遼寧省葫蘆島協(xié)作校2023-2024學(xué)年數(shù)學(xué)高一下期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)試題含解析_第1頁(yè)
遼寧省葫蘆島協(xié)作校2023-2024學(xué)年數(shù)學(xué)高一下期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)試題含解析_第2頁(yè)
遼寧省葫蘆島協(xié)作校2023-2024學(xué)年數(shù)學(xué)高一下期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)試題含解析_第3頁(yè)
遼寧省葫蘆島協(xié)作校2023-2024學(xué)年數(shù)學(xué)高一下期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)試題含解析_第4頁(yè)
遼寧省葫蘆島協(xié)作校2023-2024學(xué)年數(shù)學(xué)高一下期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩8頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

遼寧省葫蘆島協(xié)作校2023-2024學(xué)年數(shù)學(xué)高一下期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.若三個(gè)實(shí)數(shù)a,b,c成等比數(shù)列,其中a=3-5,c=3+A.2 B.-2 C.±2 D.42.在正四棱柱,,則異面直線與所成角的余弦值為A. B. C. D.3.=()A. B. C. D.4.若,則下列不等式不成立的是()A. B. C. D.5.為了了解某同學(xué)的數(shù)學(xué)學(xué)習(xí)情況,對(duì)他的6次數(shù)學(xué)測(cè)試成績(jī)進(jìn)行統(tǒng)計(jì),作出的莖葉圖如圖所示,則下列關(guān)于該同學(xué)數(shù)學(xué)成績(jī)的說法正確的是()A.中位數(shù)為83 B.眾數(shù)為85 C.平均數(shù)為85 D.方差為196.已知向量滿足:,,,則()A. B. C. D.7.正項(xiàng)等比數(shù)列的前項(xiàng)和為,若,,則公比()A.4 B.3 C.2 D.18.在中,內(nèi)角的對(duì)邊分別為,且,,若,則()A.2 B.3 C.4 D.9.下列說法不正確的是()A.空間中,一組對(duì)邊平行且相等的四邊形是一定是平行四邊形;B.同一平面的兩條垂線一定共面;C.過直線上一點(diǎn)可以作無數(shù)條直線與這條直線垂直,且這些直線都在同一個(gè)平面內(nèi);D.過一條直線有且只有一個(gè)平面與已知平面垂直.10.我國(guó)古代數(shù)學(xué)典籍《九章算術(shù)》“盈不足”中有一道兩鼠穿墻問題:“今有垣厚十尺,兩鼠對(duì)穿,初日各一尺,大鼠日自倍,小鼠日自半,問幾何日相逢?”現(xiàn)用程序框圖描述,如圖所示,則輸出結(jié)果n=()A.2 B.3 C.4 D.5二、填空題:本大題共6小題,每小題5分,共30分。11.已知平面向量,,滿足:,且,則的最小值為____.12.若,則______(用表示).13.等差數(shù)列中,公差.則與的等差中項(xiàng)是_____(用數(shù)字作答)14.設(shè)無窮等比數(shù)列的公比為,若,則__________________.15.已知扇形的圓心角為,半徑為,則扇形的面積.16.已知圓錐的頂點(diǎn)為,母線,互相垂直,與圓錐底面所成角為,若的面積為,則該圓錐的體積為__________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.已知圓的圓心在線段上,圓經(jīng)過點(diǎn),且與軸相切.(1)求圓的方程;(2)若直線與圓交于,兩點(diǎn),當(dāng)最小時(shí),求直線的方程及的最小值.18.已知圓C:(x-1)2(1)當(dāng)l經(jīng)過圓心C時(shí),求直線l的方程;(2)當(dāng)弦AB被點(diǎn)P平分時(shí),寫出直線l的方程19.如圖所示,一個(gè)半圓和長(zhǎng)方形組成的鐵皮,長(zhǎng)方形的邊為半圓的直徑,為半圓的圓心,,,現(xiàn)要將此鐵皮剪出一個(gè)三角形,使得,.(1)設(shè),求三角形鐵皮的面積;(2)求剪下的鐵皮三角形的面積的最大值.20.已知,其中,求:(1);;(2)與的夾角的余弦值.21.如圖,為圓的直徑,點(diǎn),在圓上,,矩形和圓所在的平面互相垂直,已知,.(1)求證:平面平面;(2)當(dāng)時(shí),求多面體的體積.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、C【解析】

由實(shí)數(shù)a,b,c成等比數(shù)列,得b2【詳解】由實(shí)數(shù)a,b,c成等比數(shù)列,得b2所以b=±2.故選C.【點(diǎn)睛】本題主要考查了等比數(shù)列的基本性質(zhì),屬于基礎(chǔ)題.2、A【解析】

作出兩異面直線所成的角,然后由余弦定理求解.【詳解】在正四棱柱中,則異面直線與所成角為或其補(bǔ)角,在中,,,.故選A.【點(diǎn)睛】本題考查異面直線所成的角,解題關(guān)鍵是根據(jù)定義作出異面直線所成的角,然后通過解三角形求之.3、A【解析】

試題分析:由誘導(dǎo)公式,故選A.考點(diǎn):誘導(dǎo)公式.4、A【解析】

由題得a<b<0,再利用作差比較法判斷每一個(gè)選項(xiàng)的正誤得解.【詳解】由題得a<b<0,對(duì)于選項(xiàng)A,=,所以選項(xiàng)A錯(cuò)誤.對(duì)于選項(xiàng)B,顯然正確.對(duì)于選項(xiàng)C,,所以,所以選項(xiàng)C正確.對(duì)于選項(xiàng)D,,所以選項(xiàng)D正確.故答案為A【點(diǎn)睛】(1)本題主要考查不等式的基本性質(zhì)和實(shí)數(shù)大小的比較,意在考查學(xué)生對(duì)這些知識(shí)的掌握水平和分析推理能力.(2)比差的一般步驟是:作差→變形(配方、因式分解、通分等)→與零比→下結(jié)論;比商的一般步驟是:作商→變形(配方、因式分解、通分等)→與1比→下結(jié)論.如果兩個(gè)數(shù)都是正數(shù),一般用比商,其它一般用比差.5、C【解析】試題分析:A選項(xiàng),中位數(shù)是84;B選項(xiàng),眾數(shù)是出現(xiàn)最多的數(shù),故是83;C選項(xiàng),平均數(shù)是85,正確;D選項(xiàng),方差是,錯(cuò)誤.考點(diǎn):?莖葉圖的識(shí)別?相關(guān)量的定義6、D【解析】

首先根據(jù)題中條件求出與的數(shù)量積,然后求解即可.【詳解】由題有,即,,所以.故選:D.【點(diǎn)睛】本題主要考查了向量的模,屬于基礎(chǔ)題.7、C【解析】

由及等比數(shù)列的通項(xiàng)公式列出關(guān)于q的方程即可得求解.【詳解】,即有,解得或,又為正項(xiàng)等比數(shù)列,故選:C【點(diǎn)睛】本題考查等比數(shù)列的通項(xiàng)公式及前n項(xiàng)和,屬于基礎(chǔ)題.8、B【解析】

利用正弦定理化簡(jiǎn),由此求得的值.利用三角形內(nèi)角和定理和兩角和與差的正弦公式化簡(jiǎn),由此求得的值,進(jìn)而求得的值.【詳解】利用正弦定理化簡(jiǎn)得,所以為銳角,且.由于,所以由得,化簡(jiǎn)得.若,則,故.若,則,由余弦定理得,解得.綜上所述,,故選B.【點(diǎn)睛】本小題主要考查正弦定理、余弦定理解三角形,考查同角三角函數(shù)的基本關(guān)系式,考查三角形內(nèi)角和定理,考查兩角和與差的正弦公式,屬于中檔題.9、D【解析】一組對(duì)邊平行就決定了共面;同一平面的兩條垂線互相平行,因而共面;這些直線都在同一個(gè)平面內(nèi)即直線的垂面;把書本的書脊垂直放在桌上就明確了10、C【解析】開始,輸入,則,判斷,否,循環(huán),,則,判斷,否,循環(huán),則,判斷,否,循環(huán),則,判斷,是,輸出,結(jié)束.故選擇C.二、填空題:本大題共6小題,每小題5分,共30分。11、-1【解析】

,,,由經(jīng)過向量運(yùn)算得,知點(diǎn)在以為圓心,1為半徑的圓上,這樣,只要最小,就可化簡(jiǎn).【詳解】如圖,,則,設(shè)是中點(diǎn),則,∵,∴,即,,記,則點(diǎn)在以為圓心,1為半徑的圓上,記,,注意到,因此當(dāng)與反向時(shí),最小,∴.∴最小值為-1.故答案為-1.【點(diǎn)睛】本題考查平面向量的數(shù)量積,解題關(guān)鍵是由已知得出點(diǎn)軌跡(讓表示的有向線段的起點(diǎn)都是原點(diǎn))是圓,然后分析出只有最小時(shí),才可能最?。畯亩玫浇忸}方法.12、【解析】

直接利用誘導(dǎo)公式化簡(jiǎn)求解即可.【詳解】解:,則,故答案為:.【點(diǎn)睛】本題考查誘導(dǎo)公式的應(yīng)用,三角函數(shù)化簡(jiǎn)求值,考查計(jì)算能力,屬于基礎(chǔ)題.13、5【解析】

根據(jù)等差中項(xiàng)的性質(zhì),以及的值,求出的值即是所求.【詳解】根據(jù)等差中項(xiàng)的性質(zhì)可知,的等差中項(xiàng)是,故.【點(diǎn)睛】本小題主要考查等差中項(xiàng)的性質(zhì),考查等差數(shù)列基本量的計(jì)算,屬于基礎(chǔ)題.14、【解析】

由可知,算出用表示的極限,再利用性質(zhì)計(jì)算得出即可.【詳解】顯然公比不為1,所以公比為的等比數(shù)列求和公式,且,故.此時(shí)當(dāng)時(shí),求和極限為,所以,故,所以,故,又,故.故答案為:.【點(diǎn)睛】本題主要考查等比數(shù)列求和公式,當(dāng)時(shí).15、【解析】試題分析:由題可知,;考點(diǎn):扇形面積公式16、8π【解析】分析:作出示意圖,根據(jù)條件分別求出圓錐的母線,高,底面圓半徑的長(zhǎng),代入公式計(jì)算即可.詳解:如下圖所示,又,解得,所以,所以該圓錐的體積為.點(diǎn)睛:此題為填空題的壓軸題,實(shí)際上并不難,關(guān)鍵在于根據(jù)題意作出相應(yīng)圖形,利用平面幾何知識(shí)求解相應(yīng)線段長(zhǎng),代入圓錐體積公式即可.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)的方程為,最小為【解析】

(1)設(shè)圓的方程為,由題意可得,求解即可得到圓的方程;(2)過定點(diǎn),當(dāng)直線與直線垂直時(shí),直線被圓截得的弦最小,求解即可.【詳解】解:(1)設(shè)圓的方程為,所以,解得所以圓的方程為.(2)直線的方程可化為點(diǎn)斜式,所以過定點(diǎn).又點(diǎn)在圓內(nèi),當(dāng)直線與直線垂直時(shí),直線被圓截得的弦最?。?yàn)椋缘男甭?,所以的方程為,即,因?yàn)椋?,所以.【點(diǎn)睛】求圓的弦長(zhǎng)的常用方法幾何法:設(shè)圓的半徑為r,弦心距為d,弦長(zhǎng)為l,則;②代數(shù)方法:運(yùn)用韋達(dá)定理及弦長(zhǎng)公式:==.18、(1);(2)【解析】(1)已知圓C:(x-1)2(2)當(dāng)弦AB被點(diǎn)P平分時(shí),l⊥PC,直線l的方程為y-2=-119、(1)三角形鐵皮的面積為;(2)剪下的鐵皮三角形的面積的最大值為.【解析】試題分析:(1)利用銳角三角函數(shù)求出和的長(zhǎng)度,然后以為底邊、以為高,利用三角形面積公式求出三角形的面積;(2)設(shè),以銳角為自變量將和的長(zhǎng)度表示出來,并利用面積公式求出三角形的面積的表達(dá)式,利用與之間的關(guān)系,令將三角形的面積的表達(dá)式表示為以為自變量的二次函數(shù),利用二次函數(shù)的單調(diào)性求出三角形的面積的最大值,但是要注意自變量的取值范圍作為新函數(shù)的定義域.試題解析:(1)由題意知,,,,即三角形鐵皮的面積為;(2)設(shè),則,,,,令,由于,所以,則有,所以,且,所以,故,而函數(shù)在區(qū)間上單調(diào)遞增,故當(dāng)時(shí),取最大值,即,即剪下的鐵皮三角形的面積的最大值為.考點(diǎn):1.三角形的面積;2.三角函數(shù)的最值;3.二次函數(shù)的最值20、(1)10;(2)【解析】試題分析:(1)本題考察的是平面向量的數(shù)量積和向量的模.先根據(jù)是相互垂直的單位向量表示出要用的兩個(gè)向量,然后根據(jù)向量的數(shù)量積運(yùn)算和向量模的運(yùn)算即可求出答案.(2)本題考察的是平面向量的夾角余弦值,可以通過向量的數(shù)量積公式表示出夾角的余弦值.先求出向量的模長(zhǎng),然后根據(jù)(1)求出的的數(shù)量積代入公式,即可求出答案.試題解析:(1),.∴|.(2)考點(diǎn):平面向量數(shù)量積的坐標(biāo)表示、模和夾角.21、(1)證明見解析;(2)【解析】

(1)由題可得,,從而可得平面,由此證明平面平面;

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論