安徽省阜陽市潁州區(qū)第三中學2023-2024學年數(shù)學高一下期末綜合測試模擬試題含解析_第1頁
安徽省阜陽市潁州區(qū)第三中學2023-2024學年數(shù)學高一下期末綜合測試模擬試題含解析_第2頁
安徽省阜陽市潁州區(qū)第三中學2023-2024學年數(shù)學高一下期末綜合測試模擬試題含解析_第3頁
安徽省阜陽市潁州區(qū)第三中學2023-2024學年數(shù)學高一下期末綜合測試模擬試題含解析_第4頁
安徽省阜陽市潁州區(qū)第三中學2023-2024學年數(shù)學高一下期末綜合測試模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

安徽省阜陽市潁州區(qū)第三中學2023-2024學年數(shù)學高一下期末綜合測試模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知等差數(shù)列an的前n項和為Sn,若a8=12,S8A.-2 B.2 C.-1 D.12.已知平面向量,,,,且,則向量與向量的夾角為()A. B. C. D.3.若數(shù)列前12項的值各異,且對任意的都成立,則下列數(shù)列中可取遍前12項值的數(shù)列為()A. B. C. D.4.一個正方體的體積是8,則這個正方體的內(nèi)切球的表面積是()A.8π B.6π C.4π D.π5.在如圖的正方體中,M、N分別為棱BC和棱的中點,則異面直線AC和MN所成的角為()A. B. C. D.6.設集合,則()A. B. C. D.7.在中,,,,則=()A. B.C. D.8.連續(xù)兩次拋擲一枚質(zhì)地均勻的硬幣,出現(xiàn)正面向上與反面向上各一次的概率是(

)A. B. C. D.9.已知,是平面,m,n是直線,則下列命題不正確的是()A.若,則 B.若,則C.若,則 D.若,則10.已知函數(shù)若關于的方程恰有兩個互異的實數(shù)解,則的取值范圍為A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.一個扇形的半徑是,弧長是,則圓心角的弧度數(shù)為________.12.已知,且為第三象限角,則的值等于______;13.已知向量a=(3,2),b=(0,-1),那么向量3b-a的坐標是.14.已知等差數(shù)列的公差為2,若成等比數(shù)列,則________.15.等差數(shù)列滿足,則其公差為__________.16.方程在區(qū)間上的解為___________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.設O為坐標原點,動點M在橢圓C上,過M作x軸的垂線,垂足為N,點P滿足.(1)求點P的軌跡方程;(2)設點在直線上,且.證明:過點P且垂直于OQ的直線過C的左焦點F.18.已知函數(shù)的值域為A,.(1)當?shù)臑榕己瘮?shù)時,求的值;(2)當時,在A上是單調(diào)遞增函數(shù),求的取值范圍;(3)當時,(其中),若,且函數(shù)的圖象關于點對稱,在處取得最小值,試探討應該滿足的條件.19.已知數(shù)列的前項和(1)求的通項公式;(2)若數(shù)列滿足:,求的前項和(結(jié)果需化簡)20.如圖,在四棱錐中,底面為正方形,平面,,與交于點,,分別為,的中點.(Ⅰ)求證:平面平面;(Ⅱ)求證:∥平面;(Ⅲ)求證:平面.21.如圖,矩形所在平面與以為直徑的圓所在平面垂直,為中點,是圓周上一點,且,,.(1)求異面直線與所成角的余弦值;(2)設點是線段上的點,且滿足,若直線平面,求實數(shù)的值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】

直角利用待定系數(shù)法可得答案.【詳解】因為S8=8a1+a82【點睛】本題主要考查等差數(shù)列的基本量的相關計算,難度不大.2、B【解析】

根據(jù)可得到:,由此求得;利用向量夾角的求解方法可求得結(jié)果.【詳解】由題意知:,則設向量與向量的夾角為則本題正確選項:【點睛】本題考查向量夾角的求解,關鍵是能夠通過平方運算將模長轉(zhuǎn)變?yōu)橄蛄康臄?shù)量積,從而得到向量的位置關系.3、C【解析】

根據(jù)題意可知利用除以12所得的余數(shù)分析即可.【詳解】由題知若要取遍前12項值的數(shù)列,則需要數(shù)列的下標能夠取得除以12后所有的余數(shù).因為12的因數(shù)包括3,4,6,故不能除以12后取所有的余數(shù).如除以12的余數(shù)只能取1,4,7,10的循環(huán)余數(shù).又5不能整除12,故能夠取得除以12后取所有的余數(shù).故選:C【點睛】本題主要考查了數(shù)列下標整除與余數(shù)的問題,屬于中等題型.4、C【解析】設正方體的棱長為a,則=8,∴a=2.而此正方體的內(nèi)切球直徑為2,∴S表=4π=4π.選C.5、C【解析】

將平移到一起,根據(jù)等邊三角形的性質(zhì)判斷出兩條異面直線所成角的大小.【詳解】連接如下圖所示,由于分別是棱和棱的中點,故,根據(jù)正方體的性質(zhì)可知,所以是異面直線所成的角,而三角形為等邊三角形,故.故選C.【點睛】本小題主要考查空間異面直線所成角的大小的求法,考查空間想象能力,屬于基礎題.6、B【解析】

先求得集合,再結(jié)合集合的交集的概念及運算,即可求解.【詳解】由題意,集合,所以.故選:B.【點睛】本題主要考查了集合的交集的運算,其中解答中正確求解集合B,結(jié)合集合的交集的概念與運算求解是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.7、C【解析】

根據(jù)正弦定理,代入即可求解.【詳解】因為中,,,由正弦定理可知代入可得故選:C【點睛】本題考查了正弦定理在解三角形中的應用,屬于基礎題.8、C【解析】

利用列舉法求得基本事件的總數(shù),利用古典概型的概率計算公式,即可求解.【詳解】由題意,連續(xù)兩次拋擲一枚質(zhì)地均勻的硬幣,基本事件包含:(正面,正面),(正面,反面),(反面,正面),(反面,反面),共有4中情況,出現(xiàn)正面向上與反面向上各一次,包含基本事件:(正面,反面),(反面,正面),共2種,所以的概率為,故選C.【點睛】本題主要考查了古典概型及其概率的計算問題,其中解答中熟練利用列舉法求得基本事件的總數(shù)是解答的關鍵,著重考查了分析問題和解答問題的能力,屬于基礎題.9、D【解析】

由題意找到反例即可確定錯誤的選項.【詳解】如圖所示,在正方體中,取直線m為,平面為,滿足,取平面為平面,則的交線為,很明顯m和n為異面直線,不滿足,選項D錯誤;如果兩條平行直線中的一條垂直于一個平面,那么另一條也垂直于這個平面,所以A正確;如果兩個平面與同一條直線垂直,則這兩個平面平行,所以B正確;由A選項和面面垂直的判定定理可得C也正確.本題答案為D.【點睛】本題主要考查線面關系有關命題真假的判斷,意在考查學生的轉(zhuǎn)化能力和邏輯推理能力,屬基礎題.10、D【解析】

畫出圖象及直線,借助圖象分析.【詳解】如圖,當直線位于點及其上方且位于點及其下方,或者直線與曲線相切在第一象限時符合要求.即,即,或者,得,,即,得,所以的取值范圍是.故選D.【點睛】根據(jù)方程實根個數(shù)確定參數(shù)范圍,常把其轉(zhuǎn)化為曲線交點個數(shù),特別是其中一條為直線時常用此法.二、填空題:本大題共6小題,每小題5分,共30分。11、2【解析】

直接根據(jù)弧長公式,可得.【詳解】因為,所以,解得【點睛】本題主要考查弧長公式的應用.12、【解析】

根據(jù)條件以及誘導公式計算出的值,再由的范圍計算出的值,最后根據(jù)商式關系:求得的值.【詳解】因為,所以,又因為且為第三象限角,所以,所以.故答案為:.【點睛】本題考查三角函數(shù)中的給值求值問題,中間涉及到誘導公式以及同角三角函數(shù)的基本關系,難度一般.三角函數(shù)中的求值問題,一定要注意角的范圍,避免出現(xiàn)多解.13、【解析】試題分析:因為,所以.考點:向量坐標運算.14、【解析】

利用等差數(shù)列{an}的公差為1,a1,a3,a4成等比數(shù)列,求出a1,即可求出a1.【詳解】∵等差數(shù)列{an}的公差為1,a1,a3,a4成等比數(shù)列,

∴(a1+4)1=a1(a1+2),

∴a1=-8,

∴a1=-2.

故答案為-2..【點睛】本題考查等比數(shù)列的性質(zhì),考查等差數(shù)列的通項,考查學生的計算能力,屬基礎題..15、【解析】

首先根據(jù)等差數(shù)列的性質(zhì)得到,再根據(jù)即可得到公差的值.【詳解】,解得.,所以.故答案為:【點睛】本題主要考查等差數(shù)列的性質(zhì),熟記公式為解題的關鍵,屬于簡單題.16、【解析】試題分析:化簡得:,所以,解得或(舍去),又,所以.【考點】二倍角公式及三角函數(shù)求值【名師點睛】已知三角函數(shù)值求角,基本思路是通過化簡,得到角的某種三角函數(shù)值,結(jié)合角的范圍求解.本題難度不大,能較好地考查考生的邏輯推理能力、基本計算能力等.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2)見解析.【解析】

試題分析:(1)轉(zhuǎn)移法求軌跡:設所求動點坐標及相應已知動點坐標,利用條件列兩種坐標關系,最后代入已知動點軌跡方程,化簡可得所求軌跡方程;(2)證明直線過定點問題,一般方法是以算代證:即證,先設P(m,n),則需證,即根據(jù)條件可得,而,代入即得.試題解析:解:(1)設P(x,y),M(),則N(),由得.因為M()在C上,所以.因此點P的軌跡為.由題意知F(-1,0),設Q(-3,t),P(m,n),則,.由得-3m-+tn-=1,又由(1)知,故3+3m-tn=0.所以,即.又過點P存在唯一直線垂直于OQ,所以過點P且垂直于OQ的直線l過C的左焦點F.點睛:定點、定值問題通常是通過設參數(shù)或取特殊值來確定“定點”是什么、“定值”是多少,或者將該問題涉及的幾何式轉(zhuǎn)化為代數(shù)式或三角問題,證明該式是恒成立的.定點、定值問題同證明問題類似,在求定點、定值之前已知該值的結(jié)果,因此求解時應設參數(shù),運用推理,到最后必定參數(shù)統(tǒng)消,定點、定值顯現(xiàn).18、(1);(2);(3).【解析】

(1)由函數(shù)為偶函數(shù),可得,故,由此可得的值.(2)化簡函數(shù),求出,化簡,由題意可知:,由此可得的取值范圍.(3)由條件得,再由,,可得.由的圖象關于點,對稱求得,可得.再由的圖象關于直線成軸對稱,所以,可得,,由此求得滿足的條件.【詳解】解:(1)因為函數(shù)為偶函數(shù),所以,得對恒成立,即,所以.(2),即,,由題意可知:得,∴.(3)又∵,,,不妨設,,則,其中,由函數(shù)的圖像關于點對稱,在處取得最小值得,即,故.【點睛】本題主要考查三角函數(shù)的奇偶性,單調(diào)性和對稱性的綜合應用,屬于中檔題.19、(1);(2);【解析】

(1)運用數(shù)列的遞推式得時,,時,,化簡計算可得所求通項公式;(2)求得,運用數(shù)列的錯位相減法求和,結(jié)合等比數(shù)列的求和公式,計算可得所求和.【詳解】(1)可得時,則(2)數(shù)列滿足,可得,即,前項和兩式相減可得化簡可得【點睛】本題考查數(shù)列的遞推式的運用,考查數(shù)列的錯位相減法求和,以及等比數(shù)列的求和公式,考查運算能力,屬于中檔題.20、(Ⅰ)見解析(Ⅱ)見解析(Ⅲ)見解析【解析】

(I)通過證明平面來證得平面平面.(II)取中點,連接,通過證明四邊形為平行四邊形,證得,由此證得∥平面.(III)通過證明平面證得,通過計算證明證得,由此證得平面.【詳解】證明:(Ⅰ)因為平面,所以.因為,,所以平面.因為平面,所以平面平面.(Ⅱ)取中點,連結(jié),因為為的中點所以,且.因為為的中點,底面為正方形,所以,且.所以,且.所以四邊形為平行四邊形.所以.因為平面且平面,所以平面.(Ⅲ)在正方形中,,因為平面,所以.因為,所以平面.所以.在△中,設交于.因為,且分別為的中點,所以.所以.設,由已知,所以.所以.所以.所以,且為公共角,所以△∽△.所以.所以.因為,所以平面.【點睛】本小題主要考查線面垂直、面面垂直的證明,考查線面平行的證明,考查空間想象能力和邏輯推理能力,屬于中檔題.21、(1);(2)1【解析】

(1)取中點,連接,即為所求角。在中,易得MC,NC的長,MN可在直角三角形中求得。再用余弦定理易求得夾角。(2)連接,連接和交于點,連接,易得,所以為的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論