廣東省興寧一中2023-2024學(xué)年高一下數(shù)學(xué)期末調(diào)研試題含解析_第1頁
廣東省興寧一中2023-2024學(xué)年高一下數(shù)學(xué)期末調(diào)研試題含解析_第2頁
廣東省興寧一中2023-2024學(xué)年高一下數(shù)學(xué)期末調(diào)研試題含解析_第3頁
廣東省興寧一中2023-2024學(xué)年高一下數(shù)學(xué)期末調(diào)研試題含解析_第4頁
廣東省興寧一中2023-2024學(xué)年高一下數(shù)學(xué)期末調(diào)研試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

廣東省興寧一中2023-2024學(xué)年高一下數(shù)學(xué)期末調(diào)研試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.△ABC的內(nèi)角A、B、C的對邊分別為a、b、c.已知,a=2,c=,則C=A. B. C. D.2.已知等差數(shù)列的公差d>0,則下列四個命題:①數(shù)列是遞增數(shù)列;②數(shù)列是遞增數(shù)列;③數(shù)列是遞增數(shù)列;④數(shù)列是遞增數(shù)列;其中正確命題的個數(shù)為()A.1 B.2 C.3 D.43.如圖,設(shè)是正六邊形的中心,則與相等的向量為()A. B. C. D.4.若直線:與直線:平行,則的值為()A.1 B.1或2 C.-2 D.1或-25.記為實數(shù)中的最大數(shù).若實數(shù)滿足則的最大值為()A. B.1 C. D.6.在平行四邊形中,,,則點的坐標為()A. B. C. D.7.已知數(shù)列{an}為等差數(shù)列,,=1,若,則=()A.22019 B.22020 C.22017 D.220188.在中,已知是邊上一點,,,則等于()A. B. C. D.9.已知銳角三角形的邊長分別為1,3,,則的取值范圍是()A. B. C. D.10.曲線與過原點的直線沒有交點,則的傾斜角的取值范圍是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.定義在上的函數(shù),對任意的正整數(shù),都有,且,若對任意的正整數(shù),有,則___________.12.若實數(shù)滿足,則取值范圍是____________。13.某校老年、中年和青年教師的人數(shù)分別為90,180,160,采用分層抽樣的方法調(diào)查教師的身體狀況,在抽取的樣本中,青年教師有32人,則抽取的樣本中老年教師的人數(shù)為_____14.在一個不透明的布袋中,紅色,黑色,白色的玻璃球共有40個,除顏色外其他完全相同,小明通過多次摸球試驗后發(fā)現(xiàn)其中摸到紅色球,黑色球的頻率穩(wěn)定在15%和45%,則口袋中白色球的個數(shù)可能是_________個.15.計算:=_______________.16.在△中,三個內(nèi)角、、的對邊分別為、、,若,,,則________三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.求函數(shù)的最大值18.在平面直角坐標系中,已知向量,,.(1)若,求的值;(2)若與的夾角為,求的值.19.已知數(shù)列的前項和,且滿足.(Ⅰ)求數(shù)列的通項公式;(Ⅱ)求數(shù)列的前項和.20.已知正項數(shù)列,滿足:對任意正整數(shù),都有,,成等差數(shù)列,,,成等比數(shù)列,且,.(Ⅰ)求證:數(shù)列是等差數(shù)列;(Ⅱ)求數(shù)列,的通項公式;(Ⅲ)設(shè)=++…+,如果對任意的正整數(shù),不等式恒成立,求實數(shù)的取值范圍.21.如圖,在△ABC中,cosC=,角B的平分線BD交AC于點D,設(shè)∠CBD=θ,其中tanθ=﹣1.(1)求sinA的值;(2)若,求AB的長.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】

試題分析:根據(jù)誘導(dǎo)公式和兩角和的正弦公式以及正弦定理計算即可詳解:sinB=sin(A+C)=sinAcosC+cosAsinC,∵sinB+sinA(sinC﹣cosC)=0,∴sinAcosC+cosAsinC+sinAsinC﹣sinAcosC=0,∴cosAsinC+sinAsinC=0,∵sinC≠0,∴cosA=﹣sinA,∴tanA=﹣1,∵<A<π,∴A=,由正弦定理可得,∵a=2,c=,∴sinC==,∵a>c,∴C=,故選B.點睛:本題主要考查正弦定理及余弦定理的應(yīng)用,屬于難題.在解與三角形有關(guān)的問題時,正弦定理、余弦定理是兩個主要依據(jù).解三角形時,有時可用正弦定理,有時也可用余弦定理,應(yīng)注意用哪一個定理更方便、簡捷一般來說,當(dāng)條件中同時出現(xiàn)及、時,往往用余弦定理,而題設(shè)中如果邊和正弦、余弦函數(shù)交叉出現(xiàn)時,往往運用正弦定理將邊化為正弦函數(shù)再結(jié)合和、差、倍角的正余弦公式進行解答.2、B【解析】

對于各個選項中的數(shù)列,計算第n+1項與第n項的差,看此差的符號,再根據(jù)遞增數(shù)列的定義得出結(jié)論.【詳解】設(shè)等差數(shù)列,d>0∵對于①,n+1﹣n=d>0,∴數(shù)列是遞增數(shù)列成立,是真命題.對于②,數(shù)列,得,,所以不一定是正實數(shù),即數(shù)列不一定是遞增數(shù)列,是假命題.對于③,數(shù)列,得,,不一定是正實數(shù),故是假命題.對于④,數(shù)列,故數(shù)列是遞增數(shù)列成立,是真命題.故選:B.【點睛】本題考查用定義判斷數(shù)列的單調(diào)性,考查學(xué)生的計算能力,正確運用遞增數(shù)列的定義是關(guān)鍵,屬于基礎(chǔ)題.3、D【解析】

容易看出,四邊形是平行四邊形,從而得出.【詳解】根據(jù)圖形看出,四邊形是平行四邊形故選:【點睛】本題考查相等向量概念辨析,屬于基礎(chǔ)題.4、A【解析】試題分析:因為直線:與直線:平行,所以或-2,又時兩直線重合,所以.考點:兩條直線平行的條件.點評:此題是易錯題,容易選C,其原因是忽略了兩條直線重合的驗證.5、B【解析】

先利用判別式法求出|x|,|y|,|z|的取值范圍,再判斷得解.【詳解】因為,所以,整理得:,解得,所以,同理,.故選B【點睛】本題主要考查新定義和判別式法求范圍,意在考查學(xué)生對這些知識的理解掌握水平和分析推理能力.6、A【解析】

先求,再求,即可求D坐標【詳解】,∴,則D(6,1)故選A【點睛】本題考查向量的坐標運算,熟記運算法則,準確計算是關(guān)鍵,是基礎(chǔ)題7、A【解析】

根據(jù)等差數(shù)列的性質(zhì)和函數(shù)的性質(zhì)即可求出.【詳解】由題知∵數(shù)列{an}為等差數(shù)列,an≠1(n∈N*),a1+a2019=1,∴a1+a2019=a2+a2018=a3+a2017=…=a1009+a1011a1010=1,∴a1010∴f(a1)×f(a2)×…×f(a2019)=41009×(﹣2)=﹣1.故選A.【點睛】本題考查了等差數(shù)列的性質(zhì)和函數(shù)的性質(zhì),考查了運算能力和轉(zhuǎn)化能力,屬于中檔題,注意:若{an}為等差數(shù)列,且m+n=p+q,則,性質(zhì)的應(yīng)用.8、A【解析】

利用向量的減法將3,進行分解,然后根據(jù)條件,進行對比即可得到結(jié)論【詳解】∵3,∴33,即43,則,∵λ,∴λ,故選A.【點睛】本題主要考查向量的基本定理的應(yīng)用,根據(jù)向量的減法法則進行分解是解決本題的關(guān)鍵.9、B【解析】

根據(jù)大邊對大角定理知邊長為所對的角不是最大角,只需對其他兩條邊所對的利用余弦定理,即這兩角的余弦值為正,可求出的取值范圍.【詳解】由題意知,邊長為所對的角不是最大角,則邊長為或所對的角為最大角,只需這兩個角為銳角即可,則這兩個角的余弦值為正數(shù),于此得到,由于,解得,故選C.【點睛】本題考查余弦定理的應(yīng)用,在考查三角形是銳角三角形、直角三角形還是鈍角三角形,一般由最大角來決定,并利用余弦定理結(jié)合余弦值的符號來進行轉(zhuǎn)化,其關(guān)系如下:為銳角;為直角;為鈍角.10、A【解析】

作出曲線的圖形,得出各射線所在直線的傾斜角,觀察直線在繞著原點旋轉(zhuǎn)時,直線與曲線沒有交點時,直線的傾斜角的變化,由此得出的取值范圍.【詳解】當(dāng),時,由得,該射線所在直線的傾斜角為;當(dāng),時,由得,該射線所在直線的傾斜角為;當(dāng),時,由得,該射線所在直線的傾斜角為;當(dāng),時,由得,該射線所在直線的傾斜角為.作出曲線的圖象如下圖所示:由圖象可知,要使得過原點的直線與曲線沒有交點,則直線的傾斜角的取值范圍是,故選:A.【點睛】本題考查直線傾斜角的取值范圍,考查數(shù)形結(jié)合思想,解題的關(guān)鍵就是作出圖形,利用數(shù)形結(jié)合思想進行求解,屬于中等題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

根據(jù)條件求出的表達式,利用等比數(shù)列的定義即可證明為等比數(shù)列,即可求出通項公式.【詳解】令,得,則,,令,得,則,,令,得,即,則,即所以,數(shù)列是等比數(shù)列,公比,首項.所以,故答案為:【點睛】本題主要考查等比數(shù)列的判斷和證明,綜合性較強,考查學(xué)生的計算能力,屬于難題.12、;【解析】

利用三角換元,設(shè),;利用輔助角公式將化為,根據(jù)三角函數(shù)值域求得結(jié)果.【詳解】可設(shè),,本題正確結(jié)果:【點睛】本題考查利用三角換元法求解取值范圍的問題,關(guān)鍵是能夠?qū)栴}轉(zhuǎn)化為三角函數(shù)值域的求解問題.13、【解析】

根據(jù)分層抽樣的定義建立比例關(guān)系,即可得到答案?!驹斀狻吭O(shè)抽取的樣本中老年教師的人數(shù)為,學(xué)校所有的中老年教師人數(shù)為270人由分層抽樣的定義可知:,解得:故答案為【點睛】本題考查分層抽樣,考查學(xué)生的計算能力,屬于基礎(chǔ)題。14、16【解析】

根據(jù)紅色球和黑色球的頻率穩(wěn)定值,計算紅色球和黑色球的個數(shù),從而得到白色球的個數(shù).【詳解】根據(jù)概率是頻率的穩(wěn)定值的意義,紅色球的個數(shù)為個;黑色球的個數(shù)為個;故白色球的個數(shù)為4個.故答案為:16.【點睛】本題考查概率和頻率之間的關(guān)系:概率是頻率的穩(wěn)定值.15、【解析】試題分析:考點:兩角和的正切公式點評:本題主要考查兩角和的正切公式變形的運用,抓住和角是特殊角,是解題的關(guān)鍵.16、【解析】

利用正弦定理求解角,再利用面積公式求解即可.【詳解】由,因為,故,.故.故答案為:【點睛】本題主要考查了解三角形的運用,根據(jù)題中所給的邊角關(guān)系選擇正弦定理與面積公式等.屬于基礎(chǔ)題型.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、最大值為5【解析】

本題首先可以根據(jù)同角三角函數(shù)關(guān)系以及配方將函數(shù)化簡為,然后根據(jù)即可得出函數(shù)的最大值.【詳解】,因為,所以當(dāng)時,即,函數(shù)最大,令,,故最大值為.【點睛】本題考查同角三角函數(shù)關(guān)系以及一元二次函數(shù)的相關(guān)性質(zhì),考查的公式為,考查計算能力,體現(xiàn)了綜合性,是中檔題.18、(1)1(2)【解析】

(1).若,則,結(jié)合三角函數(shù)的關(guān)系式即可求的值;

(2).若與的夾角為,利用向量的數(shù)量積的坐標公式進行求解即可求的值.【詳解】(1)由,則即,所以所以(2),又與的夾角為,則即即由,則所以,即【點睛】本題主要考查向量數(shù)量積的定義和坐標公式的應(yīng)用,考查學(xué)生的計算能力,屬于基礎(chǔ)題.19、(Ⅰ);(Ⅱ).【解析】

(1)本題可令求出的值,然后令求出,即可求出數(shù)列的通項公式;(2)首先可令,然后根據(jù)錯位相減法即可求出數(shù)列的前項和?!驹斀狻?1)當(dāng),,得.當(dāng)時,,,兩式相減,得,化簡得,所以數(shù)列是首項為、公比為的等比數(shù)列,所以。(2)由(1)可知,令,則①,兩邊同乘以公比,得到②,由①②得:所以。【點睛】本題主要考查了數(shù)列通項的求法以及數(shù)列前項和的方法,求數(shù)列通項常用的方法有:累加法、累乘法、定義法、配湊法等;求數(shù)列前項和常用的方法有:錯位相減法、裂項相消法、公式法、分組求和法等,屬于中等題。20、(Ⅰ)見解析;(Ⅱ),;(Ⅲ)a≤1【解析】

(Ⅰ)由已知得,即,由2b1=a1+a2=25,得b1=,由a22=b1b2,得b2=18,∴{}是以為首項,為公差的等差數(shù)列.(Ⅱ)由(Ⅰ)知,∴,因為,,成等比數(shù)列所以.(Ⅲ)由(Ⅱ)知,原式化為,即f(n)=恒成立,當(dāng)a–1>0即a>1時,不合題意;當(dāng)a–1=0即a=1時,滿足題意;當(dāng)a–1<0即a<1時,f(n)的對稱軸為,f(n)單調(diào)遞減,∴只需f(1)=4a–15<0,可得a<,∴a<1;綜上,a≤1.21、(1)(2)【解析】

(1)根據(jù)二倍角公式及同角基本關(guān)系

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論