解】解:把點(diǎn)(1,2)代入解析式y(tǒng)=-x+b,可得:2=-1+b,解得:b=3,故答案為3【點(diǎn)睛】本題考查的是一次函數(shù)的圖象點(diǎn)的關(guān)系,關(guān)鍵是把點(diǎn)(1,2)代入解析式解答.16、π【解析】∵∠C=30°,∴∠AOB=60°,∴.即的長為.17、且【解析】
∵式子在實(shí)數(shù)范圍內(nèi)有意義,∴x+1≥0,且x≠0,解得:x≥-1且x≠0.故答案為x≥-1且x≠0.三、解答題(共7小題,滿分69分)18、(1)2018至2020年寢室數(shù)量的年平均增長率為37.5%;(2)該校的寢室建成后最多可供1名師生住宿.【解析】
(1)設(shè)2018至2020年寢室數(shù)量的年平均增長率為x,根據(jù)2018及2020年寢室數(shù)量,即可得出關(guān)于x的一元二次方程,解之取其正值即可得出結(jié)論;(2)設(shè)雙人間有y間,則四人間有5y間,單人間有(121-6y)間,可容納人數(shù)為w人,由單人間的數(shù)量在20至30之間(包括20和30),即可得出關(guān)于y的一元一次不等式組,解之即可得出y的取值范圍,再根據(jù)可住師生數(shù)=寢室數(shù)×每間寢室可住人數(shù),可找出w關(guān)于y的函數(shù)關(guān)系式,利用一次函數(shù)的性質(zhì)即可解決最值問題.【詳解】(1)解:設(shè)2018至2020年寢室數(shù)量的年平均增長率為x,根據(jù)題意得:64(1+x)2=121,解得:x1=0.375=37.5%,x2=﹣2.375(不合題意,舍去).答:2018至2020年寢室數(shù)量的年平均增長率為37.5%.(2)解:設(shè)雙人間有y間,可容納人數(shù)為w人,則四人間有5y間,單人間有(121﹣6y)間,∵單人間的數(shù)量在20至30之間(包括20和30),∴,解得:15≤y≤16.根據(jù)題意得:w=2y+20y+121﹣6y=16y+121,∴當(dāng)y=16時(shí),16y+121取得最大值為1.答:該校的寢室建成后最多可供1名師生住宿.【點(diǎn)睛】本題考查了一元二次方程的應(yīng)用、一元一次不等式組的應(yīng)用以及一次函數(shù)的性質(zhì),解題的關(guān)鍵是:(1)找準(zhǔn)等量關(guān)系,正確列出一元二次方程;(2)根據(jù)數(shù)量之間的關(guān)系,找出w關(guān)于y的函數(shù)關(guān)系式.19、(1)證明見解析;(2)證明見解析;(3)CP=16.9cm.【解析】【分析】(1)先判斷出∠BAC=2∠BAD,進(jìn)而判斷出∠BOD=∠BAC=90°,得出PD⊥OD即可得出結(jié)論;(2)先判斷出∠ADB=∠P,再判斷出∠DCP=∠ABD,即可得出結(jié)論;(3)先求出BC,再判斷出BD=CD,利用勾股定理求出BC=BD=,最后用△ABD∽△DCP得出比例式求解即可得出結(jié)論.【詳解】(1)如圖,連接OD,∵BC是⊙O的直徑,∴∠BAC=90°,∵AD平分∠BAC,∴∠BAC=2∠BAD,∵∠BOD=2∠BAD,∴∠BOD=∠BAC=90°,∵DP∥BC,∴∠ODP=∠BOD=90°,∴PD⊥OD,∵OD是⊙O半徑,∴PD是⊙O的切線;(2)∵PD∥BC,∴∠ACB=∠P,∵∠ACB=∠ADB,∴∠ADB=∠P,∵∠ABD+∠ACD=180°,∠ACD+∠DCP=180°,∴∠DCP=∠ABD,∴△ABD∽△DCP;(3)∵BC是⊙O的直徑,∴∠BDC=∠BAC=90°,在Rt△ABC中,BC==13cm,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠BOD=∠COD,∴BD=CD,在Rt△BCD中,BD2+CD2=BC2,∴BD=CD=BC=,∵△ABD∽△DCP,∴,∴,∴CP=16.9cm.【點(diǎn)睛】本題考查了切線的判定、相似三角形的判定與性質(zhì)等,熟練掌握切線的判定方法、相似三角形的判定與性質(zhì)定理是解題的關(guān)鍵.20、(1)y=-(x-3)2+5(2)5【解析】
(1)設(shè)頂點(diǎn)式y(tǒng)=a(x-3)2+5,然后把A點(diǎn)坐標(biāo)代入求出a即可得到拋物線的解析式;
(2)利用拋物線的對稱性得到B(5,3),再確定出C點(diǎn)坐標(biāo),然后根據(jù)三角形面積公式求解.【詳解】(1)設(shè)此拋物線的表達(dá)式為y=a(x-3)2+5,將點(diǎn)A(1,3)的坐標(biāo)代入上式,得3=a(1-3)2+5,解得∴此拋物線的表達(dá)式為(2)∵A(1,3),拋物線的對稱軸為直線x=3,∴B(5,3).令x=0,則∴△ABC的面積【點(diǎn)睛】考查待定系數(shù)法求二次函數(shù)解析式,二次函數(shù)的性質(zhì),二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,掌握待定系數(shù)法求二次函數(shù)的解析式是解題的關(guān)鍵.21、1.【解析】
直接利用絕對值的性質(zhì)以及零指數(shù)冪的性質(zhì)和負(fù)指數(shù)冪的性質(zhì)分別化簡得出答案.【詳解】解:原式=﹣1++4﹣1﹣(﹣1)=﹣1++4﹣1﹣+1=1.【點(diǎn)睛】本題考查了實(shí)數(shù)的運(yùn)算,零指數(shù)冪,負(fù)整數(shù)指數(shù)冪,解題的關(guān)鍵是掌握冪的運(yùn)算法則.22、(1)(1)A(a,0),B(3,0),D(0,3a).(2)a的值為.(3)當(dāng)a=時(shí),D、O、C、B四點(diǎn)共圓.【解析】【分析】(1)根據(jù)二次函數(shù)的圖象與x軸相交,則y=0,得出A(a,0),B(3,0),與y軸相交,則x=0,得出D(0,3a).(2)根據(jù)(1)中A、B、D的坐標(biāo),得出拋物線對稱軸x=,AO=a,OD=3a,代入求得頂點(diǎn)C(,-),從而得PB=3-=,PC=;再分情況討論:①當(dāng)△AOD∽△BPC時(shí),根據(jù)相似三角形性質(zhì)得,
解得:a=3(舍去);②△AOD∽△CPB,根據(jù)相似三角形性質(zhì)得,解得:a1=3(舍),a2=;(3)能;連接BD,取BD中點(diǎn)M,根據(jù)已知得D、B、O在以BD為直徑,M(,a)為圓心的圓上,若點(diǎn)C也在此圓上,則MC=MB,根據(jù)兩點(diǎn)間的距離公式得一個(gè)關(guān)于a的方程,解之即可得出答案.【詳解】(1)∵y=(x-a)(x-3)(0<a<3)與x軸交于點(diǎn)A、B(點(diǎn)A在點(diǎn)B的左側(cè)),∴A(a,0),B(3,0),當(dāng)x=0時(shí),y=3a,∴D(0,3a);(2)∵A(a,0),B(3,0),D(0,3a).∴對稱軸x=,AO=a,OD=3a,當(dāng)x=時(shí),y=-,∴C(,-),∴PB=3-=,PC=,①當(dāng)△AOD∽△BPC時(shí),∴,即,
解得:a=3(舍去);②△AOD∽△CPB,∴,即,解得:a1=3(舍),a2=.綜上所述:a的值為;(3)能;連接BD,取BD中點(diǎn)M,∵D、B、O三點(diǎn)共圓,且BD為直徑,圓心為M(,a),若點(diǎn)C也在此圓上,∴MC=MB,∴,化簡得:a4-14a2+45=0,∴(a2-5)(a2-9)=0,∴a2=5或a2=9,∴a1=,a2=-,a3=3(舍),a4=-3(舍),∵0<a<3,∴a=,∴當(dāng)a=時(shí),D、O、C、B四點(diǎn)共圓.【點(diǎn)睛】本題考查了二次函數(shù)、相似三
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年特色小鎮(zhèn)開發(fā)建設(shè)合作合同
- 職業(yè)衛(wèi)生課程設(shè)計(jì)崔曉紅
- 統(tǒng)計(jì)學(xué)課程設(shè)計(jì)作業(yè)
- 化工安全生產(chǎn)管理制度
- 自動(dòng)循環(huán)配料課程設(shè)計(jì)
- 照明課程設(shè)計(jì)日志模板
- 中國石化集團(tuán)公司安全生產(chǎn)監(jiān)督管理制度
- 電骰子 課程設(shè)計(jì)
- 碩士課程設(shè)計(jì)論文格式
- 自動(dòng)大門plc組態(tài)課程設(shè)計(jì)
- 2023-2024學(xué)年內(nèi)蒙古名校聯(lián)盟高二下學(xué)期教學(xué)質(zhì)量檢測語文試題(解析版)
- 水利水電工程單元工程施工質(zhì)量驗(yàn)收評定表及填表說明
- 2023年二輪復(fù)習(xí)解答題專題十七:二次函數(shù)的應(yīng)用(銷售利潤問題)(原卷版+解析)
- 《ISO56001-2024創(chuàng)新管理體系 - 要求》之26:“9績效評價(jià)-9.3管理評審”解讀和應(yīng)用指導(dǎo)材料(雷澤佳編制-2024)
- 2024至2030年中國除草劑行業(yè)市場前景預(yù)測及未來發(fā)展趨勢研究報(bào)告
- 三年級(jí)上冊乘法豎式計(jì)算練習(xí)200道及答案
- 2024-2030年中國泥炭市場深度調(diào)查研究報(bào)告
- 組建學(xué)?;@球隊(duì)方案
- 政務(wù)服務(wù)中心物業(yè)服務(wù)投標(biāo)方案【新版】(技術(shù)方案)
- (正式版)YS∕T 5040-2024 有色金屬礦山工程項(xiàng)目可行性研究報(bào)告編制標(biāo)準(zhǔn)
- HJ 179-2018 石灰石石灰-石膏濕法煙氣脫硫工程技術(shù)規(guī)范
評論
0/150
提交評論