安徽省炳輝中學(xué)2024屆數(shù)學(xué)高一下期末質(zhì)量跟蹤監(jiān)視試題含解析_第1頁
安徽省炳輝中學(xué)2024屆數(shù)學(xué)高一下期末質(zhì)量跟蹤監(jiān)視試題含解析_第2頁
安徽省炳輝中學(xué)2024屆數(shù)學(xué)高一下期末質(zhì)量跟蹤監(jiān)視試題含解析_第3頁
安徽省炳輝中學(xué)2024屆數(shù)學(xué)高一下期末質(zhì)量跟蹤監(jiān)視試題含解析_第4頁
安徽省炳輝中學(xué)2024屆數(shù)學(xué)高一下期末質(zhì)量跟蹤監(jiān)視試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

安徽省炳輝中學(xué)2024屆數(shù)學(xué)高一下期末質(zhì)量跟蹤監(jiān)視試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知等差數(shù)列的前項和為,若,,則的值為()A. B.0 C. D.1822.中,在上,,是上的點,,則m的值()A. B. C. D.3.如圖,在等腰梯形中,,于點,則()A. B.C. D.4.已知圓,設(shè)平面區(qū)域,若圓心,且圓與軸相切,則的最大值為()A.5 B.29 C.37 D.495.已知點是所在平面內(nèi)的一定點,是平面內(nèi)一動點,若,則點的軌跡一定經(jīng)過的()A.重心 B.垂心 C.內(nèi)心 D.外心6.已知是不同的直線,是不同的平面,則下列說法正確的是()A.若,則 B.若,則C.若,則 D.若,則7.在中,內(nèi)角,,的對邊分別為,,,且,,為的面積,則的最大值為()A.1 B.2 C. D.8.在長方體中,,,則異面直線與所成角的余弦值為()A. B. C. D.9.底面是正方形,從頂點向底面作垂線,垂足是底面中心的四棱錐稱為正四棱錐.如圖,在正四棱錐中,底面邊長為1.側(cè)棱長為2,E為PC的中點,則異面直線PA與BE所成角的余弦值為()A. B. C. D.10.己知ΔABC中,角A,B,C所對的邊分別是a,b,c.若A=45°,B=30°,a=2,則bA.3-1 B.1 C.2 D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知角滿足且,則角是第________象限的角.12.已知,,則當(dāng)最大時,________.13.等比數(shù)列中,若,,則______.14.已知一扇形的半徑為,弧長為,則該扇形的圓心角大小為______.15.用數(shù)學(xué)歸納法證明不等式“(且)”的過程中,第一步:當(dāng)時,不等式左邊應(yīng)等于__________。16.在中,角為直角,線段上的點滿足,若對于給定的是唯一確定的,則_______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.在如圖所示的幾何體中,D是AC的中點,EF∥DB.(Ⅰ)已知AB=BC,AE=EC.求證:AC⊥FB;(Ⅱ)已知G,H分別是EC和FB的中點.求證:GH∥平面ABC.18.如圖,在平面直角坐標(biāo)系中,以軸為始邊做兩個銳角,它們的終邊分別與單位圓相交于A,B兩點,已知A,B的橫坐標(biāo)分別為(1)求的值;(2)求的值.19.定義:如果數(shù)列的任意連續(xù)三項均能構(gòu)成一個三角形的三邊長,則稱為三角形”數(shù)列對于“三角形”數(shù)列,如果函數(shù)使得仍為一個三角形”數(shù)列,則稱是數(shù)列的“保三角形函數(shù)”.(1)已知是首項為2,公差為1的等差數(shù)列,若,是數(shù)列的保三角形函數(shù)”,求的取值范圍;(2)已知數(shù)列的首項為2019,是數(shù)列的前項和,且滿足,證明是“三角形”數(shù)列;(3)求證:函數(shù),是數(shù)列1,,的“保三角形函數(shù)”的充要條件是,.20.設(shè)數(shù)列的前項和為,若且求若數(shù)列滿足,求數(shù)列的前項和.21.知兩條直線l1:(3+m)x+4y=5﹣3m,l2:2x+(5+m)y=8,求當(dāng)m為何值時,l1與l2:(1)垂直;(2)平行,并求出兩平行線間的距離.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】

由,可得,可得的值.【詳解】解:已知等差數(shù)列中,可得,即:,,故選B【點睛】本題主要考查等差數(shù)列的性質(zhì),從數(shù)列自身的特點入手是解決問題的關(guān)鍵.2、A【解析】由題意得:則故選3、A【解析】

根據(jù)等腰三角形的性質(zhì)可得是的中點,由平面向量的加法運算法則結(jié)合向量平行的性質(zhì)可得結(jié)果.【詳解】因為,所以是的中點,可得,故選.【點睛】本題主要考查向量的幾何運算以及向量平行的性質(zhì),屬于簡單題.向量的運算有兩種方法,一是幾何運算往往結(jié)合平面幾何知識和三角函數(shù)知識解答,運算法則是:(1)平行四邊形法則(平行四邊形的對角線分別是兩向量的和與差);(2)三角形法則(兩箭頭間向量是差,箭頭與箭尾間向量是和);二是坐標(biāo)運算:建立坐標(biāo)系轉(zhuǎn)化為解析幾何問題解答(求最值與范圍問題,往往利用坐標(biāo)運算比較簡單)4、C【解析】試題分析:作出可行域如圖,圓C:(x-a)2+(y-b)2=1的圓心為,半徑的圓,因為圓心C∈Ω,且圓C與x軸相切,可得,所以所以要使a2+b2取得的最大值,只需取得最大值,由圖像可知當(dāng)圓心C位于B點時,取得最大值,B點的坐標(biāo)為,即時是最大值.考點:線性規(guī)劃綜合問題.5、A【解析】

設(shè)D是BC的中點,由,,知,所以點P的軌跡是射線AD,故點P的軌跡一定經(jīng)過△ABC的重心.【詳解】如圖,設(shè)D是BC的中點,∵,,∴,即∴點P的軌跡是射線AD,∵AD是△ABC中BC邊上的中線,∴點P的軌跡一定經(jīng)過△ABC的重心.故選:A.【點睛】本題考查三角形五心的應(yīng)用,是基礎(chǔ)題.解題時要認(rèn)真審題,仔細(xì)解答.6、D【解析】

由線面平行的判定定理即可判斷A;由線面垂直的判定定理可判斷B;由面面垂直的性質(zhì)可判斷C;由空間中垂直于同一條直線的兩平面平行可判斷D.【詳解】對于A選項,加上條件“”結(jié)論才成立;對于B選項,加上條件“直線和相交”結(jié)論才成立;對于C選項,加上條件“”結(jié)論才成立.故選:D【點睛】本題考查空間直線與平面的位置關(guān)系,涉及線面平行的判定、線面垂直的判定、面面垂直的性質(zhì),屬于基礎(chǔ)題.7、C【解析】

先由正弦定理,將化為,結(jié)合余弦定理,求出,再結(jié)合正弦定理與三角形面積公式,可得,化簡整理,即可得出結(jié)果.【詳解】因為,所以可化為,即,可得,所以.又由正弦定理得,,所以,當(dāng)且僅當(dāng)時,取得最大值.故選C【點睛】本題主要考查解三角形,熟記正弦定理與余弦定理即可,屬于??碱}型.8、C【解析】

連接,交于,取的中點,連接、,可以證明是異面直線與所成角,利用余弦定理可求其余弦值.【詳解】連接,交于,取的中點,連接.由長方體可得四邊形為矩形,所以為的中點,因為為的中點,所以,所以或其補角是異面直線與所成角.在直角三角形中,則,,所以.在直角三角形中,,在中,,故選C.【點睛】空間中的角的計算,可以建立空間直角坐標(biāo)系把角的計算歸結(jié)為向量的夾角的計算,也可以構(gòu)建空間角,把角的計算歸結(jié)平面圖形中的角的計算.9、B【解析】

可采用建立空間直角坐標(biāo)系的方法來求兩條異面直線所成的夾角,【詳解】如圖所示,以正方形ABCD的中心為坐標(biāo)原點,DA方向為x軸,AB方向為y軸,OP為z軸,建立空間直角坐標(biāo)系,,,由幾何關(guān)系可求得,,,,為中點,,,,答案選B.【點睛】解決異面直線問題常用兩種基本方法:異面直線轉(zhuǎn)化成共面直線、空間向量建系法10、B【解析】

由正弦定理可得.【詳解】∵asinA=故選B.【點睛】本題考查正弦定理,解題時直接應(yīng)用正弦定理可解題,本題屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、三【解析】

根據(jù)三角函數(shù)在各個象限的符號,確定所在象限.【詳解】由于,所以為第三、第四象限角;由于,所以為第二、第三象限角.故為第三象限角.故答案為:三【點睛】本小題主要考查三角函數(shù)在各個象限的符號,屬于基礎(chǔ)題.12、【解析】

根據(jù)正切的和角公式,將用的函數(shù)表示出來,利用均值不等式求最值,求得取得最大值的,再用倍角公式即可求解.【詳解】故可得則當(dāng)且僅當(dāng),即時,此時有故答案為:.【點睛】本題考查正切的和角公式,以及倍角公式,涉及均值不等式的使用.13、【解析】

設(shè)的首項為,公比為,根據(jù),列出方程組,求出和即可得解.【詳解】設(shè)的首項為,公比為,則:,解之得,所以:.故答案為:.【點睛】本題考查等比數(shù)列中某項的求法,解題關(guān)鍵是根據(jù)題意列出方程組,需要注意的是為了簡化運算不用直接求解,解出即可,屬于基礎(chǔ)題.14、【解析】

利用扇形的弧長除以半徑可得出該扇形圓心角的弧度數(shù).【詳解】由扇形的弧長、半徑以及圓心角之間的關(guān)系可知,該扇形的圓心角大小為.故答案為:.【點睛】本題考查扇形圓心角的計算,解題時要熟悉扇形的弧長、半徑以及圓心角之間的關(guān)系,考查計算能力,屬于基礎(chǔ)題.15、【解析】

用數(shù)學(xué)歸納法證明不等式(且),第一步,即時,分母從3到6,列出式子,得到答案.【詳解】用數(shù)學(xué)歸納法證明不等式(且),第一步,時,左邊式子中每項的分母從3開始增大至6,所以應(yīng)是.即為答案.【點睛】本題考查數(shù)學(xué)歸納法的基本步驟,屬于簡單題.16、【解析】

設(shè),根據(jù)已知先求出x的值,再求的值.【詳解】設(shè),則.依題意,若對于給定的是唯一的確定的,函數(shù)在(1,)是增函數(shù),在(,+)是減函數(shù),所以,此時,.故答案為【點睛】本題主要考查對勾函數(shù)的圖像和性質(zhì),考查差角的正切的計算和同角的三角函數(shù)的關(guān)系,意在考查學(xué)生對這些知識的理解掌握水平和分析推理能力.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)證明:見解析;(Ⅱ)見解析.【解析】試題分析:(Ⅰ)根據(jù),知與確定一個平面,連接,得到,,從而平面,證得.(Ⅱ)設(shè)的中點為,連,在,中,由三角形中位線定理可得線線平行,證得平面平面,進一步得到平面.試題解析:(Ⅰ)證明:因,所以與確定平面.連接,因為為的中點,所以,同理可得.又,所以平面,因為平面,所以.(Ⅱ)設(shè)的中點為,連.在中,因為是的中點,所以,又,所以.在中,因為是的中點,所以,又,所以平面平面,因為平面,所以平面.【考點】平行關(guān)系,垂直關(guān)系【名師點睛】本題主要考查直線與直線垂直、直線與平面平行.此類題目是立體幾何中的基本問題.解答本題,關(guān)鍵在于能利用已知的直線與直線、直線與平面、平面與平面的位置關(guān)系,通過嚴(yán)密推理,給出規(guī)范的證明.本題能較好地考查考生的空間想象能力、邏輯推理能力及轉(zhuǎn)化與化歸思想等.18、(1)(2)【解析】

試題分析:(1)根據(jù)題意,由三角函數(shù)的定義可得與的值,進而可得出與的值,從而可求與的值就,結(jié)合兩角和正切公式可得答案;(2)由兩角和的正切公式,可得出的值,再根據(jù)的取值范圍,可得出的取值范圍,進而可得出的值.由條件得cosα=,cosβ=.∵α,β為銳角,∴sinα==,sinβ==.因此tanα==7,tanβ==.(1)tan(α+β)===-3.(2)∵tan2β===,∴tan(α+2β)===-1.∵α,β為銳角,∴0<α+2β<,∴α+2β=19、(1);(2)見解析;(3)見解析.【解析】

(1)先由條件得是三角形數(shù)列,再利用,是數(shù)列的“保三角形函數(shù)”,得到,解得的取值范圍;(2)先利用條件求出數(shù)列的通項公式,再證明其滿足“三角形”數(shù)列的定義即可;(3)根據(jù)函數(shù),,是數(shù)列1,,的“保三角形函數(shù)”,可以得到①1,,是三角形數(shù)列,所以,即,②數(shù)列中的各項必須在定義域內(nèi),即,③,,是三角形數(shù)列;結(jié)論為在利用,是單調(diào)遞減函數(shù),就可求出對應(yīng)的范圍,即可證明.【詳解】(1)解:顯然,對任意正整數(shù)都成立,即是三角形數(shù)列,因為,顯然有,由得,解得,所以當(dāng)時,是數(shù)列的“保三角形函數(shù)”;(2)證:由,當(dāng)時,,∴,∴,當(dāng)時,即,解得,∴,∴數(shù)列是以2019為首項,以為公比的等比數(shù)列,∴,顯然,因為,所以是“三角形”數(shù)列;(3)證:函數(shù),是數(shù)列1,,的“保三角形函數(shù)”,必須滿足三個條件:①1,,是三角形數(shù)列,所以,即;②數(shù)列中的各項必須在定義域內(nèi),即;③,,是三角形數(shù)列,由于,是單調(diào)遞減函數(shù),所以,解得,所以函數(shù),是數(shù)列1,,的“保三角形函數(shù)”的充要條件是,.【點睛】本題主要考查數(shù)列與三角函數(shù)的綜合,考查在新定義下數(shù)列與三角函數(shù)的結(jié)合,考查等比數(shù)列的證明,等比數(shù)列的通項公式,考查轉(zhuǎn)化思想,屬于難題.20、(1);(2).【解析】

(1)由時,,再驗證適合,于是得出,再利用等差數(shù)列的求和公式可求出;(2)求出數(shù)列的通項公式,判斷出數(shù)列為等比數(shù)列,再利用等比數(shù)列的求和公式求出數(shù)列的前項和.【詳解】(1)當(dāng)且時,;也適合上式,所以,,則數(shù)列為等差數(shù)列,因此,;(2),且,所以,數(shù)列是等比數(shù)列,且公比為,所以.【點睛】本題考查數(shù)列的前項和與數(shù)列通項的關(guān)系,考查等差數(shù)列與等比數(shù)列的求和公式,考查計算能力,屬于中等題.21、(1)m(2)m=﹣7,距離為【解析】

(1)由題意利用兩

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論