版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024屆廣東省廣州市實驗中學高一數(shù)學第二學期期末監(jiān)測模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.給出函數(shù)為常數(shù),且,,無論a取何值,函數(shù)恒過定點P,則P的坐標是A. B. C. D.2.過點且在兩坐標軸上截距相等的直線方程是()A. B.C.或 D.或3.若,,,設(shè),,且,則的值為()A.0 B.3 C.15 D.184.從裝有兩個紅球和三個黑球的口袋里任取兩個球,那么互斥而不對立的兩個事件是()A.“至少有一個黑球”與“都是黑球” B.“至少有一個黑球”與“至少有一個紅球”C.“恰好有一個黑球”與“恰好有兩個黑球” D.“至少有一個黑球”與“都是紅球”5.若直線:與直線:平行,則的值為()A.-1 B.0 C.1 D.-1或16.設(shè)是定義在上的偶函數(shù),若當時,,則()A. B. C. D.7.棉花的纖維長度是棉花質(zhì)量的重要指標.在一批棉花中抽測了根棉花的纖維長度(單位:),將樣本數(shù)據(jù)作成如下的頻率分布直方圖:下列關(guān)于這批棉花質(zhì)量狀況的分析,不合理的是()A.這批棉花的纖維長度不是特別均勻B.有一部分棉花的纖維長度比較短C.有超過一半的棉花纖維長度能達到以上D.這批棉花有可能混進了一些次品8.已知圓錐的底面半徑為,母線與底面所成的角為,則此圓錐的側(cè)面積為()A. B. C. D.9.若直線與圓相切,則()A. B. C. D.或10.在等差數(shù)列中,若公差,則()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.計算:________12.函數(shù)的最小正周期是______.13.平面四邊形如圖所示,其中為銳角三角形,,,則_______.14.設(shè)函數(shù),則的值為__________.15.已知三棱錐,平面,,,,則三棱錐的側(cè)面積__________.16.已知球為正四面體的外接球,,過點作球的截面,則截面面積的取值范圍為____________________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知向量,,.(1)若,求實數(shù)的值;(2)若,求向量與的夾角.18.已知等差數(shù)列滿足.(1)求的通項公式;(2)設(shè)等比數(shù)列滿足,求的前項和.19.已知函數(shù).(1)求函數(shù)的最小正周期和單調(diào)增區(qū)間;(2)求函數(shù)在區(qū)間上的最小值以及取得該最小值時的值.20.已知.(1)若對任意的,不等式上恒成立,求實數(shù)的取值范圍;(2)解關(guān)于的不等式.21.如圖,在三棱錐中,點,分別是,的中點,,.求證:⑴平面;⑵.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】試題分析:因為恒過定點,所以函數(shù)恒過定點.故選D.考點:指數(shù)函數(shù)的性質(zhì).2、C【解析】
設(shè)過點A(4,1)的直線方程為y-1=k(x-4)(k≠0),令x=0,得y=1-4k;令y=0,得x=4-.由已知得1-4k=4-,∴k=-1或k=,∴所求直線方程為x+y-5=0或x-4y=0.故選C.3、B【解析】
首先分別求出向量,然后再用兩向量平行的坐標表示,最后求值.【詳解】,,當時,,解得.故選B.【點睛】本題考查了向量平行的坐標表示,屬于基礎(chǔ)題型.4、C【解析】分析:利用對立事件、互斥事件的定義求解.詳解:從裝有兩個紅球和三個黑球的口袋里任取兩個球,在A中,“至少有一個黑球”與“都是黑球”能同時發(fā)生,不是互斥事件,故A錯誤;在B中,“至少有一個黑球”與“至少有一個紅球”能同時發(fā)生,不是互斥事件,故B錯誤;在C中,“恰好有一個黑球”與“恰好有兩個黑球”不能同時發(fā)生,但能同時不發(fā)生,是互斥而不對立的兩個事件,故C正確;在D中,“至少有一個黑球”與“都是紅球”是對立事件,故D錯誤.故答案為:C點睛:(1)本題主要考查互斥事件和對立事件的定義,意在考查學生對這些基礎(chǔ)知識的掌握水平.(2)互斥事件指的是在一次試驗中,不可能同時發(fā)生的兩個事件,對立事件指的是在一次試驗中,不可能同時發(fā)生的兩個事件,且在一次試驗中,必有一個發(fā)生的兩個事件.注意理解它們的區(qū)別和聯(lián)系.5、C【解析】
兩直線平行表示兩直線斜率相等,寫出斜率即可算出答案.【詳解】顯然,,.所以,解得,又時兩直線重合,所以.故選C【點睛】此題考查直線平行表示直線斜率相等,屬于簡單題.6、A【解析】
利用函數(shù)的為偶函數(shù),可得,代入解析式即可求解.【詳解】是定義在上的偶函數(shù),則,又當時,,所以.故選:A【點睛】本題考查了利用函數(shù)的奇偶性求函數(shù)值,屬于基礎(chǔ)題.7、C【解析】
根據(jù)頻率分布直方圖計算纖維長度超過的頻率,可知不超過一半,從而得到結(jié)果.【詳解】由頻率分布直方圖可知,纖維長度超過的頻率為:棉花纖維長度達到以上的不超過一半不合理本題正確選項:【點睛】本題考查利用頻率分布直方圖估計總體數(shù)據(jù)的分布特征,關(guān)鍵是能夠熟練掌握利用頻率分布直方圖計算頻率的方法.8、B【解析】
首先計算出母線長,再利用圓錐的側(cè)面積(其中為底面圓的半徑,為母線長),即可得到答案.【詳解】由于圓錐的底面半徑,母線與底面所成的角為,所以母線長,故圓錐的側(cè)面積;故答案選B【點睛】本題考查圓錐母線和側(cè)面積的計算,解題關(guān)鍵是熟練掌握圓錐的側(cè)面積的計算公式,即(其中為底面圓的半徑,為母線長),屬于基礎(chǔ)題9、D【解析】
本題首先可根據(jù)圓的方程確定圓心以及半徑,然后根據(jù)直線與圓相切即可列出算式并通過計算得出結(jié)果?!驹斀狻坑深}意可知,圓方程為,所以圓心坐標為,圓的半徑,因為直線與圓相切,所以圓心到直線距離等于半徑,即解得或,故選D?!军c睛】本題考查根據(jù)直線與圓相切求參數(shù),考查根據(jù)圓的方程確定圓心與半徑,若直線與圓相切,則圓心到直線距離等于半徑,考查推理能力,是簡單題。10、B【解析】
根據(jù)等差數(shù)列的通項公式求解即可得到結(jié)果.【詳解】∵等差數(shù)列中,,公差,∴.故選B.【點睛】等差數(shù)列中的計算問題都可轉(zhuǎn)為基本量(首項和公差)來處理,運用公式時要注意項和項數(shù)的對應關(guān)系.本題也可求出等差數(shù)列的通項公式后再求出的值,屬于簡單題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
用正弦、正切的誘導公式化簡求值即可.【詳解】.【點睛】本題考查了正弦、正切的誘導公式,考查了特殊角的正弦值和正切值.12、【解析】
由二倍角的余弦函數(shù)公式化簡解析式可得,根據(jù)三角函數(shù)的周期性及其求法即可得解.【詳解】.由周期公式可得:.故答案為【點睛】本題主要考查了二倍角的余弦函數(shù)公式的應用,考查了三角函數(shù)的周期性及其求法,屬于基本知識的考查.13、.【解析】
由二倍角公式求出,然后用余弦定理求得,再由余弦定理求.【詳解】由題意,在中,,在中,,即,解得,或.若,則,,不合題意,舍去,所以.故答案為:.【點睛】本題考查余弦的二倍角公式,考查余弦定理.掌握余弦定理是解題關(guān)鍵.14、【解析】
根據(jù)反正切函數(shù)的值域,結(jié)合條件得出的值.【詳解】,且,因此,,故答案為:.【點睛】本題考查反正切值的求解,解題時要結(jié)合反正切函數(shù)的值域以及特殊角的正切值來求解,考查計算能力,屬于基礎(chǔ)題.15、【解析】
根據(jù)題意將三棱錐放入對應長方體中,計算各個面的面積相加得到答案.【詳解】三棱錐,平面,,,畫出圖像:易知:每個面都是直角三角形.【點睛】本題考查了三棱錐的側(cè)面積,將三棱錐放入對應的長方體是解題的關(guān)鍵.16、【解析】
在平面中,過圓內(nèi)一點的弦長何時最長,何時最短,類比在空間中,過球內(nèi)一點的球的大圓面積最大,與此大圓垂直的截面小圓面積最小.利用正四面體的性質(zhì)及球的性質(zhì)求正四面體外接球的半徑、小圓半徑,確定答案.【詳解】因為正四面體棱長為AB=3,所以正四面體外接球半徑R=.由球的性質(zhì),當過E及球心O時的截面為球的大圓,面積最大,最大面積為;當過E的截面與EO垂直時面積最小,取△BCD的中心,因為為正四面體,所以平面BCD,O在上,,所以,在三角形中,由,,,,由余弦定理在直角三角形中所以過E且與EO垂直的截面圓的半徑r為,截面面積為.所以所求截面面積的范圍是.【點睛】本題考查空間想象能力,邏輯推理能力,空間組合體的關(guān)系,正四面體、球的性質(zhì),考查計算能力,屬于難題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】
(1)由向量平行的坐標表示可構(gòu)造方程求得結(jié)果;(2)利用向量夾角公式可求得,進而根據(jù)向量夾角的范圍求得結(jié)果.【詳解】(1),解得:(2)又【點睛】本題考查平面向量共線的坐標表示、向量夾角的求解問題;考查學生對于平面向量坐標運算、數(shù)量積運算掌握的熟練程度,屬于基礎(chǔ)應用問題.18、(1)(2)【解析】
(1)根據(jù)基本元的思想,將已知條件轉(zhuǎn)化為的形式,列方程組,解方程組可求得的值.并由此求得數(shù)列的通項公式.(2)利用(1)的結(jié)論求得的值,根據(jù)基本元的思想,,將其轉(zhuǎn)化為的形式,由此求得的值,根據(jù)等比數(shù)列前項和公式求得數(shù)列的前項和.【詳解】解:(1)設(shè)的公差為,則由得,故的通項公式,即.(2)由(1)得.設(shè)的公比為,則,從而,故的前項和.【點睛】本小題主要考查利用基本元的思想解有關(guān)等差數(shù)列和等比數(shù)列的問題,屬于基礎(chǔ)題.19、(1)最小正周期為,單調(diào)遞增區(qū)間為;(2)當時,函數(shù)取最小值.【解析】
(1)利用三角恒等變換思想化簡函數(shù)的解析式為,利用正弦型函數(shù)的周期公式可求得函數(shù)的最小正周期,解不等式可求得函數(shù)的單調(diào)遞增區(qū)間;(2)由計算出的取值范圍,再利用正弦函數(shù)的基本性質(zhì)可求得該函數(shù)的最小值及其對應的值.【詳解】(1),所以,函數(shù)的最小正周期為;令,得,所以函數(shù)的單調(diào)增區(qū)間為;(2)當時,,所以,當時,即當時,取得最小值,所以,函數(shù)在區(qū)間上的最小值為,此時.【點睛】本題考查正弦型函數(shù)的最小正周期和單調(diào)區(qū)間、最值的求解,解答的關(guān)鍵就是利用三角恒等變換思想化簡函數(shù)解析式,考查計算能力,屬于中等題.20、(1);(2)見解析.【解析】
(1)參變分離后可得在上恒成立,利用基本不等式可求的最小值,從而得到參數(shù)的取值范圍.(2)原不等式可化為,就對應方程的兩根的大小關(guān)系分類討論可得不等式的解集.【詳解】(1)對任意的,恒成立即恒成立.因為當時,(當且僅當時等號成立),所以即.(2)不等式,即,①當即時,;②當即時,;③當即時,.綜上:當時,不等式解集為;當時,不等式解集為;當時,不等式解集為.【點睛】含參數(shù)的一元二次不等式,其一般的解法是:先考慮對應的二次函數(shù)的開口方向,再考慮其判別式的符號,其次在判別式大于零的條件下比較兩根的大小,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度科技創(chuàng)新創(chuàng)業(yè)項目合伙人股權(quán)分配及保密協(xié)議范本3篇
- 2024年特定區(qū)域獨家產(chǎn)品銷售代理協(xié)議版B版
- 分布式光伏發(fā)電項目發(fā)用電合同(三方)V1.0
- 2025年度智能穿戴設(shè)備銷售與服務合同范本3篇
- 中醫(yī)內(nèi)科學筆記(實踐部分)
- 2025年度特色火鍋店股權(quán)收購與經(jīng)營管理合同3篇
- 2024鐵路貨運貨物門到門配送服務合同范本3篇
- 2025年加油站便利店收銀系統(tǒng)升級裝修合同3篇
- 2025年度大型數(shù)據(jù)中心搭建及運營管理合同書3篇
- 2024金融交易平臺搭建與居間服務的合同
- 招聘會突發(fā)事件應急預案(通用6篇)
- 小學生漢語拼音田字格練習紙藍打印版
- (最新)信息科技風險管理辦法
- 大學英語教師試講20分鐘范例
- 雨雪天氣安全教育PPT
- 圍手術(shù)期血糖管理專家共識
- 采購管理實務全套教學課件
- 魯教版高中地理必修一第一學期總復習課件(共141張PPT)
- 酒店項目投資分析報告可行性報告
- 煙花爆竹零售店(點)安全技術(shù)規(guī)范.ppt課件
- 視頻監(jiān)控臺賬參考模板
評論
0/150
提交評論