2024屆株洲市重點中學高一下數(shù)學期末綜合測試試題含解析_第1頁
2024屆株洲市重點中學高一下數(shù)學期末綜合測試試題含解析_第2頁
2024屆株洲市重點中學高一下數(shù)學期末綜合測試試題含解析_第3頁
2024屆株洲市重點中學高一下數(shù)學期末綜合測試試題含解析_第4頁
2024屆株洲市重點中學高一下數(shù)學期末綜合測試試題含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

2024屆株洲市重點中學高一下數(shù)學期末綜合測試試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設等比數(shù)列的前項和為,若,,則()A.14 B.18 C.36 D.602.在中,,,是邊的中點.為所在平面內(nèi)一點且滿足,則的值為()A. B. C. D.3.已知等差數(shù)列的前項和為,,當時,的值為()A.21 B.22 C.23 D.244.在區(qū)間[–1,1]上任取兩個數(shù)x和y,則x2+y2≥1的概率為()A. B.C. D.5.《九章算術》中,將四個面均為直角三角形的三棱錐稱為鱉臑,若三棱錐為鱉臑,其中平面,,三棱錐的四個頂點都在球的球面上,則該球的體積是()A. B. C. D.6.甲、乙兩名同學八次數(shù)學測試成績的莖葉圖如圖所示,則甲同學成績的眾數(shù)與乙同學成績的中位數(shù)依次為()A.85,85 B.85,86 C.85,87 D.86,867.運行如圖程序,若輸入的是,則輸出的結(jié)果是()A.3 B.9 C.0 D.8.一實體店主對某種產(chǎn)品的日銷售量(單位:件)進行為期n天的數(shù)據(jù)統(tǒng)計,得到如下統(tǒng)計圖,則下列說法錯誤的是()A. B.中位數(shù)為17C.眾數(shù)為17 D.日銷售量不低于18的頻率為0.59.如圖所示,垂直于以為直徑的圓所在的平面,為圓上異于的任一點,則下列關系中不正確的是()A. B.平面 C. D.10.已知不同的兩條直線m,n與不重合的兩平面,,下列說法正確的是()A.若,,則B.若,,則C.若,,則D.若,,則二、填空題:本大題共6小題,每小題5分,共30分。11.數(shù)列滿足:,,的前項和記為,若,則實數(shù)的取值范圍是________12.執(zhí)行右邊的程序框圖,若輸入的是,則輸出的值是.13.若無窮數(shù)列的所有項都是正數(shù),且滿足,則______.14.已知銳角、滿足,,則________.15.已知數(shù)列滿足且,則____________.16.程序:的最后輸出值為___________________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知三棱柱(如圖所示),底面為邊長為2的正三角形,側(cè)棱底面,,為的中點.(1)求證:平面;(2)若為的中點,求證:平面;(3)求三棱錐的體積.18.已知函數(shù)的最小正周期是.(1)求的值及函數(shù)的單調(diào)遞減區(qū)間;(2)當時,求函數(shù)的取值范圍.19.在中,角所對的邊分別為.(1)若為邊的中點,求證:;(2)若,求面積的最大值.20.若數(shù)列滿足:存在正整數(shù),對任意的,使得成立,則稱為階穩(wěn)增數(shù)列.(1)若由正整數(shù)構(gòu)成的數(shù)列為階穩(wěn)增數(shù)列,且對任意,數(shù)列中恰有個,求的值;(2)設等比數(shù)列為階穩(wěn)增數(shù)列且首項大于,試求該數(shù)列公比的取值范圍;(3)在(1)的條件下,令數(shù)列(其中,常數(shù)為正實數(shù)),設為數(shù)列的前項和.若已知數(shù)列極限存在,試求實數(shù)的取值范圍,并求出該極限值.21.已知函數(shù).(1)當時,,求的值;(2)令,若對任意都有恒成立,求的最大值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】

由已知結(jié)合等比數(shù)列的求和公式可求,,q2,然后整體代入到求和公式即可求.【詳解】∵等比數(shù)列{an}中,S2=2,S4=6,∴q≠1,則,聯(lián)立可得,2,q2=2,S62×(1﹣23)=1.故選:A.【點睛】本題主要考查了等比數(shù)列的求和公式的簡單應用,考查了整體代入的運算技巧,屬于基礎題.2、D【解析】

根據(jù)平面向量基本定理可知,將所求數(shù)量積化為;由模長的等量關系可知和為等腰三角形,根據(jù)三線合一的特點可將和化為和,代入可求得結(jié)果.【詳解】為中點和為等腰三角形,同理可得:本題正確選項:【點睛】本題考查向量數(shù)量積的求解問題,關鍵是能夠利用模長的等量關系得到等腰三角形,從而將含夾角的運算轉(zhuǎn)化為已知模長的向量的運算.3、B【解析】

由,得,按或分兩種情況,討論當時,求的值.【詳解】已知等差數(shù)列的前項和為,由,得,當時,有,得,,∴時,此時.當時,有,得,,∴時,此時.故選:B【點睛】本題考查等差數(shù)列的求和公式及其性質(zhì)的應用,也考查分類討論的思想,屬于基礎題.4、A【解析】由題意知,所有的基本事件構(gòu)成的平面區(qū)域為,其面積為.設“在區(qū)間[-1,1]上任選兩個數(shù),則”為事件A,則事件A包含的基本事件構(gòu)成的平面區(qū)域為,其面積為.由幾何概型概率公式可得所求概率為.選A.5、A【解析】

根據(jù)三棱錐的結(jié)構(gòu)特征和線面位置關系,得到中點為三棱錐的外接球的球心,求得球的半徑,利用球的體積公式,即可求解.【詳解】由題意,如圖所示,因為,且為直角三角形,所以,又因為平面,所以,則平面,得.又由,所以中點為三棱錐的外接球的球心,則外接球的半徑.所以該球的體積是.故選A.【點睛】本題考查了有關球的組合體問題,以及三棱錐的體積的求法,解答時要認真審題,注意球的性質(zhì)的合理運用,求解球的組合體問題常用方法有(1)三條棱兩兩互相垂直時,可恢復為長方體,利用長方體的體對角線為外接球的直徑,求出球的半徑;(2)利用球的截面的性質(zhì),根據(jù)勾股定理列出方程求解球的半徑.6、B【解析】

根據(jù)莖葉圖的數(shù)據(jù),選擇對應的眾數(shù)和中位數(shù)即可.【詳解】由圖可知,甲同學成績的眾數(shù)是85;乙同學的中位數(shù)是.故選:B.【點睛】本題考查由莖葉圖計算數(shù)據(jù)的眾數(shù)和中位數(shù),屬基礎計算題.7、B【解析】分析:首先根據(jù)框圖中的條件,判斷-2與1的大小,從而確定出代入哪個解析式,從而求得最后的結(jié)果,得到輸出的值.詳解:首先判斷成立,代入中,得到,從而輸出的結(jié)果為9,故選B.點睛:該題考查的是有關程序框圖的問題,在解題的過程中,需要注意的是要明確自變量的范圍,對應的函數(shù)解析式應該代入哪個,從而求得最后的結(jié)果,屬于簡單題目.8、B【解析】

由統(tǒng)計圖,可計算出總數(shù)、中位數(shù)、眾數(shù),算得銷量不低于18件的天數(shù),即可求得頻率.【詳解】由統(tǒng)計圖可知,總數(shù),所以A正確;從統(tǒng)計圖可以看出,從小到大排列時,中間兩天的銷售量的平均值為,所以B錯誤;從統(tǒng)計圖可以看出,銷量最高的為17件,所以C正確;從統(tǒng)計圖可知,銷量不低于18的天數(shù)為,所以頻率為,所以D正確.綜上可知,錯誤的為B故選:B【點睛】本題考查了統(tǒng)計中的總數(shù)、中位數(shù)、眾數(shù)和頻率的相關概念和性質(zhì),屬于基礎題.9、C【解析】

由平面,得,再由,得到平面,進而得到,即可判斷出結(jié)果.【詳解】因為垂直于以為直徑的圓所在的平面,即平面,得,A正確;又為圓上異于的任一點,所以,平面,,B,D均正確.故選C.【點睛】本題主要考查線面垂直,熟記線面垂直的判定定理與性質(zhì)定理即可,屬于??碱}型.10、C【解析】

依次判斷每個選項的正誤得到答案.【詳解】若,,則或A錯誤.若,,則或,B錯誤若,,則,正確若,,則或,D錯誤故答案選C【點睛】本題考查了線面關系,找出反例是解題的關鍵.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

因為數(shù)列有極限,故考慮的情況.又數(shù)列分兩組,故分組求和求極限即可.【詳解】因為,故,且,故,又,即.綜上有.故答案為:【點睛】本題主要考查了數(shù)列求和的極限,需要根據(jù)題意分組求得等比數(shù)列的極限,再利用不等式找出參數(shù)的關系,屬于中等題型.12、24【解析】

試題分析:根據(jù)框圖的循環(huán)結(jié)構(gòu),依次;;;.跳出循環(huán)輸出.考點:算法程序框圖.13、【解析】

先由作差法求出數(shù)列的通項公式為,即可計算出,然后利用常用數(shù)列的極限即可計算出的值.【詳解】當時,,可得;當時,由,可得,上式下式得,得,也適合,則,.所以,.因此,.故答案為:.【點睛】本題考查利用作差法求數(shù)列通項,同時也考查了數(shù)列極限的計算,考查計算能力,屬于中等題.14、.【解析】試題分析:由題意,所以.考點:三角函數(shù)運算.15、【解析】

由題得為等差數(shù)列,得,則可求【詳解】由題:為等差數(shù)列且首項為2,則,所以.故答案為:2550【點睛】本題考查等差數(shù)列的定義,準確計算是關鍵,是基礎題16、4;【解析】

根據(jù)賦值語句的作用是將表達式所代表的值賦給變量,然后語句的順序可求出的值.【詳解】解:執(zhí)行程序語句:

=1后,=1;

=+1后,=2;

=+2后,=4;

后,輸出值為4;

故答案為:4【點睛】本題主要考查了賦值語句的作用,解題的關鍵對賦值語句的理解,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)見解析(3)【解析】

(1)在平面找一條直線平行即可.(2)在平面內(nèi)找兩條相交直線垂直即可.(3)三棱錐即可【詳解】(1)連接,因為直棱柱,則為矩形,則為的中點連接,在中,為中位線,則平面(2)連接,底面底面底面①為正邊的中點②由①②及平面(3)因為取的中點,連接,則平面,即為高,【點睛】本題主要考查了直線與平面平行,直線與平面垂直的證明,以及三棱錐的體積公式,證明直線與平面平行往往轉(zhuǎn)化成證明直線與直線平行.屬于中等題.18、(1),減區(qū)間為;(2)【解析】

(1)利用倍角公式將函數(shù)化成的形式,再利用周期公式求出的值,并將代入?yún)^(qū)間,求出即可;(2)由求得,利用單位圓中的三角函數(shù)線,即可得答案.【詳解】(1),,;,,的單調(diào)遞減區(qū)間為.(2)由得,利用單位圓中的三角函數(shù)線可得:,∴.【點睛】本題考查三角恒等變換中倍角公式的應用、周期公式、值域求解,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意角度范圍的限制.19、(1)詳見解析;(2)1.【解析】

(1)證法一:根據(jù)為邊的中點,可以得到向量等式,平方,再結(jié)合余弦定理,可以證明出等式;證法二:分別在和中,利用余弦定理求出和的表達式,利用,可以證明出等式;(2)解法一:解法一:記面積為.由題意并結(jié)合(1)所證結(jié)論得:,利用已知,再結(jié)合基本不等式,最后求可求出面積的最大值;解法二:利用余弦定理把表示出來,結(jié)合重要不等式,再利用三角形面積公式可得,令設,利用輔助角公式,可以求出的最大值,即可求出面積的最大值.【詳解】(1)證法一:由題意得①由余弦定理得②將②代入①式并化簡得,故;證法二:在中,由余弦定理得,在中,由余弦定理得,∵,∴,則,故;(2)解法一:記面積為.由題意并結(jié)合(1)所證結(jié)論得:,又已知,則,即,當時,等號成立,故,即面積的最大值為1.解法二:設則由,故.【點睛】本題考查了余弦定理、三角形面積公式的應用,考查了重要不等式及基本不等式,考查了數(shù)學運算能力.20、(1);(2);(3).【解析】

(1)設,由題意得出,求出正整數(shù)的值即可;(2)根據(jù)定義可知等比數(shù)列中的奇數(shù)項構(gòu)成的等比數(shù)列為階穩(wěn)增數(shù)列,偶數(shù)項構(gòu)成的等比數(shù)列也為階穩(wěn)增數(shù)列,分和兩種情況討論,列出關于的不等式,解出即可;(3)求出,然后分、和三種情況討論,求出,結(jié)合數(shù)列的極限存在,求出實數(shù)的取值范圍.【詳解】(1)設,由于數(shù)列為階穩(wěn)增數(shù)列,則,對任意,數(shù)列中恰有個,則數(shù)列中的項依次為:、、、、、、、、、、、、、、、、,設數(shù)列中值為的最大項數(shù)為,則,由題意可得,即,,解得,因此,;(2)由于等比數(shù)列為階穩(wěn)增數(shù)列,即對任意的,,且.所以,等比數(shù)列中的奇數(shù)項構(gòu)成的等比數(shù)列為階穩(wěn)增數(shù)列,偶數(shù)項構(gòu)成的等比數(shù)列也為階穩(wěn)增數(shù)列.①當時,則等比數(shù)列中每項都為正數(shù),由可得,整理得,解得;②當時,(i)若為正奇數(shù),可設,則,由,得,即,整理得,解得;(ii)若為正偶數(shù)時,可設,則,由,得,即,整理得,解得.所以,當時,等比數(shù)列為階穩(wěn)增數(shù)列.綜上所述,實數(shù)的取值范圍是;(3),由(1)知,則.①當時,,,則,此時,數(shù)列的極限不存在;②當時,,,上式下式得,所以,,則.(i)若時,則,此時數(shù)列的極限不存在;(ii)當時,,此時,數(shù)列的極限存在.綜上所述,實數(shù)的取值范圍是.【點睛】本題考查數(shù)列新定義“階穩(wěn)增數(shù)列”的應用,涉及等比數(shù)列的單

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論