2024屆河南省周口市數(shù)學(xué)高一下期末預(yù)測試題含解析_第1頁
2024屆河南省周口市數(shù)學(xué)高一下期末預(yù)測試題含解析_第2頁
2024屆河南省周口市數(shù)學(xué)高一下期末預(yù)測試題含解析_第3頁
2024屆河南省周口市數(shù)學(xué)高一下期末預(yù)測試題含解析_第4頁
2024屆河南省周口市數(shù)學(xué)高一下期末預(yù)測試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2024屆河南省周口市數(shù)學(xué)高一下期末預(yù)測試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在空間中,可以確定一個平面的條件是()A.一條直線B.不共線的三個點(diǎn)C.任意的三個點(diǎn)D.兩條直線2.下列函數(shù)中是偶函數(shù)且最小正周期為的是()A. B.C. D.3.在等差數(shù)列中,如果,則數(shù)列前9項的和為()A.297 B.144 C.99 D.664.設(shè)函數(shù),則滿足的的取值范圍是()A. B. C. D.5.已知一組正數(shù)的平均數(shù)為,方差為,則的平均數(shù)與方差分別為()A. B. C. D.6.將函數(shù)的圖象向左平移個單位長度,再將圖象上各點(diǎn)的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),得到函數(shù)的圖象,若對任意的均有成立,則的最小值為()A. B. C. D.7.已知a、b是兩條不同的直線,、是兩個不同的平面,若,,,則下列三個結(jié)論:①、②、③.其中正確的個數(shù)為()A.0 B.1 C.2 D.38.變量滿足,目標(biāo)函數(shù),則的最小值是()A. B.0 C.1 D.-19.若,,則方程有實數(shù)根的概率為()A. B. C. D.10.設(shè)是兩個不同的平面,是一條直線,以下命題正確的是()A.若,則 B.若,則C.若,則 D.若,則二、填空題:本大題共6小題,每小題5分,共30分。11.在中,若,點(diǎn),分別是,的中點(diǎn),則的取值范圍為___________.12.已知兩點(diǎn),則線段的垂直平分線的方程為_________.13.若數(shù)列是正項數(shù)列,且,則_______.14.若則____________15.已知點(diǎn)是所在平面內(nèi)的一點(diǎn),若,則__________.16.在正方體中,是的中點(diǎn),連接、,則異面直線、所成角的正弦值為_______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.在中,內(nèi)角A,B,C的對邊分別為a,b,c,且滿足.(1)求內(nèi)角B的大小;(2)設(shè),,的最大值為5,求k的值.18.在平面直角坐標(biāo)系下,已知圓O:,直線l:()與圓O相交于A,B兩點(diǎn),且.(1)求直線l的方程;(2)若點(diǎn)E,F(xiàn)分別是圓O與x軸的左、右兩個交點(diǎn),點(diǎn)D滿足,點(diǎn)M是圓O上任意一點(diǎn),點(diǎn)N在線段上,且存在常數(shù)使得,求點(diǎn)N到直線l距離的最小值.19.在平面直角坐標(biāo)系中,已知點(diǎn),,坐標(biāo)分別為,,,為線段上一點(diǎn),直線與軸負(fù)半軸交于點(diǎn),直線與交于點(diǎn).(1)當(dāng)點(diǎn)坐標(biāo)為時,求直線的方程;(2)求與面積之和的最小值.20.已知a,b,c分別為ΔABC三個內(nèi)角A,B,C的對邊,且.(1)求角A的大?。唬?)若,且ΔABC的面積為,求a的值;(3)若,求的范圍.21.在直角中,,延長至點(diǎn)D,使得,連接.(1)若,求的值;(2)求角D的最大值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】試題分析:根據(jù)平面的基本性質(zhì)及推論,即確定平面的幾何條件,即可知道答案.解:對于A.過一條直線可以有無數(shù)個平面,故錯;對于C.過共線的三個點(diǎn)可以有無數(shù)個平面,故錯;對于D.過異面的兩條直線不能確定平面,故錯;由平面的基本性質(zhì)及推論知B正確.故選B.考點(diǎn):平面的基本性質(zhì)及推論.2、A【解析】

本題首先可將四個選項都轉(zhuǎn)化為的形式,然后對四個選項的奇偶性以及周期性依次進(jìn)行判斷,即可得出結(jié)果.【詳解】中,函數(shù),是偶函數(shù),周期為;中,函數(shù)是奇函數(shù),周期;中,函數(shù),是非奇非偶函數(shù),周期;中,函數(shù)是偶函數(shù),周期.綜上所述,故選A.【點(diǎn)睛】本題考查對三角函數(shù)的奇偶性以及周期性的判斷,考查三角恒等變換,偶函數(shù)滿足,對于函數(shù),其最小正周期為,考查化歸與轉(zhuǎn)化思想,是中檔題.3、C【解析】試題分析:,,∴a4=13,a6=9,S9==99考點(diǎn):等差數(shù)列性質(zhì)及前n項和點(diǎn)評:本題考查了等差數(shù)列性質(zhì)及前n項和,掌握相關(guān)公式及性質(zhì)是解題的關(guān)鍵.4、C【解析】

利用特殊值,對選項進(jìn)行排除,由此得到正確選項.【詳解】當(dāng)時,,由此排除D選項.當(dāng)時,,由此排除B選項.當(dāng)時,,由此排除A選項.綜上所述,本小題選C.【點(diǎn)睛】本小題主要考查分段函數(shù)求值,考查利用特殊值法解選擇題,屬于基礎(chǔ)題.5、C【解析】

根據(jù)平均數(shù)的性質(zhì)和方差的性質(zhì)即可得到結(jié)果.【詳解】根據(jù)平均數(shù)的線性性質(zhì),以及方差的性質(zhì):將一組數(shù)據(jù)每個數(shù)擴(kuò)大2倍,且加1,則平均數(shù)也是同樣的變化,方差變?yōu)樵瓉淼?倍,故變換后數(shù)據(jù)的平均數(shù)為:;方差為4.故選:C.【點(diǎn)睛】本題考查平均數(shù)和方差的性質(zhì),屬基礎(chǔ)題.6、D【解析】

直接應(yīng)用正弦函數(shù)的平移變換和伸縮變換的規(guī)律性質(zhì),求出函數(shù)的解析式,對任意的均有,說明函數(shù)在時,取得最大值,得出的表達(dá)式,結(jié)合已知選出正確答案.【詳解】因為函數(shù)的圖象向左平移個單位長度,所以得到函數(shù),再將圖象上各點(diǎn)的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),得到函數(shù)的圖象,所以,對任意的均有成立,所以在時,取得最大值,所以有而,所以的最小值為.【點(diǎn)睛】本題考查了正弦型函數(shù)的圖象變換規(guī)律、函數(shù)圖象的性質(zhì),考查了函數(shù)最大值的概念,正確求出變換后的函數(shù)解析式是解題的關(guān)鍵.7、C【解析】

根據(jù)題意,,,,則有,因此,,不難判斷.【詳解】因為,,,則有,所以,,所以①正確,②不正確,③正確,則其中正確命題的個數(shù)為2.故選C【點(diǎn)睛】本題考查空間中直線與平面之間的位置關(guān)系,考查空間推理能力,屬于簡單題.8、D【解析】

先畫出滿足條件的平面區(qū)域,將變形為:,平移直線得直線過點(diǎn)時,取得最小值,求出即可.【詳解】解:畫出滿足條件的平面區(qū)域,如圖示:

由得:,

平移直線,顯然直線過點(diǎn)時,最小,

由,解得:

∴最小值,

故選:D.【點(diǎn)睛】本題考查了簡單的線性規(guī)劃問題,考查數(shù)形結(jié)合思想,是一道基礎(chǔ)題.9、B【解析】方程有實數(shù)根,則:,即:,則:,如圖所示,由幾何概型計算公式可得,滿足題意的概率值為:.本題選擇B選項.10、C【解析】對于A、B、D均可能出現(xiàn),而對于C是正確的.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

記,,,根據(jù)正弦定理得到,再由題意,得到,,推出,再由題意,確定的范圍,即可得出結(jié)果.【詳解】記,,,由得,所以,即,因此,因為,分別是,的中點(diǎn),所以,同理:,所以,因為且,所以,則,所以,則,所以.即的取值范圍為.故答案為【點(diǎn)睛】本題主要考查解三角形,熟記正弦定理,以及兩角和的正弦公式即可,屬于常考題型.12、【解析】

求出直線的斜率和線段的中點(diǎn),利用兩直線垂直時斜率之積為可得出線段的垂直平分線的斜率,然后利用點(diǎn)斜式可寫出中垂線的方程.【詳解】線段的中點(diǎn)坐標(biāo)為,直線的斜率為,所以,線段的垂直平分線的斜率為,其方程為,即.故答案為.【點(diǎn)睛】本題考查線段垂直平分線方程的求解,有如下兩種方法求解:(1)求出中垂線的斜率和線段的中點(diǎn),利用點(diǎn)斜式得出中垂線所在直線方程;(2)設(shè)動點(diǎn)坐標(biāo)為,利用動點(diǎn)到線段兩端點(diǎn)的距離相等列式求出動點(diǎn)的軌跡方程,即可作為中垂線所在直線的方程.13、【解析】

有已知條件可得出,時,與題中的遞推關(guān)系式相減即可得出,且當(dāng)時也成立?!驹斀狻繑?shù)列是正項數(shù)列,且所以,即時兩式相減得,所以()當(dāng)時,適合上式,所以【點(diǎn)睛】本題考差有遞推關(guān)系式求數(shù)列的通項公式,屬于一般題。14、【解析】因為,所以=.故填.15、【解析】

設(shè)為的中點(diǎn),為的中點(diǎn),為的中點(diǎn),由得到,再進(jìn)一步分析即得解.【詳解】如圖,設(shè)為的中點(diǎn),為的中點(diǎn),為的中點(diǎn),因為,所以可得,整理得.又,所以,所以,又,所以.故答案為【點(diǎn)睛】本題主要考查向量的運(yùn)算法則和共線向量,意在考查學(xué)生對這些知識的理解掌握水平,解答本題的關(guān)鍵是作輔助線,屬于中檔題.16、【解析】

作出圖形,設(shè)正方體的棱長為,取的中點(diǎn),連接、,推導(dǎo)出,并證明出,可得出異面直線、所成的角為,并計算出、,可得出,進(jìn)而得解.【詳解】如下圖所示,設(shè)正方體的棱長為,取的中點(diǎn),連接、,為的中點(diǎn),則,,且,為的中點(diǎn),,,在正方體中,且,則四邊形為平行四邊形,,所以,異面直線、所成的角為,在中,,,.因此,異面直線、所成角的正弦值為.故答案為:.【點(diǎn)睛】本題考查異面直線所成角的正弦值的計算,考查計算能力,屬于中等題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),(2)【解析】

解:(1)(3分)又在中,,所以,則………(5分)(2),.………………(8分)又,所以,所以.所以當(dāng)時,的最大值為.………(10分)………(12分)18、(1);(2).【解析】

(1)等價于圓心O到直線l的距離,再由點(diǎn)到直線的距離公式求解即可;(2)先設(shè)點(diǎn),再結(jié)合題意可得點(diǎn)N在以為圓心,半徑為的圓R上,再結(jié)合點(diǎn)到直線的距離公式求解即可.【詳解】解:(1)∵圓O:,圓心,半徑,∵直線l:()與圓O相交于A,B兩點(diǎn),且,∴圓心O到直線l的距離,又,,解得,∴直線l的方程為;(2)∵點(diǎn)E,F(xiàn)分別是圓O與x軸的左、右兩個交點(diǎn),,∴,,設(shè),,則,,,,,即.又∵點(diǎn)N在線段上,即,共線,,,∵點(diǎn)M是圓O上任意一點(diǎn),,∴將m,n代入上式,可得,即.則點(diǎn)N在以為圓心,半徑為的圓R上.圓心R到直線l:的距離,又,故點(diǎn)N到直線l:距離的最小值為1.【點(diǎn)睛】本題考查了點(diǎn)到直線的距離公式,重點(diǎn)考查了點(diǎn)的軌跡方程的求法,屬中檔題.19、(1);(2).【解析】

(1)求出的直線方程后可得的坐標(biāo),再求出的直線方程和的直線方程后可得的坐標(biāo),從而得到直線的直線方程.(2)直線的方程為,設(shè),求出的直線方程后可得的坐標(biāo),從而可用表示,換元后利用基本不等式可求的最小值.【詳解】(1)當(dāng)時,直線的方程為,所以,直線的方程為①,又直線的方程為②,①②聯(lián)立方程組得,所以直線的方程為.(2)直線的方程為,設(shè),直線的方程為,所以.因為在軸負(fù)半軸上,所以,=,.令,則,(當(dāng)且僅當(dāng)),而當(dāng)時,,故的最小值為.【點(diǎn)睛】直線方程有五種形式,常用的形式有點(diǎn)斜式、斜截式、截距式、一般式,垂直于的軸的直線沒有點(diǎn)斜式、斜截式和截距式,垂直于軸的直線沒有截距式,注意根據(jù)題設(shè)所給的條件選擇合適的方程的形式.直線方程中的最值問題,注意可選擇合適的變量(如斜率、傾斜角、動點(diǎn)的橫坐標(biāo)或縱坐標(biāo)等)構(gòu)建目標(biāo)函數(shù),再利用基本不等式或函數(shù)的單調(diào)性等求目標(biāo)函數(shù)的最值.20、(1)(2)(3)【解析】

(1)利用正弦定理化簡即得A的大?。唬?)先求出bc,b+c的值,再利用余弦定理求出a的值;(3)先求出,再利用三角函數(shù)的性質(zhì)求b+c的范圍.【詳解】(1)由正弦定理得,,即...(2)由可得.∴由余弦定理得:(3)由正弦定理得若,則因為所以所以.所以的范圍【點(diǎn)睛】本題主要考查正弦定理余弦定理解三角形,考查三角函數(shù)最值的求法,意在考查學(xué)生對這些知識的理解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論