四川廣元天立學校2023-2024學年數(shù)學高一下期末教學質(zhì)量檢測試題含解析_第1頁
四川廣元天立學校2023-2024學年數(shù)學高一下期末教學質(zhì)量檢測試題含解析_第2頁
四川廣元天立學校2023-2024學年數(shù)學高一下期末教學質(zhì)量檢測試題含解析_第3頁
四川廣元天立學校2023-2024學年數(shù)學高一下期末教學質(zhì)量檢測試題含解析_第4頁
四川廣元天立學校2023-2024學年數(shù)學高一下期末教學質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩9頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

四川廣元天立學校2023-2024學年數(shù)學高一下期末教學質(zhì)量檢測試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.直線l:x+y﹣1=0與圓C:x2+y2=1交于兩點A、B,則弦AB的長度為()A.2 B. C.1 D.2.設函數(shù)的最大值為,最小值為,則與滿足的關系是()A. B.C. D.3.《趣味數(shù)學·屠夫列傳》中有如下問題:“戴氏善屠,日益功倍。初日屠五兩,今三十日屠訖,問共屠幾何?”其意思為:“有一個姓戴的人善于屠肉,每一天屠完的肉是前一天的2倍,第一天屠了5兩肉,共屠了30天,問一共屠了多少兩肉?”()A. B. C. D.4.若三角形三邊的長度為連續(xù)的三個自然數(shù),則稱這樣的三角形為“連續(xù)整邊三角形”.下列說法正確的是()A.“連續(xù)整邊三角形”只能是銳角三角形B.“連續(xù)整邊三角形”不可能是鈍角三角形C.若“連續(xù)整邊三角形”中最大角是最小角的2倍,則這樣的三角形有且僅有1個D.若“連續(xù)整邊三角形”中最大角是最小角的2倍,則這樣的三角形可能有2個5.已知函數(shù),若實數(shù)滿足,則的取值范圍是()A. B. C. D.6.無窮數(shù)列1,3,6,10,…的通項公式為()A. B.C. D.7.已知數(shù)列是首項為,公差為的等差數(shù)列,若,則()A. B. C. D.8.設變量滿足約束條件,則目標函數(shù)的最大值為()A.3 B.4 C.18 D.409.平面向量與的夾角為,,,則A. B.12 C.4 D.10.在正項等比數(shù)列中,,則()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.若,則______(用表示).12.若6是-2和k的等比中項,則______.13.在中,,,面積為,則________.14.角的終邊經(jīng)過點,則___________________.15.正六棱柱底面邊長為10,高為15,則這個正六棱柱的體積是_____.16.已知函數(shù)是定義域為的偶函數(shù),當時,,若關于的方程有且僅有6個不同實數(shù)根,則實數(shù)的取值范圍為______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.在中,角,,的對邊分別為,,,已知向量,,且.(1)求角的值;(2)若為銳角三角形,且,求的取值范圍.18.已知.(1)求的值;(2)求的值.19.已知等比數(shù)列的前項和為,且成等差數(shù)列,(1)求數(shù)列的公比;(2)若,求數(shù)列的通項公式.20.在△ABC中,角A,B,C所對的邊分別為a,b,c,設S為△ABC的面積,滿足S=(a2+c2﹣b2).(1)求角B的大?。唬?)若邊b=,求a+c的取值范圍.21.學生會有共名同學,其中名男生名女生,現(xiàn)從中隨機選出名代表發(fā)言.求:同學被選中的概率;至少有名女同學被選中的概率.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】

利用直線和圓相交所得弦長公式,計算出弦長.【詳解】圓的圓心為,半徑為,圓心到直線的距離為,所以.故選:B【點睛】本小題主要考查直線和圓相交所得弦長的計算,屬于基礎題.2、B【解析】

將函數(shù)化為一個常數(shù)函數(shù)與一個奇函數(shù)的和,再利用奇函數(shù)的對稱性可得答案.【詳解】因為,令,則,所以為奇函數(shù),所以,所以,故選:B【點睛】本題考查了兩角差的余弦公式,考查了奇函數(shù)的對稱性的應用,屬于中檔題.3、D【解析】

根據(jù)題意,得到該屠戶每天屠的肉成等比數(shù)列,記首項為,公比為,前項和為,由題中熟記,以及等比數(shù)列的求和公式,即可得出結果.【詳解】由題意,該屠戶每天屠的肉成等比數(shù)列,記首項為,公比為,前項和為,所以,,因此.故選:D【點睛】本題主要考查等比數(shù)列的應用,熟記等比數(shù)列的求和公式即可,屬于基礎題型.4、C【解析】

舉例三邊長分別是的三角形是鈍角三角形,否定A,B,通過計算求出最大角是最小角的二倍的三角形,從而可確定C、D中哪個正確哪個錯誤.【詳解】三邊長分別是的三角形,最大角為,則,是鈍角,三角形是鈍角三角形,A,B都錯,如圖中,,,是的平分線,則,∴,,∴,,又由是的平分線,得,∴,解得,∴“連續(xù)整邊三角形”中最大角是最小角的2倍的三角形只有一個,邊長分別為4,5,6,C正確,D錯誤.故選D.【點睛】本題考查余弦定理,考查命題的真假判斷,數(shù)學上要說明一個命題是假命題,只要舉一個反例即可,而要說明它是真命題,則要進行證明.5、B【解析】

求出函數(shù)的定義域,分析函數(shù)的單調(diào)性與奇偶性,將所求不等式變形為,然后利用函數(shù)的單調(diào)性與定義域可得出關于實數(shù)的不等式組,即可解得實數(shù)的取值范圍.【詳解】對于函數(shù),有,解得,則函數(shù)的定義域為,定義域關于原點對稱,,所以,函數(shù)為奇函數(shù),由于函數(shù)在區(qū)間上為增函數(shù),函數(shù)在區(qū)間上為減函數(shù),所以,函數(shù)在上為增函數(shù),由得,所以,,解得.因此,實數(shù)的取值范圍是.故選:B.【點睛】本題考查函數(shù)不等式的求解,解答的關鍵就是分析函數(shù)的單調(diào)性和奇偶性,考查計算能力,屬于中等題.6、C【解析】試題分析:由累加法得:,分別相加得,,故選C.考點:數(shù)列的通項公式.7、C【解析】

本題首先可根據(jù)首項為以及公差為求出數(shù)列的通項公式,然后根據(jù)以及數(shù)列的通項公式即可求出答案.【詳解】因為數(shù)列為首項,公差的等差數(shù)列,所以,因為所以,,故選C.【點睛】本題考查如何判斷實數(shù)為數(shù)列中的哪一項,主要考查等差數(shù)列的通項公式的求法,等差數(shù)列的通項公式為,考查計算能力,是簡單題.8、C【解析】不等式所表示的平面區(qū)域如下圖所示,當所表示直線經(jīng)過點時,有最大值考點:線性規(guī)劃.9、D【解析】

根據(jù),利用向量數(shù)量積的定義和運算律即可求得結果.【詳解】由題意得:,本題正確選項:【點睛】本題考查向量模長的求解,關鍵是能夠通過平方運算將問題轉化為平面向量數(shù)量積的求解問題,屬于常考題型.10、D【解析】

結合對數(shù)的運算,得到,即可求解.【詳解】由題意,在正項等比數(shù)列中,,則.故選:D.【點睛】本題主要考查了等比數(shù)列的性質(zhì),以及對數(shù)的運算求值,其中解答中熟記等比數(shù)列的性質(zhì),合理應用對數(shù)的運算求解是解答的關鍵,著重考查了推理與計算能力,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

直接利用誘導公式化簡求解即可.【詳解】解:,則,故答案為:.【點睛】本題考查誘導公式的應用,三角函數(shù)化簡求值,考查計算能力,屬于基礎題.12、-18【解析】

根據(jù)等比中項的性質(zhì),列出等式可求得結果.【詳解】由等比中項的性質(zhì)可得,,得.故答案為:-18【點睛】本題主要考查等比中項的性質(zhì),屬于基礎題.13、【解析】

由已知利用三角形面積公式可求c,進而利用余弦定理可求a的值,根據(jù)正弦定理即可計算求解.【詳解】,,面積為,解得,由余弦定理可得:,所以,故答案為:【點睛】本題主要考查了三角形面積公式,余弦定理,正弦定理在解三角形中的應用,考查了計算能力和轉化思想,屬于基礎題.14、【解析】

先求出到原點的距離,再利用正弦函數(shù)定義求解.【詳解】因為,所以到原點距離,故.故答案為:.【點睛】設始邊為的非負半軸,終邊經(jīng)過任意一點,則:15、【解析】

正六棱柱是底面為正六邊形的直棱柱,利用計算可得結果.【詳解】因為正六棱柱底面邊長為10,所以其面積,所以體積.【點睛】本題考查正六棱柱的概念及其體積的計算,考查基本運算能力.16、0<a≤或a.【解析】

運用偶函數(shù)的性質(zhì),作出函數(shù)f(x)的圖象,由5[f(x)]2﹣(5a+4)f(x)+4a=0,解得f(x)=a或f(x),結合圖象,分析有且僅有6個不同實數(shù)根的a的情況,即可得到a的范圍.【詳解】函數(shù)是定義域為的偶函數(shù),作出函數(shù)f(x)的圖象如圖:關于x的方程5[f(x)]2﹣(5a+4)f(x)+4a=0,解得f(x)=a或f(x),當0≤x≤2時,f(x)∈[0,],x>2時,f(x)∈(,).由,則f(x)有4個實根,由題意,只要f(x)=a有2個實根,則由圖象可得當0<a≤時,f(x)=a有2個實根,當a時,f(x)=a有2個實根.綜上可得:0<a≤或a.故答案為0<a≤或a..【點睛】本題考查函數(shù)的奇偶性和單調(diào)性的運用,考查方程和函數(shù)的轉化思想,運用數(shù)形結合的思想方法是解決的常用方法.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】

(1)根據(jù)和正弦定理余弦定理求得.(2)先利用正弦定理求出R=1,再把化成,再利用三角函數(shù)的圖像和性質(zhì)求解.【詳解】(1)因為,所以,由正弦定理化角為邊可得,即,由余弦定理可得,又,所以.(2)由(1)可得,設的外接圓的半徑為,因為,,所以,則,因為為銳角三角形,所以,即,所以,所以,所以,故的取值范圍為.【點睛】(1)本題主要考查正弦定理余弦定理解三角形,考查三角函數(shù)的圖像和性質(zhì),意在考查學生對這些知識的掌握水平和分析推理能力.(2)對于復合函數(shù)的問題自然是利用復合函數(shù)的性質(zhì)解答,求復合函數(shù)的最值,一般從復合函數(shù)的定義域入手,結合三角函數(shù)的圖像一步一步地推出函數(shù)的最值.18、(1);(2)【解析】

試題分析:(1)利用正切的兩角和公式求的值;(2)利用第一問的結果求第二問,但需要先將式子化簡,最后變形成關于的式子,需要運用三角函數(shù)的倍角公式將化成單角的三角函數(shù),然后分子分母都除以,然后代入的值即可.試題解析:(1)由(2)考點:1.正切的兩角和公式;2.正余弦的倍角公式.19、(1)(2)【解析】

(1)由等差數(shù)列的中項性質(zhì),以及等比數(shù)列的求和公式,解方程可得;(2)由等比數(shù)列的通項公式,解方程可得首項,進而得到所求通項公式.【詳解】解:(1)等比數(shù)列的前項和為,且,,成等差數(shù)列,可得,顯然不成立,即有,則,化為,解得;(2),即,可得,數(shù)列的通項公式為.【點睛】本題考查等比數(shù)列的通項公式和求和公式的運用,考查方程思想和運算能力,屬于基礎題.20、(1)B=60°(2)【解析】

(1)由三角形的面積公式,余弦定理化簡已知等式可求tanB的值,結合B的范圍可求B的值.(2)由正弦定理,三角函數(shù)恒等變換的應用可求a+csin(A),由題意可求范圍A∈(,),根據(jù)正弦函數(shù)的圖象和性質(zhì)即可求解.【詳解】(1)在△ABC中,∵S(a2+c2﹣b2)acsinB,cosB.∴tanB,∵B∈(0,π),∴B.(2)∵B,b,∴由正弦定理可得1,可得:a=sinA,c=sinC,∴a+c=sinA+sinC=sinA+sin(A)=sinAcosAsinAsin(A),∵A∈(0,),A∈(,),∴sin(A)∈(,1],∴a+csin(A)∈(,].【點睛】本題考查了正弦定理、余弦定理、

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論