![甘肅省會寧一中2023-2024學年數(shù)學高一下期末學業(yè)質(zhì)量監(jiān)測模擬試題含解析_第1頁](http://file4.renrendoc.com/view3/M03/31/08/wKhkFmZf1ICABFVZAAJWLkYmNRQ539.jpg)
![甘肅省會寧一中2023-2024學年數(shù)學高一下期末學業(yè)質(zhì)量監(jiān)測模擬試題含解析_第2頁](http://file4.renrendoc.com/view3/M03/31/08/wKhkFmZf1ICABFVZAAJWLkYmNRQ5392.jpg)
![甘肅省會寧一中2023-2024學年數(shù)學高一下期末學業(yè)質(zhì)量監(jiān)測模擬試題含解析_第3頁](http://file4.renrendoc.com/view3/M03/31/08/wKhkFmZf1ICABFVZAAJWLkYmNRQ5393.jpg)
![甘肅省會寧一中2023-2024學年數(shù)學高一下期末學業(yè)質(zhì)量監(jiān)測模擬試題含解析_第4頁](http://file4.renrendoc.com/view3/M03/31/08/wKhkFmZf1ICABFVZAAJWLkYmNRQ5394.jpg)
![甘肅省會寧一中2023-2024學年數(shù)學高一下期末學業(yè)質(zhì)量監(jiān)測模擬試題含解析_第5頁](http://file4.renrendoc.com/view3/M03/31/08/wKhkFmZf1ICABFVZAAJWLkYmNRQ5395.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
甘肅省會寧一中2023-2024學年數(shù)學高一下期末學業(yè)質(zhì)量監(jiān)測模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知向量,的夾角為,且,,則與的夾角等于A. B. C. D.2.直線(,)過點(-1,-1),則的最小值為()A.9 B.1 C.4 D.103.某學校從編號依次為01,02,…,72的72個學生中用系統(tǒng)抽樣(等間距抽樣)的方法抽取一個樣本,已知樣本中相鄰的兩個組的編號分別為12,21,則該樣本中來自第四組的學生的編號為()A.30 B.31 C.32 D.334.設點是函數(shù)圖象上的任意一點,點滿足,則的最小值為()A. B. C. D.5.在中,已知,則的面積為()A. B. C. D.6.設矩形的長為,寬為,其比滿足∶=,這種矩形給人以美感,稱為黃金矩形.黃金矩形常應用于工藝品設計中.下面是某工藝品廠隨機抽取兩個批次的初加工矩形寬度與長度的比值樣本:甲批次:0.5980.6250.6280.5950.639乙批次:0.6180.6130.5920.6220.620根據(jù)上述兩個樣本來估計兩個批次的總體平均數(shù),與標準值0.618比較,正確結(jié)論是A.甲批次的總體平均數(shù)與標準值更接近B.乙批次的總體平均數(shù)與標準值更接近C.兩個批次總體平均數(shù)與標準值接近程度相同D.兩個批次總體平均數(shù)與標準值接近程度不能確定7.若,則下列正確的是()A. B.C. D.8.過點且垂直于直線的直線方程為()A. B.C. D.9.已知函數(shù)f(x)是定義在上的奇函數(shù),當x>0時,f(x)=2x-3,則A.14B.-114C.10.設全集,集合,,則()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知圓,直線l被圓所截得的弦的中點為.則直線l的方程是________(用一般式直線方程表示).12.已知,,若,則________.13.已知正實數(shù)x,y滿足2x+y=2,則xy的最大值為______.14.若函數(shù),的最大值為,則的值是________.15.數(shù)列滿足,則的前60項和為_____.16.終邊在軸上的角的集合是_____________________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.如圖,某污水處理廠要在一個矩形污水處理池的池底水平鋪設污水凈化管道(三條邊,是直角頂點)來處理污水,管道越長,污水凈化效果越好.要求管道的接口是的中點,分別落在線段上,已知米,米,記.(1)試將污水凈化管道的總長度(即的周長)表示為的函數(shù),并求出定義域;(2)問取何值時,污水凈化效果最好?并求出此時管道的總長度.18.已知f(α)=,其中α≠kπ(k∈Z).(1)化簡f(α);(2)若f(+β)=-,β是第四象限的角,求sin(2β+)的值.19.已知函數(shù),它的部分圖象如圖所示.(1)求函數(shù)的解析式;(2)當時,求函數(shù)的值域.20.某校舉行漢字聽寫比賽,為了了解本次比賽成績情況,從得分不低于50分的試卷中隨機抽取100名學生的成績(得分均為整數(shù),滿分100分)進行統(tǒng)計,請根據(jù)頻率分布表中所提供的數(shù)據(jù),解答下列問題:組號分組頻數(shù)頻率第1組[50,60)50.05第2組[60,70)0.35第3組[70,80)30第4組[80,90)200.20第5組[90,100]100.10合計1001.00(Ⅰ)求的值;(Ⅱ)若從成績較好的第3、4、5組中按分層抽樣的方法抽取6人參加市漢字聽寫比賽,并從中選出2人做種子選手,求2人中至少有1人是第4組的概率.21.已知數(shù)列中,..(1)寫出、、;(2)猜想的表達式,并用數(shù)學歸納法證明.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】
根據(jù)條件即可求出,從而可求出,,,然后可設與的夾角為,從而可求出,根據(jù)向量夾角的范圍即可求出夾角.【詳解】,;,,;設與的夾角為,則;又,,故選.【點睛】本題主要考查向量數(shù)量積的定義運用,向量的模的求法,以及利用數(shù)量積求向量夾角.2、A【解析】
將點的坐標代入直線方程:,再利用乘1法求最值【詳解】將點的坐標代入直線方程:,,當且僅當時取等號【點睛】已知和為定值,求倒數(shù)和的最小值,利用乘1法求最值。3、A【解析】
根據(jù)相鄰的兩個組的編號確定組矩,即可得解.【詳解】由題:樣本中相鄰的兩個組的編號分別為12,21,所以組矩為9,則第一組所取學生的編號為3,第四組所取學生的編號為30.故選:A【點睛】此題考查系統(tǒng)抽樣,關鍵在于根據(jù)系統(tǒng)抽樣方法確定組矩,依次求得每組選取的編號.4、B【解析】
函數(shù)表示圓位于x軸下面的部分.利用點到直線的距離公式,求出最小值.【詳解】函數(shù)化簡得.圓心坐標,半徑為2.所以【點睛】本題考查點到直線的距離公式,屬于基礎題.5、B【解析】
根據(jù)三角形的面積公式求解即可.【詳解】的面積.
故選:B【點睛】本題主要考查了三角形的面積公式,屬于基礎題.6、A【解析】甲批次的平均數(shù)為0.617,乙批次的平均數(shù)為0.6137、D【解析】
由不等式的性質(zhì)對四個選項逐一判斷,即可得出正確選項,錯誤的選項可以采用特值法進行排除.【詳解】A選項不正確,因為若,,則不成立;B選項不正確,若時就不成立;C選項不正確,同B,時就不成立;D選項正確,因為不等式的兩邊加上或者減去同一個數(shù),不等號的方向不變,故選D.【點睛】本題主要考查不等關系和不等式的基本性質(zhì),求解的關鍵是熟練掌握不等式的運算性質(zhì).8、C【解析】
先求出直線的斜率,再求出所求直線的斜率,再利用直線的點斜式方程求解.【詳解】由題得直線的斜率為,所以所求的直線的斜率為,所以所求的直線方程為即.故選:C【點睛】本題主要考查互相垂直直線的性質(zhì),考查直線方程的求法,意在考查學生對這些知識的理解掌握水平,屬于基礎題.9、D【解析】試題分析:函數(shù)f(x)是定義在上的奇函數(shù),,故答案為D.考點:奇函數(shù)的應用.10、D【解析】
先求得集合的補集,然后求其與集合的交集,由此得出正確選項.【詳解】依題意,所以,故選D.【點睛】本小題主要考查集合補集、交集的概念和運算,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
將圓的方程化為標椎方程,找出圓心坐標與半徑,根據(jù)垂徑定理得到直線與直線垂直,根據(jù)直線的斜率求出直線的斜率,確定出直線的方程即可.【詳解】由已知圓的方程可得,所以圓心,半徑為3,由垂徑定理知:直線直線,因為直線的斜率,所以直線的斜率,則直線的方程為,即.故答案為:.【點睛】本題考查直線與圓的位置關系,考查邏輯思維能力和運算能力,屬于??碱}.12、【解析】
先算出的坐標,然后利用即可求出【詳解】因為,所以因為,所以即,解得故答案為:【點睛】本題考查的是向量在坐標形式下的相關計算,較簡單.13、【解析】
由基本不等式可得,可求出xy的最大值.【詳解】因為,所以,故,當且僅當時,取等號.故答案為.【點睛】利用基本不等式求最值必須具備三個條件:①各項都是正數(shù);②和(或積)為定值;③等號取得的條件.14、【解析】
利用兩角差的正弦公式化簡函數(shù)的解析式為,由的范圍可得的范圍,根據(jù)最大值可得的值.【詳解】∵函數(shù)=2()=,∵,∴∈[,],又∵的最大值為,所以的最大值為,即=,解得.故答案為【點睛】本題主要考查兩角差的正弦公式的應用,正弦函數(shù)的定義域和最值,屬于基礎題.15、1830【解析】
由題意可得,,,,,,…,,變形可得,,,,,,,,…,利用數(shù)列的結(jié)構(gòu)特征,求出的前60項和.【詳解】解:,∴,,,,,,…,,∴,,,,,,,,…,從第一項開始,依次取2個相鄰奇數(shù)項的和都等于2,從第二項開始,依次取2個相鄰偶數(shù)項的和構(gòu)成以8為首項,以16為公差的等差數(shù)列,的前60項和為,故答案為:.【點睛】本題主要考查遞推公式的應用,考查利用構(gòu)造等差數(shù)列求數(shù)列的前項和,屬于中檔題.16、【解析】
由于終邊在y軸的非負半軸上的角的集合為而終邊在y軸的非正半軸上的角的集合為,終邊在軸上的角的集合是,所以,故答案為.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1),;(2)或時,L取得最大值為米..【解析】
(1)解直角三角形求得得EH、FH、EF的解析式,再由L=EH+FH+EF得到污水凈化管道的長度L的函數(shù)解析式,并注明θ的范圍.(2)設sinθ+cosθ=t,根據(jù)函數(shù)L=在[,]上是單調(diào)減函數(shù),可求得L的最大值.所以當時,即
或
時,L取得最大值為米.【詳解】由題意可得,,,由于
,,所以,,,即,設,則,由于,由于在上是單調(diào)減函數(shù),當時,即或時,L取得最大值為米.【點睛】三角函數(shù)值域得不同求法:1.利用和的值域直接求2.把所有的三角函數(shù)式變換成的形式求值域3.通過換元,轉(zhuǎn)化成其他類型函數(shù)求值域18、(1)(2)【解析】
(1)直接利用三角函數(shù)的誘導公式,化簡運算,即可求解;(2)由,得,進一步求得,得到sin2與cos2,再由sin(2+)展開兩角和的正弦求解.【詳解】(1)由題意,可得=;(2)由f(+)==-,得sin.又β是第四象限的角,∴cos=.∴sin2,cos2.∴sin(2+)=sin2cos+cos2sin=.【點睛】本題主要考查了三角函數(shù)的化簡求值,及誘導公式及兩角差的正弦公式的應用,其中解答中熟記三家函數(shù)的恒等變換的公式,準確運算是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.19、(1);(2).【解析】試題分析:(1)依題意,則,將點的坐標代入函數(shù)的解析式可得,故,函數(shù)解析式為.(2)由題意可得,結(jié)合三角函數(shù)的性質(zhì)可得函數(shù)的值域為.試題解析:(1)依題意,,故.將點的坐標代入函數(shù)的解析式可得,則,,故,故函數(shù)解析式為.(2)當時,,則,,所以函數(shù)的值域為.點睛:求函數(shù)f(x)=Asin(ωx+φ)在區(qū)間[a,b]上值域的一般步驟:第一步:三角函數(shù)式的化簡,一般化成形如y=Asin(ωx+φ)+k的形式或y=Acos(ωx+φ)+k的形式.第二步:由x的取值范圍確定ωx+φ的取值范圍,再確定sin(ωx+φ)(或cos(ωx+φ))的取值范圍.第三步:求出所求函數(shù)的值域(或最值).20、(1)35,0.30;(2).【解析】試題分析:(Ⅰ)直接利用頻率和等于1求出b,用樣本容量乘以頻率求a的值;(Ⅱ)由分層抽樣方法求出所抽取的6人中第三、第四、第五組的學生數(shù),利用列舉法寫出從中任意抽取2人的所有方法種數(shù),查出2人至少1人來自第四組的事件個數(shù),然后利用古典概型的概率計算公式求解.試題解析:(Ⅰ)a=100-5-30-20-10=35,b=1-0.05-0.35-0.20-0.10=0.30(Ⅱ)因為第3、4、5組共有60名學生,所以利用分層抽樣在60名學生中抽取6名學生,每組分別為,第3組:×30=3人,第4組:×20=2人,第5組:×10=1人,所以第3、4、5組應分別抽取3人、2人、1人設第3組的3位同學為A1、A2、A3,第4組的2位同學為B1、B2,第5組的1位同學為C1,則從6位同學中抽2位同學有15種可能,如下:(A1,A2),(A1,A3),(A1,B1),(A1,B2),(A1,C1),(A2,A3),(A2,B1),(A2,B2),(A2,C1),(A3,B1),(A3,B2),(A3,C1),(B1,B2),(B1,C1),(B2,C1).其中第4組被入選的有9種,所以其中第4組的2位同學至少有1位同學入選的概率為=點睛:古典概型中基本事件數(shù)的探求方法(1)列舉法.(2)樹狀圖法:適合于較為復雜的問題中的基本事件的探求.對于基本事件有“有序”與“無序”區(qū)別的題目,常采用樹狀圖法.(3)列表法:適用于多元素基本事件
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 湘教版地理八年級下冊第一節(jié)《四大地理區(qū)域的劃分》聽課評課記錄
- 北京課改版歷史七年級上冊第1課《中國境內(nèi)的遠古人類》聽課評課記錄
- 小學二年級數(shù)學口算題上冊三
- 聽評課記錄小學五年級英語
- 婚姻財產(chǎn)約定協(xié)議書范本
- 中央空調(diào)系統(tǒng)節(jié)能環(huán)保改造協(xié)議書范本
- 2025年度綠植花卉租賃與酒店客房裝飾服務合同
- 2025年度環(huán)保項目銀行擔保合同
- 2025年度教育培訓咨詢合同
- 湘教版數(shù)學八年級上冊3.3《實數(shù)的分類及性質(zhì)》聽評課記錄1
- 少兒素描課件
- 2025屆河北省衡水市衡水中學高考仿真模擬英語試卷含解析
- 天津市部分區(qū)2023-2024學年高二上學期期末考試 生物 含解析
- 變壓器投標書-技術部分
- 《我國跨境電子商務消費者權(quán)益保護問題研究》
- 2024九省聯(lián)考適應性考試【甘肅省】歷史試卷及答案解析
- 四年級語文下冊第六單元【集體備課】(教材解讀+教學設計)
- 小學一年級數(shù)學思維訓練100題(附答案)
- 蘇教版小學信息技術五年級下冊五年級下冊教案全集
- 蘇教版八年級數(shù)學上冊期末試卷及答案【完美版】
- 法院拍賣議價協(xié)議書
評論
0/150
提交評論