四川省資陽市樂至中學(xué)2023-2024學(xué)年高一數(shù)學(xué)第二學(xué)期期末達(dá)標(biāo)檢測試題含解析_第1頁
四川省資陽市樂至中學(xué)2023-2024學(xué)年高一數(shù)學(xué)第二學(xué)期期末達(dá)標(biāo)檢測試題含解析_第2頁
四川省資陽市樂至中學(xué)2023-2024學(xué)年高一數(shù)學(xué)第二學(xué)期期末達(dá)標(biāo)檢測試題含解析_第3頁
四川省資陽市樂至中學(xué)2023-2024學(xué)年高一數(shù)學(xué)第二學(xué)期期末達(dá)標(biāo)檢測試題含解析_第4頁
四川省資陽市樂至中學(xué)2023-2024學(xué)年高一數(shù)學(xué)第二學(xué)期期末達(dá)標(biāo)檢測試題含解析_第5頁
已閱讀5頁,還剩8頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

四川省資陽市樂至中學(xué)2023-2024學(xué)年高一數(shù)學(xué)第二學(xué)期期末達(dá)標(biāo)檢測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知圓錐的底面半徑為,母線與底面所成的角為,則此圓錐的側(cè)面積為()A. B. C. D.2.己知函數(shù)的最小值為,最大值為,若,則數(shù)列是()A.公差不為0的等差數(shù)列 B.公比不為1的等比數(shù)列C.常數(shù)數(shù)列 D.以上都不對(duì)3.用斜二測畫法畫一個(gè)邊長為2的正三角形的直觀圖,則直觀圖的面積是:A. B. C. D.4.將函數(shù)y=sin2x的圖象向右平移A.在區(qū)間[-πB.在區(qū)間[5πC.在區(qū)間[-πD.在區(qū)間[π5.若,則()A. B. C. D.6.已知數(shù)列為等差數(shù)列,若,則()A. B. C. D.7.已知函數(shù)的導(dǎo)函數(shù)的圖象如圖所示,則()A.既有極小值,也有極大值 B.有極小值,但無極大值C.有極大值,但無極小值 D.既無極小值,也無極大值8.下列函數(shù)所具有的性質(zhì),一定成立的是()A. B.C. D.9.經(jīng)過平面α外兩點(diǎn),作與α平行的平面,則這樣的平面可以作()A.1個(gè)或2個(gè)B.0個(gè)或1個(gè)C.1個(gè)D.0個(gè)10.若樣本的平均數(shù)為10,其方差為2,則對(duì)于樣本的下列結(jié)論正確的是A.平均數(shù)為20,方差為8 B.平均數(shù)為20,方差為10C.平均數(shù)為21,方差為8 D.平均數(shù)為21,方差為10二、填空題:本大題共6小題,每小題5分,共30分。11.甲船在島的正南處,,甲船以每小時(shí)的速度向正北方向航行,同時(shí)乙船自出發(fā)以每小時(shí)的速度向北偏東的方向駛?cè)?,甲、乙兩船相距最近的距離是_____.12.若方程表示圓,則實(shí)數(shù)的取值范圍是______.13.如圖,一棟建筑物AB高(30-10)m,在該建筑物的正東方向有一個(gè)通信塔CD.在它們之間的地面M點(diǎn)(B、M、D三點(diǎn)共線)測得對(duì)樓頂A、塔頂C的仰角分別是15°和60°,在樓頂A處測得對(duì)塔頂C的仰角為30°,則通信塔CD的高為______m.14.在中,已知,,,則角__________.15.在數(shù)列中,,當(dāng)時(shí),.則數(shù)列的前項(xiàng)和是_____.16.已知一個(gè)三角形的三邊長分別為3,5,7,則該三角形的最大內(nèi)角為_________三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,直三棱柱中,,,,,為垂足.(1)求證:(2)求三棱錐的體積.18.某廠每年生產(chǎn)某種產(chǎn)品萬件,其成本包含固定成本和浮動(dòng)成本兩部分.已知每年固定成本為20萬元,浮動(dòng)成本,.若每萬件該產(chǎn)品銷售價(jià)格為40萬元,且每年該產(chǎn)品產(chǎn)銷平衡.(1)設(shè)年利潤為(萬元),試求與的關(guān)系式;(2)年產(chǎn)量為多少萬件時(shí),該廠所獲利潤最大?并求出最大利潤.19.已知數(shù)列中,,點(diǎn)在直線上,其中.(1)令,求證數(shù)列是等比數(shù)列;(2)求數(shù)列的通項(xiàng);(3)設(shè)、分別為數(shù)列、的前項(xiàng)和是否存在實(shí)數(shù),使得數(shù)列為等差數(shù)列?若存在,試求出,若不存在,則說明理由.20.已知.若三點(diǎn)共線,求實(shí)數(shù)的值.21.不等式(1)若不等式的解集為或,求的值(2)若不等式的解集為,求的取值范圍

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、B【解析】

首先計(jì)算出母線長,再利用圓錐的側(cè)面積(其中為底面圓的半徑,為母線長),即可得到答案.【詳解】由于圓錐的底面半徑,母線與底面所成的角為,所以母線長,故圓錐的側(cè)面積;故答案選B【點(diǎn)睛】本題考查圓錐母線和側(cè)面積的計(jì)算,解題關(guān)鍵是熟練掌握?qǐng)A錐的側(cè)面積的計(jì)算公式,即(其中為底面圓的半徑,為母線長),屬于基礎(chǔ)題2、C【解析】

先根據(jù)判別式法求出的取值范圍,進(jìn)而求得和的關(guān)系,再展開算出分析即可.【詳解】設(shè),則,因?yàn)?故,故二次函數(shù),整理得,故與為方程的兩根,所以為常數(shù).故選C.【點(diǎn)睛】本題主要考查判別式法求分式函數(shù)范圍的問題,再根據(jù)二次函數(shù)的韋達(dá)定理進(jìn)行求解分析即可.3、C【解析】分析:先根據(jù)直觀圖畫法得底不變,為2,再研究高,最后根據(jù)三角形面積公式求結(jié)果.詳解:因?yàn)楦鶕?jù)直觀圖畫法得底不變,為2,高為,所以直觀圖的面積是選C.點(diǎn)睛:本題考查直觀圖畫法,考查基本求解能力.4、A【解析】

函數(shù)y=sin2x的圖象向右平移y=sin2kπ-π單調(diào)遞減區(qū)間:2kπ+π2≤2x-π3【詳解】本題考查了正弦型函數(shù)圖象的平移變換以及求正弦型函數(shù)的單調(diào)區(qū)間.5、A【解析】試題分析:,故選A.考點(diǎn):兩角和與差的正切公式.6、D【解析】

由等差數(shù)列的性質(zhì)可得a7=,而tan(a2+a12)=tan(2a7),代值由三角函數(shù)公式化簡可得.【詳解】∵數(shù)列{an}為等差數(shù)列且a1+a7+a13=4π,∴a1+a7+a13=3a7=4π,解得a7=,∴tan(a2+a12)=tan(2a7)=tan=tan(3π﹣)=﹣tan=﹣故選D.【點(diǎn)睛】本題考查等差數(shù)列的性質(zhì),涉及三角函數(shù)中特殊角的正切函數(shù)值的運(yùn)算,屬基礎(chǔ)題.7、B【解析】由導(dǎo)函數(shù)圖象可知,在上為負(fù),在上非負(fù),在上遞減,在遞增,在處有極小值,無極大值,故選B.8、B【解析】

結(jié)合反三角函數(shù)的性質(zhì),逐項(xiàng)判定,即可求解.【詳解】由題意,對(duì)于A中,令,則,所以不正確;對(duì)于C中,根據(jù)反正弦函數(shù)的性質(zhì),可得,所以是錯(cuò)誤的;對(duì)于D中,函數(shù)當(dāng)時(shí),則滿足,所以不正確,故選:B.【點(diǎn)睛】本題主要考查了反三角函數(shù)的性質(zhì)的應(yīng)用,其中解答中熟記反三角函數(shù)的性質(zhì),逐項(xiàng)判定是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.9、B【解析】若平面α外的兩點(diǎn)所確定的直線與平面α平行,則過該直線與平面α平行的平面有且只有一個(gè);若平面α外的兩點(diǎn)所確定的直線與平面α相交,則過該直線的平面與平面α平行的平面不存在;故選B.10、A【解析】

利用和差積的平均數(shù)和方差公式解答.【詳解】由題得樣本的平均數(shù)為,方差為.故選A【點(diǎn)睛】本題主要考查平均數(shù)和方差的計(jì)算,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

根據(jù)條件畫出示意圖,在三角形中利用余弦定理求解相距的距離,利用二次函數(shù)對(duì)稱軸及可求解出最值.【詳解】假設(shè)經(jīng)過小時(shí)兩船相距最近,甲、乙分別行至,,如圖所示,可知,,,.當(dāng)小時(shí)時(shí)甲、乙兩船相距最近,最近距離為.【點(diǎn)睛】本題考查解三角形的實(shí)際應(yīng)用,難度較易.關(guān)鍵是通過題意將示意圖畫出來,然后將待求量用未知數(shù)表示,最后利用函數(shù)思想求最值.12、.【解析】

把圓的一般方程化為圓的標(biāo)準(zhǔn)方程,得出表示圓的條件,即可求解,得到答案.【詳解】由題意,方程可化為,方程表示圓,則滿足,解得.【點(diǎn)睛】本題主要考查了圓的一般方程與圓的標(biāo)準(zhǔn)方程的應(yīng)用,其中熟記圓的一般方程與圓的標(biāo)準(zhǔn)方程的互化是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ).13、60【解析】

由已知可以求出、、的大小,在中,利用銳角三角函數(shù),可以求出.在中,運(yùn)用正弦定理,可以求出.在中,利用銳角三角函數(shù),求出.【詳解】由題意可知:,,由三角形內(nèi)角和定理可知.在中,.在中,由正弦定理可知:,在中,.【點(diǎn)睛】本題考查了銳角三角函數(shù)、正弦定理,考查了數(shù)學(xué)運(yùn)算能力.14、【解析】

先由正弦定理得到角A的大小,再由三角形內(nèi)角和為得到結(jié)果.【詳解】根據(jù)三角形正弦定理得到:,故得到或,因?yàn)楣实玫焦蚀鸢笧?【點(diǎn)睛】在解與三角形有關(guān)的問題時(shí),正弦定理、余弦定理是兩個(gè)主要依據(jù).解三角形時(shí),有時(shí)可用正弦定理,有時(shí)也可用余弦定理,應(yīng)注意用哪一個(gè)定理更方便、簡捷一般來說,當(dāng)條件中同時(shí)出現(xiàn)及、時(shí),往往用余弦定理,而題設(shè)中如果邊和正弦、余弦函數(shù)交叉出現(xiàn)時(shí),往往運(yùn)用正弦定理將邊化為正弦函數(shù)再結(jié)合和、差、倍角的正余弦公式進(jìn)行解答.15、【解析】

先利用累加法求出數(shù)列的通項(xiàng)公式,然后將數(shù)列的通項(xiàng)裂開,利用裂項(xiàng)求和法求出數(shù)列的前項(xiàng)和.【詳解】當(dāng)時(shí),.所以,,,,,.上述等式全部相加得,.,因此,數(shù)列的前項(xiàng)和為,故答案為:.【點(diǎn)睛】本題考查累加法求數(shù)列通項(xiàng)和裂項(xiàng)法求和,解題時(shí)要注意累加法求通項(xiàng)和裂項(xiàng)法求和對(duì)數(shù)列遞推公式和通項(xiàng)公式的要求,考查運(yùn)算求解能力,屬于中等題.16、【解析】

由題意可得三角形的最大內(nèi)角即邊7對(duì)的角,設(shè)為θ,由余弦定理可得cosθ的值,即可求得θ的值.【詳解】根據(jù)三角形中,大邊對(duì)大角,故邊長分別為3,5,7的三角形的最大內(nèi)角即邊7對(duì)的角,設(shè)為θ,則由余弦定理可得cosθ,∴θ=,故答案為:C.【點(diǎn)睛】本題主要考查余弦定理的應(yīng)用,大邊對(duì)大角,已知三角函數(shù)值求角的大小,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見證明;(2)【解析】

(1)先證得平面,由此證得,結(jié)合題意所給已知條件,證得平面,從而證得.(2)首先證得平面,由計(jì)算出三棱錐的體積.【詳解】(1)證明:,∴,又,從而平面∵//,∴平面,平面,∴又,∴平面,于是(2)解:,∴平面∴【點(diǎn)睛】本小題主要考查線線垂直的證明,考查線面垂直的判定定理的運(yùn)用,考查三棱錐體積的求法,屬于中檔題.18、(1);(2)產(chǎn)量(萬件)時(shí),該廠所獲利潤最大為100萬元.【解析】

(1)由銷售收入減去成本可得利潤;(2)分段求出的最大值,然后比較可得.【詳解】(1)由題意;即;(2)時(shí),,時(shí),,當(dāng)時(shí),在是遞增,在上遞減,時(shí),綜上,產(chǎn)量(萬件)時(shí),該廠所獲利潤最大為100萬元.【點(diǎn)睛】本題考查函數(shù)模型的應(yīng)用,根據(jù)所給函數(shù)模型求出函數(shù)解析式,然后由分段函數(shù)性質(zhì)分段求出最大值,比較后得出函數(shù)最大值.考查學(xué)生的應(yīng)用能力.19、(1)證明過程見詳解;(2);(3)存在實(shí)數(shù),使得數(shù)列為等差數(shù)列.【解析】

(1)先由題意得到,再由,得到,即可證明結(jié)論成立;(2)先由(1)求得,推出,利用累加法,即可求出數(shù)列的通項(xiàng);(3)把數(shù)列an}、{bn}通項(xiàng)公式代入an+2bn,進(jìn)而得到Sn+2T的表達(dá)式代入Tn,進(jìn)而推斷當(dāng)且僅當(dāng)λ=2時(shí),數(shù)列是等差數(shù)列.【詳解】(1)因?yàn)辄c(diǎn)在直線上,所以,因此由得所以數(shù)列是以為公比的等比數(shù)列;(2)因?yàn)?,由得,故,由?)得,所以,即,所以,,…,,以上各式相加得:所以;(3)存在λ=2,使數(shù)列是等差數(shù)列.由(Ⅰ)、(Ⅱ)知,an+2bn=n﹣2∴又=∴,∴當(dāng)且僅當(dāng)λ=2時(shí),數(shù)列是等差數(shù)列.【點(diǎn)睛】本題主要考查等差數(shù)列與等比數(shù)列的綜合,熟記等比數(shù)列的定義,等比數(shù)列的通項(xiàng)公式,以及等差數(shù)列與等比數(shù)列的求和公式即可,屬于??碱}型.20、【解析】

計(jì)算出由三點(diǎn)共線解出

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論