2023-2024學年重慶市江津中學、合川中學等七校高一數(shù)學第二學期期末調研試題含解析_第1頁
2023-2024學年重慶市江津中學、合川中學等七校高一數(shù)學第二學期期末調研試題含解析_第2頁
2023-2024學年重慶市江津中學、合川中學等七校高一數(shù)學第二學期期末調研試題含解析_第3頁
2023-2024學年重慶市江津中學、合川中學等七校高一數(shù)學第二學期期末調研試題含解析_第4頁
2023-2024學年重慶市江津中學、合川中學等七校高一數(shù)學第二學期期末調研試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年重慶市江津中學、合川中學等七校高一數(shù)學第二學期期末調研試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若數(shù)列滿足,,則()A. B. C.18 D.202.已知函數(shù)的圖像如圖所示,關于有以下5個結論:(1);(2),;(3)將圖像上所有點向右平移個單位得到的圖形所對應的函數(shù)是偶函數(shù);(4)對于任意實數(shù)x都有;(5)對于任意實數(shù)x都有;其中所有正確結論的編號是()A.(1)(2)(3) B.(1)(2)(4)(5) C.(1)(2)(4) D.(1)(3)(4)(5)3.若不等式對實數(shù)恒成立,則實數(shù)的取值范圍()A.或 B.C. D.4.已知角A滿足,則的值為()A. B. C. D.5.已知等比數(shù)列的前n項和為,若,,,則()A. B. C. D.6.已知點和點,且,則實數(shù)的值是()A.或 B.或 C.或 D.或7.在等差數(shù)列中,已知=2,=16,則為()A.8 B.128 C.28 D.148.已知點,,則與向量的方向相反的單位向量是()A. B. C. D.9.如圖,位于處的海面觀測站獲悉,在其正東方向相距40海里的處有一艘漁船遇險,并在原地等待營救.在處南偏西且相距20海里的處有一救援船,其速度為海里小時,則該船到求助處的時間為()分鐘.A.24 B.36 C.48 D.6010.某學校的A,B,C三個社團分別有學生人,人,人,若采用分層抽樣的方法從三個社團中共抽取人參加某項活動,則從A社團中應抽取的學生人數(shù)為()A.2 B.4 C.5 D.6二、填空題:本大題共6小題,每小題5分,共30分。11.已知四棱錐的底面是邊長為的正方形,側棱長均為,若圓柱的一個底面的圓周經(jīng)過四棱錐四條側棱的中點,另一個底面的圓心為四棱錐底面的中心,則該圓柱的側面積為________.12.設函數(shù)f(x)是定義在R上的偶函數(shù),且對稱軸為x=1,已知當x∈[0,1]時,f(x)=121-x,則有下列結論:①2是函數(shù)fx的周期;②函數(shù)fx在1,2上遞減,在2,3上遞增;③函數(shù)f13.某扇形的面積為1,它的周長為4cm,那么扇形的圓心角的大小為____________.14.函數(shù)y=tan15.命題“,”是________命題(選填“真”或“假”).16.在平行四邊形中,為與的交點,,若,則__________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知以點(a∈R,且a≠0)為圓心的圓過坐標原點O,且與x軸交于點A,與y軸交于點B.(1)求△OAB的面積;(2)設直線l:y=﹣2x+4與圓C交于點P、Q,若|OP|=|OQ|,求圓心C到直線l的距離.18.已知函數(shù).(1)當時,判斷并證明函數(shù)的奇偶性;(2)當時,判斷并證明函數(shù)在上的單調性.19.如圖四邊形ABCD為菱形,G為AC與BD交點,BE⊥平面(I)證明:平面AEC⊥平面BED;(II)若∠ABC=120°,AE⊥EC,三棱錐E-ACD的體積為20.已知點.(1)求中邊上的高所在直線的方程;(2)求過三點的圓的方程.21.已知(1)求函數(shù)的單調遞減區(qū)間:(2)已知,求的值域

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】

首先根據(jù)題意得到:是以首項為,公差為的等差數(shù)列.再計算即可.【詳解】因為,所以是以首項為,公差為的等差數(shù)列.,.故選:A【點睛】本題主要考查等差數(shù)列的定義,熟練掌握等差數(shù)列的表達式是解題的關鍵,屬于簡單題.2、B【解析】

由圖象可觀察出的最值和周期,從而求出,將圖像上所有的點向右平移個單位得到的函數(shù),可判斷(3)的正誤,利用,可判斷(4)(5)的正誤.【詳解】由圖可知:,所以,,所以,即因為,所以,所以,故(1)(2)正確將圖像上所有的點向右平移個單位得到的函數(shù)為此函數(shù)是奇函數(shù),故(3)錯誤因為所以關于直線對稱,即有故(4)正確因為所以關于點對稱,即有故(5)正確綜上可知:正確的有(1)(2)(4)(5)故選:B【點睛】本題考查的是三角函數(shù)的圖象及其性質,屬于中檔題.3、C【解析】

對m分m≠0和m=0兩種情況討論分析得解.【詳解】由題得時,x<0,與已知不符,所以m≠0.當m≠0時,,所以.綜合得m的取值范圍為.故選C【點睛】本題主要考查一元二次不等式的恒成立問題,意在考查學生對該知識的理解掌握水平和分析推理能力.4、A【解析】

將等式兩邊平方,利用二倍角公式可得出的值.【詳解】,在該等式兩邊平方得,即,解得,故選A.【點睛】本題考查同角三角函數(shù)的基本關系,考查二倍角正弦公式的應用,一般地,解三角函數(shù)有關問題時,遇到,常用平方法來求解,考查計算能力,屬于中等題.5、D【解析】

根據(jù)等比數(shù)列前n項和的性質可知、、成等比數(shù)列,即可得關于的等式,化簡即可得解.【詳解】等比數(shù)列的前n項和為,若,,根據(jù)等比數(shù)列前n項和性質可知,、、滿足:化簡可得故選:D【點睛】本題考查了等比數(shù)列前n項和的性質及簡單應用,屬于基礎題.6、A【解析】

直接利用兩點間距離公式得到答案.【詳解】已知點和點故答案選A【點睛】本題考查了兩點間距離公式,意在考查學生的計算能力.7、D【解析】

將已知條件轉化為的形式列方程組,解方程組求得,進而求得的值.【詳解】依題意,解得,故.故選:D.【點睛】本小題主要考查等差數(shù)列通項的基本量計算,屬于基礎題.8、A【解析】

根據(jù)單位向量的定義即可求解.【詳解】,向量的方向相反的單位向量為,故選A.【點睛】本題主要考查了向量的坐標運算,向量的單位向量的概念,屬于中檔題.9、A【解析】

利用余弦定理求出的長度,然后根據(jù)速度、時間、路程之間的關系求出時間即可.【詳解】由題意可知:,運用余弦定理可知:該船到求助處的時間,故本題選A.【點睛】本題考查了余弦定理的應用,考查了數(shù)學運算能力.10、B【解析】

分層抽樣每部分占比一樣,通過A,B,C三個社團為,易得A中的人數(shù)?!驹斀狻緼,B,C三個社團人數(shù)比為,所以12中A有人,B有人,C有人。故選:B【點睛】此題考查分層抽樣原理,根據(jù)抽樣前后每部分占比一樣求解即可,屬于簡單題目。二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

先求出四棱錐的底面對角線的長度,結合勾股定理可求出四棱錐的高,然后由圓柱的一個底面的圓周經(jīng)過四棱錐四條側棱的中點,可知四條側棱的中點連線為正方形,其對角線為圓柱底面的直徑,圓柱的高為四棱錐的高的一半,分別求解可求出圓柱的側面積.【詳解】由題可知,四棱錐是正四棱錐,四棱錐的四條側棱的中點連線為正方形,邊長為,該正方形對角線的長為1,則圓柱的底面半徑為,四棱錐的底面是邊長為的正方形,其對角線長為2,則四棱錐的高為,故圓柱的高為1,所以圓柱的側面積為.【點睛】本題主要考查了空間幾何體的結構特征,考查了學生的空間想象能力與計算求解能力,屬于中檔題.12、①②④【解析】

依據(jù)題意作出函數(shù)f(x)的圖像,通過圖像可以判斷以下結論是否正確。【詳解】作出函數(shù)f(x)的圖像,由圖像可知2是函數(shù)fx的周期,函數(shù)fx在1,2上遞減,在2,3上遞增,函數(shù)當x∈3,4時,f(x)=f(x-4)=f(4-x)=故正確的結論有①②④。【點睛】本題主要考查函數(shù)的圖像與性質以及數(shù)形結合思想,意在考查學生的邏輯推理能力。13、【解析】

根據(jù)扇形的面積和周長列方程組解得半徑和弧長,再利用弧長公式可求得結果.【詳解】設扇形的半徑為,弧長為,圓心角為,則,解得,所以.故答案為:【點睛】本題考查了扇形的面積公式,考查了扇形中弧長公式,屬于基礎題.14、{【解析】

解方程12【詳解】由題得12x+故答案為{x|x≠2kπ+【點睛】本題主要考查正切型函數(shù)的定義域的求法,意在考查學生對該知識的理解掌握水平,屬于基礎題.15、真【解析】當時,成立,即命題“,”為真命題.16、【解析】

根據(jù)向量加法的三角形法則逐步將待求的向量表示為已知向量.【詳解】由向量的加法法則得:所以,所以故填:【點睛】本題考查向量的線性運算,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)4(2)【解析】

(1)求得圓的半徑,設出圓的標準方程,由此求得兩點坐標,進而求得三角形的面積.(2)根據(jù),判斷出,由直線的斜率求得直線的斜率,以此列方程求得,根據(jù)直線和圓相交,圓心到直線的距離小于半徑,確定,同時得到圓心到直線的距離.【詳解】(1)根據(jù)題意,以點(a∈R,且a≠0)為圓心的圓過坐標原點O,設圓C的半徑為r,則r2=a2,圓C的方程為(x﹣a)2+(y)2=a2,令x=0可得:y=0或,則B(0,),令y=0可得:x=0或2a,則A(2a,0),△OAB的面積S|2a|×||=4;(2)根據(jù)題意,直線l:y=﹣2x+4與圓C交于點P、Q,則|CP|=|CQ|,又由|OP|=|OQ|,則直線OC與PQ垂直,又由直線l即PQ的方程為y=﹣2x+4,則KOC,解可得a=±2,當a=2時,圓心C的坐標為(2,1),圓心到直線l的距離d,r,r>d,此時直線l與圓相交,符合題意;當a=2時,圓心C的坐標為(﹣2,﹣1),圓心到直線l的距離d,r,r<d,此時直線l與圓相離,不符合題意;故圓心C到直線l的距離d.【點睛】本小題主要考查圓的標準方程,考查直線和圓的位置關系,考查兩條直線的位置關系,考查運算求解能力,屬于中檔題.18、(1)見解析;(2)見解析.【解析】

(1)將代入函數(shù)的解析式,利用函數(shù)的奇偶性定義來證明出函數(shù)的奇偶性;(2)將函數(shù)的解析式化為,然后利用函數(shù)單調性的定義證明出函數(shù)在上的單調性.【詳解】(1)當時,,函數(shù)為上的奇函數(shù).證明如下:,其定義域為,則,故函數(shù)為奇函數(shù);(2)當時,函數(shù)在上單調遞減.證明如下:,任取,則,又由,則,則有,即.因此,函數(shù)為上的減函數(shù).【點睛】本題考查函數(shù)單調性與奇偶性的判定與證明,在利用定義證明函數(shù)的單調性與奇偶性時,要熟悉定義法證明函數(shù)奇偶性與單調性的基本步驟,考查邏輯推理能力與計算能力,屬于中等題.19、(1)見解析(2)3+25【解析】試題分析:(Ⅰ)由四邊形ABCD為菱形知AC⊥BD,由BE⊥平面ABCD知AC⊥BE,由線面垂直判定定理知AC⊥平面BED,由面面垂直的判定定理知平面AEC⊥平面BED;(Ⅱ)設AB=x,通過解直角三角形將AG、GC、GB、GD用x表示出來,在RtΔAEC中,用x表示EG,在RtΔEBG中,用x表示EB,根據(jù)條件三棱錐E-ACD的體積為63求出x,即可求出三棱錐E-ACD試題解析:(Ⅰ)因為四邊形ABCD為菱形,所以AC⊥BD,因為BE⊥平面ABCD,所以AC⊥BE,故AC⊥平面BED.又AC?平面AEC,所以平面AEC⊥平面BED(Ⅱ)設AB=x,在菱形ABCD中,由∠ABC=120°,可得AG=GC=32x,GB=GD=x因為AE⊥EC,所以在RtΔAEC中,可得EG=32x由BE⊥平面ABCD,知ΔEBG為直角三角形,可得BE=22由已知得,三棱錐E-ACD的體積VE-ACD=1從而可得AE=EC=ED=6.所以ΔEAC的面積為3,ΔEAD的面積與ΔECD的面積均為5.故三棱錐E-ACD的側面積為3+考點:線面垂直的判定與性質;面面垂直的判定;三棱錐的體積與表面積的計算;邏輯推理能力;運算求解能力20、(1);(2)【解析】

(1)邊上的高所在直線方程斜率與邊所在直線的方程斜率之積為-1,可求出高所在直線的斜率,代入即可求出高所在直線的方程。(2)設圓的一般方程為,代入即可求得圓的方程。【詳解】(1)因為所在直

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論