河南省駐馬店市上蔡二高2023-2024學年高一下數(shù)學期末達標檢測模擬試題含解析_第1頁
河南省駐馬店市上蔡二高2023-2024學年高一下數(shù)學期末達標檢測模擬試題含解析_第2頁
河南省駐馬店市上蔡二高2023-2024學年高一下數(shù)學期末達標檢測模擬試題含解析_第3頁
河南省駐馬店市上蔡二高2023-2024學年高一下數(shù)學期末達標檢測模擬試題含解析_第4頁
河南省駐馬店市上蔡二高2023-2024學年高一下數(shù)學期末達標檢測模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

河南省駐馬店市上蔡二高2023-2024學年高一下數(shù)學期末達標檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若且,則下列四個不等式:①,②,③,④中,一定成立的是()A.①② B.③④ C.②③ D.①②③④2.設(shè)集合,則A. B. C. D.3.意大利著名數(shù)學家斐波那契在研究兔子繁殖問題時,發(fā)現(xiàn)有這樣一列數(shù):1,1,2,3,5,8,13,21,….該數(shù)列的特點是:前兩個數(shù)都是1,從第三個數(shù)起,每一個數(shù)都等于它前面兩個數(shù)的和,人們把這樣的一列數(shù)組成的數(shù)列稱為“斐波那契數(shù)列”,則().A.1 B.2019 C. D.4.一個多面體的三視圖如圖所示.設(shè)在其直觀圖中,M為AB的中點,則幾何體的體積為()A. B. C. D.5.設(shè)函數(shù)的圖象分別向左平移m(m>0)個單位,向右平移n(n>0>個單位,所得到的兩個圖象都與函數(shù)的圖象重合的最小值為()A. B. C. D.6.已知函數(shù)的零點是和(均為銳角),則()A. B. C. D.7.給甲、乙、丙三人打電話,若打電話的順序是任意的,則第一個打電話給甲的概率是()A. B. C. D.8.設(shè)的內(nèi)角A,B,C所對的邊分別為a,b,c.若,,則角()A. B. C. D.9.從A,B,C三個同學中選2名代表,則A被選中的概率為()A. B. C. D.10.如圖,將邊長為的正方形沿對角線折成大小等于的二面角分別為的中點,若,則線段長度的取值范圍為()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知,則.12.假設(shè)我國國民生產(chǎn)總值經(jīng)過10年增長了1倍,且在這10年期間我國國民生產(chǎn)總值每年的年增長率均為常數(shù),則______.(精確到)(參考數(shù)據(jù))13.已知圓是圓上的一條動直徑,點是直線上的動點,則的最小值是____.14.在△中,三個內(nèi)角、、的對邊分別為、、,若,,,則________15.在中,角,,的對邊分別為,,,若,則________.16.設(shè),用,表示所有形如的正整數(shù)集合,其中且,為集合中的所有元素之和,則的通項公式為_______三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.某校團委會組織某班以小組為單位利用周末時間進行一次社會實踐活動,每個小組有5名同學,在活動結(jié)束后,學校團委會對該班的所有同學進行了測試,該班的A,B兩個小組所有同學得分(百分制)的莖葉圖如圖所示,其中B組一同學的分數(shù)已被污損,但知道B組學生的平均分比A組同學的平均分高一分.(1)若在B組學生中隨機挑選1人,求其得分超過86分的概率;(2)現(xiàn)從A、B兩組學生中分別隨機抽取1名同學,設(shè)其分數(shù)分別為m、n,求的概率.18.已知函數(shù),,(,為常數(shù)).(1)若方程有兩個異號實數(shù)解,求實數(shù)的取值范圍;(2)若的圖像與軸有3個交點,求實數(shù)的取值范圍;(3)記,若在上單調(diào)遞增,求實數(shù)的取值范圍.19.中,角A,B,C所對邊分別是a、b、c,且.(1)求的值;(2)若,求面積的最大值.20.已知圓關(guān)于直線對稱,半徑為,且圓心在第一象限.(Ⅰ)求圓的方程;(Ⅱ)若直線與圓相交于不同兩點、,且,求實數(shù)的值.21.已知三角形的三個頂點,,.(1)求線段的中線所在直線方程;(2)求邊上的高所在的直線方程.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】

根據(jù)且,可得,,且,,根據(jù)不等式的性質(zhì)可逐一作出判斷.【詳解】由且,可得,∴,且,,由此可得①當a=0時,不成立,②由,,則成立,③由,,可得成立,④由,若,則不成立,因此,一定成立的是②③,故選:C.【點睛】本題考查不等式的基本性質(zhì)的應用,屬于基礎(chǔ)題.2、B【解析】,選B.【考點】集合的運算【名師點睛】集合的交、并、補運算問題,應先把集合化簡再計算,常常借助數(shù)軸或韋恩圖進行處理.3、A【解析】

計算部分數(shù)值,歸納得到,計算得到答案.【詳解】;;;…歸納總結(jié):故故選:【點睛】本題考查了數(shù)列的歸納推理,意在考查學生的推理能力.4、D【解析】

利用棱柱的體積減去兩個棱錐的體積,求解即可.【詳解】由題意可知幾何體C?MEF的體積:VADF?BCE?VF?AMCD?VE?MBC=.故選:D.【點睛】本題考查簡單空間圖形的三視圖及體積計算,根據(jù)三視圖求得幾何體的棱長及關(guān)系,利用幾何體體積公式即可求解,考查運算能力和空間想象能力,屬于基礎(chǔ)題.5、C【解析】

求出函數(shù)的圖象分別向左平移個單位,向右平移個單位后的函數(shù)解析式,再根據(jù)其圖象與函數(shù)的圖象重合,可分別得關(guān)于,的方程,解之即可.【詳解】解:將函數(shù)的圖象向左平移個單位,得函數(shù),其圖象與的圖象重合,,,,故,,,當時,取得最小值為.將函數(shù)的圖象向右平移個單位,得到函數(shù),其圖象與的圖象重合,,,,故,,當時,取得最小值為,的最小值為,故答案為:.【點睛】本題主要考查誘導公式,函數(shù)的圖象變換規(guī)律,屬于基礎(chǔ)題.6、B【解析】

將函數(shù)零點轉(zhuǎn)化的解,利用韋達定理和差公式得到,得到答案.【詳解】的零點是方程的解即均為銳角故答案為B【點睛】本題考查了函數(shù)零點,韋達定理,和差公式,意在考查學生的綜合應用能力.7、B【解析】

根據(jù)題意,打電話的順序是任意的,打電話給甲乙丙三人的概率都相等均為,從而可得到正確的選項.【詳解】∵打電話的順序是任意的,打電話給甲、乙、丙三人的概率都相等,∴第一個打電話給甲的概率為.故選:B.【點睛】此題考查了概率的求法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=.8、B【解析】

根據(jù)正弦定理,可得,進而可求,再利用余弦定理,即可得結(jié)果.【詳解】,∴由正弦定理,可得3b=5a,,,,,故選:B.【點睛】本題主要考查余弦定理及正弦定理的應用,屬于中檔題.對余弦定理一定要熟記兩種形式:(1);(2).9、D【解析】

先求出基本事件總數(shù),被選中包含的基本事件個數(shù),由此能求出被選中的概率.【詳解】從,,三個同學中選2名代表,基本事件總數(shù)為:,共個,被選中包含的基本事件為:,共2個,被選中的概率.故選:D.【點睛】本題考查概率的求法,考查列舉法和運算求解能力,是基礎(chǔ)題.10、A【解析】

連接和,由二面角的定義得出,由結(jié)合為的中點,可知是的角平分線且,由的范圍可得出的范圍,于是得出的取值范圍.【詳解】連接,可得,即有為二面角的平面角,且,在等腰中,,且,,則,故答案為,故選A.【點睛】本題考查線段長度的取值范圍,考查二面角的定義以及銳角三角函數(shù)的定義,解題的關(guān)鍵在于充分研究圖形的幾何特征,將所求線段與角建立關(guān)系,借助三角函數(shù)來求解,考查推理能力與計算能力,屬于中等題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】試題分析:兩式平方相加并整理得,所以.注意公式的結(jié)構(gòu)特點,從整體去解決問題.考點:三角恒等變換.12、【解析】

根據(jù)題意,設(shè)10年前的國民生產(chǎn)總值為,則10年后的國民生產(chǎn)總值為,結(jié)合題意可得,解可得的值,即可得答案.【詳解】解:根據(jù)題意,設(shè)10年前的國民生產(chǎn)總值為,則10年后的國民生產(chǎn)總值為,則有,即,解可得:,故答案為:.【點睛】本題考查函數(shù)的應用,涉及指數(shù)、對數(shù)的運算,關(guān)鍵是得到關(guān)于的方程,屬于基礎(chǔ)題.13、【解析】

由題意得,==﹣=,即可求的最小值.【詳解】圓,得,則圓心C(1,2),半徑R=,如圖可得:==﹣=,點是直線上,所以=()2=,∴的最小值是=.故答案為:.【點睛】本題考查了向量的數(shù)量積、轉(zhuǎn)化和數(shù)形結(jié)合的思想,點到直線的距離,屬于中檔題.14、【解析】

利用正弦定理求解角,再利用面積公式求解即可.【詳解】由,因為,故,.故.故答案為:【點睛】本題主要考查了解三角形的運用,根據(jù)題中所給的邊角關(guān)系選擇正弦定理與面積公式等.屬于基礎(chǔ)題型.15、【解析】

利用余弦定理與不等式結(jié)合的思想求解,,的關(guān)系.即可求解的值.【詳解】解:根據(jù)①余弦定理②由①②可得:化簡:,,,,,,此時,故得,即,.故答案為:.【點睛】本題主要考查了存在性思想,余弦定理與不等式結(jié)合的思想,界限的利用.屬于中檔題.16、【解析】

把集合中每個數(shù)都表示為2的0到的指數(shù)冪相加的形式,并確定,,,,每個數(shù)都出現(xiàn)次,于是利用等比數(shù)列求和公式計算,可求出數(shù)列的通項公式.【詳解】由題意可知,,,,是0,1,2,,的一個排列,且集合中共有個數(shù),若把集合中每個數(shù)表示為的形式,則,,,,每個數(shù)都出現(xiàn)次,因此,,故答案為:.【點睛】本題以數(shù)列新定義為問題背景,考查等比數(shù)列的求和公式,考查學生的理解能力與計算能力,屬于中等題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】

(1)求出A組學生的平均分可得B組學生的平均分,設(shè)被污損的分數(shù)為X,列方程得X,從而得到B組學生的分數(shù),其中有3人分數(shù)超過86分,由此能求出B組學生中隨機挑選1人,其得分超過86分概率.(2)利用列舉法寫出在A、B兩組學生中隨機抽取1名同學,其分數(shù)組成的所有基本事件(m,n),利用古典概型求出|m﹣n|≥8的概率.【詳解】(1)A組學生的平均分為,所以B組學生的平均分為86分設(shè)被污損的分數(shù)為,則,解得所以B組學生的分數(shù)為91、93、83、88、75,其中有3人分數(shù)超過86分在B組學生中隨機挑選1人,其得分超過86分概率為.(2)A組學生的分數(shù)分別是94、80、86、88、77,B組學生的分數(shù)為91、93、83、88、75,在A、B兩組學生中隨機抽取1名同學,其分數(shù)組成的基本事件(m,n),有(94,91),(94,93),(94,83),(94,88),(94,75),(80,91),(80,93),(80,83),(80,88),(80,75),(86,91),(86,93),(86,83),(86,88),(86,75),(88,91),(88,93),(88,83),(88,88),(88,75),(77,91),(77,93),(77,83),(77,88),(77,75),共25個隨機各抽取1名同學的分數(shù)滿足的基本事件有(94,83),(94,75),(80,91),(80,93),(80,88),(86,75),(88,75),(77,91),(77,93),(77,88),共10個∴的概率為.【點睛】本題考查概率的求法,考查古典概型、列舉法、莖葉圖等基礎(chǔ)知識,考查了推理能力與計算能力,是基礎(chǔ)題.18、(1)(2)(3)或【解析】

(1)由題意,可知只要,即可使得方程有兩個異號的實數(shù)解,得到答案;(2)由題意,得,則,再由的圖象與軸由3個交點,列出相應的條件,即可求解.(3)由題意得,分類討論確定函數(shù)的單調(diào)性,即可得到答案.【詳解】由題可得,,與軸有一個交點;與有兩個交點綜上可得:實數(shù)的取值范圍或【點睛】本題主要考查了函數(shù)與方程的綜合應用,以及分段函數(shù)的性質(zhì)的綜合應用,其中解答中認真審題,合理分類討論及利用函數(shù)的基本性質(zhì)求解是解答的關(guān)鍵,試題綜合性強,屬于難題,著重考查了分析問題和解答問題的能力,以及分類討論思想和轉(zhuǎn)化思想的應用.19、(1);(2)【解析】

(1)將化簡代入數(shù)據(jù)得到答案.(2)利用余弦定理和均值不等式計算,代入面積公式得到答案.【詳解】;(2)由,可得,由余弦定理可得,即有,當且僅當,取得等號.則面積為.即有時,的面積取得最大值.【點睛】本題考查了三角恒等變換,余弦定理,面積公式,均值不等式,屬于常考題型.20、(Ⅰ);(Ⅱ).【解析】

(Ⅰ)由題得和,解方程即得圓的方程;(Ⅱ)取的中點,則,化簡得,即得m的值.【詳解】(Ⅰ)由,得圓的圓心為,圓關(guān)于直線對稱,①.圓的半徑為,②又圓心在第一象限,,,由①②解得,,故圓的方

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論